File: times.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (494 lines) | stat: -rw-r--r-- 17,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import re
import warnings
from datetime import datetime
from distutils.version import LooseVersion
from functools import partial

import numpy as np
import pandas as pd
from pandas.errors import OutOfBoundsDatetime

from ..core import indexing
from ..core.common import contains_cftime_datetimes
from ..core.formatting import first_n_items, format_timestamp, last_item
from ..core.variable import Variable
from .variables import (
    SerializationWarning,
    VariableCoder,
    lazy_elemwise_func,
    pop_to,
    safe_setitem,
    unpack_for_decoding,
    unpack_for_encoding,
)

# standard calendars recognized by cftime
_STANDARD_CALENDARS = {"standard", "gregorian", "proleptic_gregorian"}

_NS_PER_TIME_DELTA = {
    "us": int(1e3),
    "ms": int(1e6),
    "s": int(1e9),
    "m": int(1e9) * 60,
    "h": int(1e9) * 60 * 60,
    "D": int(1e9) * 60 * 60 * 24,
}

TIME_UNITS = frozenset(
    ["days", "hours", "minutes", "seconds", "milliseconds", "microseconds"]
)


def _netcdf_to_numpy_timeunit(units):
    units = units.lower()
    if not units.endswith("s"):
        units = "%ss" % units
    return {
        "microseconds": "us",
        "milliseconds": "ms",
        "seconds": "s",
        "minutes": "m",
        "hours": "h",
        "days": "D",
    }[units]


def _ensure_padded_year(ref_date):
    # Reference dates without a padded year (e.g. since 1-1-1 or since 2-3-4)
    # are ambiguous (is it YMD or DMY?). This can lead to some very odd
    # behaviour e.g. pandas (via dateutil) passes '1-1-1 00:00:0.0' as
    # '2001-01-01 00:00:00' (because it assumes a) DMY and b) that year 1 is
    # shorthand for 2001 (like 02 would be shorthand for year 2002)).

    # Here we ensure that there is always a four-digit year, with the
    # assumption being that year comes first if we get something ambiguous.
    matches_year = re.match(r".*\d{4}.*", ref_date)
    if matches_year:
        # all good, return
        return ref_date

    # No four-digit strings, assume the first digits are the year and pad
    # appropriately
    matches_start_digits = re.match(r"(\d+)(.*)", ref_date)
    ref_year, everything_else = [s for s in matches_start_digits.groups()]
    ref_date_padded = "{:04d}{}".format(int(ref_year), everything_else)

    warning_msg = (
        f"Ambiguous reference date string: {ref_date}. The first value is "
        "assumed to be the year hence will be padded with zeros to remove "
        f"the ambiguity (the padded reference date string is: {ref_date_padded}). "
        "To remove this message, remove the ambiguity by padding your reference "
        "date strings with zeros."
    )
    warnings.warn(warning_msg, SerializationWarning)

    return ref_date_padded


def _unpack_netcdf_time_units(units):
    # CF datetime units follow the format: "UNIT since DATE"
    # this parses out the unit and date allowing for extraneous
    # whitespace. It also ensures that the year is padded with zeros
    # so it will be correctly understood by pandas (via dateutil).
    matches = re.match(r"(.+) since (.+)", units)
    if not matches:
        raise ValueError(f"invalid time units: {units}")

    delta_units, ref_date = [s.strip() for s in matches.groups()]
    ref_date = _ensure_padded_year(ref_date)

    return delta_units, ref_date


def _decode_cf_datetime_dtype(data, units, calendar, use_cftime):
    # Verify that at least the first and last date can be decoded
    # successfully. Otherwise, tracebacks end up swallowed by
    # Dataset.__repr__ when users try to view their lazily decoded array.
    values = indexing.ImplicitToExplicitIndexingAdapter(indexing.as_indexable(data))
    example_value = np.concatenate(
        [first_n_items(values, 1) or [0], last_item(values) or [0]]
    )

    try:
        result = decode_cf_datetime(example_value, units, calendar, use_cftime)
    except Exception:
        calendar_msg = (
            "the default calendar" if calendar is None else "calendar %r" % calendar
        )
        msg = (
            f"unable to decode time units {units!r} with {calendar_msg!r}. Try "
            "opening your dataset with decode_times=False or installing cftime "
            "if it is not installed."
        )
        raise ValueError(msg)
    else:
        dtype = getattr(result, "dtype", np.dtype("object"))

    return dtype


def _decode_datetime_with_cftime(num_dates, units, calendar):
    import cftime

    return np.asarray(
        cftime.num2date(num_dates, units, calendar, only_use_cftime_datetimes=True)
    )


def _decode_datetime_with_pandas(flat_num_dates, units, calendar):
    if calendar not in _STANDARD_CALENDARS:
        raise OutOfBoundsDatetime(
            "Cannot decode times from a non-standard calendar, {!r}, using "
            "pandas.".format(calendar)
        )

    delta, ref_date = _unpack_netcdf_time_units(units)
    delta = _netcdf_to_numpy_timeunit(delta)
    try:
        ref_date = pd.Timestamp(ref_date)
    except ValueError:
        # ValueError is raised by pd.Timestamp for non-ISO timestamp
        # strings, in which case we fall back to using cftime
        raise OutOfBoundsDatetime

    # fixes: https://github.com/pydata/pandas/issues/14068
    # these lines check if the the lowest or the highest value in dates
    # cause an OutOfBoundsDatetime (Overflow) error
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "invalid value encountered", RuntimeWarning)
        pd.to_timedelta(flat_num_dates.min(), delta) + ref_date
        pd.to_timedelta(flat_num_dates.max(), delta) + ref_date

    # Cast input dates to integers of nanoseconds because `pd.to_datetime`
    # works much faster when dealing with integers
    # make _NS_PER_TIME_DELTA an array to ensure type upcasting
    flat_num_dates_ns_int = (
        flat_num_dates.astype(np.float64) * _NS_PER_TIME_DELTA[delta]
    ).astype(np.int64)

    return (pd.to_timedelta(flat_num_dates_ns_int, "ns") + ref_date).values


def decode_cf_datetime(num_dates, units, calendar=None, use_cftime=None):
    """Given an array of numeric dates in netCDF format, convert it into a
    numpy array of date time objects.

    For standard (Gregorian) calendars, this function uses vectorized
    operations, which makes it much faster than cftime.num2date. In such a
    case, the returned array will be of type np.datetime64.

    Note that time unit in `units` must not be smaller than microseconds and
    not larger than days.

    See also
    --------
    cftime.num2date
    """
    num_dates = np.asarray(num_dates)
    flat_num_dates = num_dates.ravel()
    if calendar is None:
        calendar = "standard"

    if use_cftime is None:
        try:
            dates = _decode_datetime_with_pandas(flat_num_dates, units, calendar)
        except (KeyError, OutOfBoundsDatetime, OverflowError):
            dates = _decode_datetime_with_cftime(
                flat_num_dates.astype(float), units, calendar
            )

            if (
                dates[np.nanargmin(num_dates)].year < 1678
                or dates[np.nanargmax(num_dates)].year >= 2262
            ):
                if calendar in _STANDARD_CALENDARS:
                    warnings.warn(
                        "Unable to decode time axis into full "
                        "numpy.datetime64 objects, continuing using "
                        "cftime.datetime objects instead, reason: dates out "
                        "of range",
                        SerializationWarning,
                        stacklevel=3,
                    )
            else:
                if calendar in _STANDARD_CALENDARS:
                    dates = cftime_to_nptime(dates)
    elif use_cftime:
        dates = _decode_datetime_with_cftime(
            flat_num_dates.astype(float), units, calendar
        )
    else:
        dates = _decode_datetime_with_pandas(flat_num_dates, units, calendar)

    return dates.reshape(num_dates.shape)


def to_timedelta_unboxed(value, **kwargs):
    if LooseVersion(pd.__version__) < "0.25.0":
        result = pd.to_timedelta(value, **kwargs, box=False)
    else:
        result = pd.to_timedelta(value, **kwargs).to_numpy()
    assert result.dtype == "timedelta64[ns]"
    return result


def to_datetime_unboxed(value, **kwargs):
    if LooseVersion(pd.__version__) < "0.25.0":
        result = pd.to_datetime(value, **kwargs, box=False)
    else:
        result = pd.to_datetime(value, **kwargs).to_numpy()
    assert result.dtype == "datetime64[ns]"
    return result


def decode_cf_timedelta(num_timedeltas, units):
    """Given an array of numeric timedeltas in netCDF format, convert it into a
    numpy timedelta64[ns] array.
    """
    num_timedeltas = np.asarray(num_timedeltas)
    units = _netcdf_to_numpy_timeunit(units)
    result = to_timedelta_unboxed(num_timedeltas.ravel(), unit=units)
    return result.reshape(num_timedeltas.shape)


def _infer_time_units_from_diff(unique_timedeltas):
    for time_unit in ["days", "hours", "minutes", "seconds"]:
        delta_ns = _NS_PER_TIME_DELTA[_netcdf_to_numpy_timeunit(time_unit)]
        unit_delta = np.timedelta64(delta_ns, "ns")
        diffs = unique_timedeltas / unit_delta
        if np.all(diffs == diffs.astype(int)):
            return time_unit
    return "seconds"


def infer_calendar_name(dates):
    """Given an array of datetimes, infer the CF calendar name"""
    if np.asarray(dates).dtype == "datetime64[ns]":
        return "proleptic_gregorian"
    else:
        return np.asarray(dates).ravel()[0].calendar


def infer_datetime_units(dates):
    """Given an array of datetimes, returns a CF compatible time-unit string of
    the form "{time_unit} since {date[0]}", where `time_unit` is 'days',
    'hours', 'minutes' or 'seconds' (the first one that can evenly divide all
    unique time deltas in `dates`)
    """
    dates = np.asarray(dates).ravel()
    if np.asarray(dates).dtype == "datetime64[ns]":
        dates = to_datetime_unboxed(dates)
        dates = dates[pd.notnull(dates)]
        reference_date = dates[0] if len(dates) > 0 else "1970-01-01"
        reference_date = pd.Timestamp(reference_date)
    else:
        reference_date = dates[0] if len(dates) > 0 else "1970-01-01"
        reference_date = format_cftime_datetime(reference_date)
    unique_timedeltas = np.unique(np.diff(dates))
    if unique_timedeltas.dtype == np.dtype("O"):
        # Convert to np.timedelta64 objects using pandas to work around a
        # NumPy casting bug: https://github.com/numpy/numpy/issues/11096
        unique_timedeltas = to_timedelta_unboxed(unique_timedeltas)
    units = _infer_time_units_from_diff(unique_timedeltas)
    return f"{units} since {reference_date}"


def format_cftime_datetime(date):
    """Converts a cftime.datetime object to a string with the format:
    YYYY-MM-DD HH:MM:SS.UUUUUU
    """
    return "{:04d}-{:02d}-{:02d} {:02d}:{:02d}:{:02d}.{:06d}".format(
        date.year,
        date.month,
        date.day,
        date.hour,
        date.minute,
        date.second,
        date.microsecond,
    )


def infer_timedelta_units(deltas):
    """Given an array of timedeltas, returns a CF compatible time-unit from
    {'days', 'hours', 'minutes' 'seconds'} (the first one that can evenly
    divide all unique time deltas in `deltas`)
    """
    deltas = to_timedelta_unboxed(np.asarray(deltas).ravel())
    unique_timedeltas = np.unique(deltas[pd.notnull(deltas)])
    units = _infer_time_units_from_diff(unique_timedeltas)
    return units


def cftime_to_nptime(times):
    """Given an array of cftime.datetime objects, return an array of
    numpy.datetime64 objects of the same size"""
    times = np.asarray(times)
    new = np.empty(times.shape, dtype="M8[ns]")
    for i, t in np.ndenumerate(times):
        try:
            # Use pandas.Timestamp in place of datetime.datetime, because
            # NumPy casts it safely it np.datetime64[ns] for dates outside
            # 1678 to 2262 (this is not currently the case for
            # datetime.datetime).
            dt = pd.Timestamp(
                t.year, t.month, t.day, t.hour, t.minute, t.second, t.microsecond
            )
        except ValueError as e:
            raise ValueError(
                "Cannot convert date {} to a date in the "
                "standard calendar.  Reason: {}.".format(t, e)
            )
        new[i] = np.datetime64(dt)
    return new


def _cleanup_netcdf_time_units(units):
    delta, ref_date = _unpack_netcdf_time_units(units)
    try:
        units = "{} since {}".format(delta, format_timestamp(ref_date))
    except OutOfBoundsDatetime:
        # don't worry about reifying the units if they're out of bounds
        pass
    return units


def _encode_datetime_with_cftime(dates, units, calendar):
    """Fallback method for encoding dates using cftime.

    This method is more flexible than xarray's parsing using datetime64[ns]
    arrays but also slower because it loops over each element.
    """
    import cftime

    if np.issubdtype(dates.dtype, np.datetime64):
        # numpy's broken datetime conversion only works for us precision
        dates = dates.astype("M8[us]").astype(datetime)

    def encode_datetime(d):
        return np.nan if d is None else cftime.date2num(d, units, calendar)

    return np.vectorize(encode_datetime)(dates)


def cast_to_int_if_safe(num):
    int_num = np.array(num, dtype=np.int64)
    if (num == int_num).all():
        num = int_num
    return num


def encode_cf_datetime(dates, units=None, calendar=None):
    """Given an array of datetime objects, returns the tuple `(num, units,
    calendar)` suitable for a CF compliant time variable.

    Unlike `date2num`, this function can handle datetime64 arrays.

    See also
    --------
    cftime.date2num
    """
    dates = np.asarray(dates)

    if units is None:
        units = infer_datetime_units(dates)
    else:
        units = _cleanup_netcdf_time_units(units)

    if calendar is None:
        calendar = infer_calendar_name(dates)

    delta, ref_date = _unpack_netcdf_time_units(units)
    try:
        if calendar not in _STANDARD_CALENDARS or dates.dtype.kind == "O":
            # parse with cftime instead
            raise OutOfBoundsDatetime
        assert dates.dtype == "datetime64[ns]"

        delta_units = _netcdf_to_numpy_timeunit(delta)
        time_delta = np.timedelta64(1, delta_units).astype("timedelta64[ns]")
        ref_date = pd.Timestamp(ref_date)

        # If the ref_date Timestamp is timezone-aware, convert to UTC and
        # make it timezone-naive (GH 2649).
        if ref_date.tz is not None:
            ref_date = ref_date.tz_convert(None)

        # Wrap the dates in a DatetimeIndex to do the subtraction to ensure
        # an OverflowError is raised if the ref_date is too far away from
        # dates to be encoded (GH 2272).
        num = (pd.DatetimeIndex(dates.ravel()) - ref_date) / time_delta
        num = num.values.reshape(dates.shape)

    except (OutOfBoundsDatetime, OverflowError):
        num = _encode_datetime_with_cftime(dates, units, calendar)

    num = cast_to_int_if_safe(num)
    return (num, units, calendar)


def encode_cf_timedelta(timedeltas, units=None):
    if units is None:
        units = infer_timedelta_units(timedeltas)

    np_unit = _netcdf_to_numpy_timeunit(units)
    num = 1.0 * timedeltas / np.timedelta64(1, np_unit)
    num = np.where(pd.isnull(timedeltas), np.nan, num)
    num = cast_to_int_if_safe(num)
    return (num, units)


class CFDatetimeCoder(VariableCoder):
    def __init__(self, use_cftime=None):
        self.use_cftime = use_cftime

    def encode(self, variable, name=None):
        dims, data, attrs, encoding = unpack_for_encoding(variable)
        if np.issubdtype(data.dtype, np.datetime64) or contains_cftime_datetimes(
            variable
        ):
            (data, units, calendar) = encode_cf_datetime(
                data, encoding.pop("units", None), encoding.pop("calendar", None)
            )
            safe_setitem(attrs, "units", units, name=name)
            safe_setitem(attrs, "calendar", calendar, name=name)

        return Variable(dims, data, attrs, encoding)

    def decode(self, variable, name=None):
        dims, data, attrs, encoding = unpack_for_decoding(variable)

        if "units" in attrs and "since" in attrs["units"]:
            units = pop_to(attrs, encoding, "units")
            calendar = pop_to(attrs, encoding, "calendar")
            dtype = _decode_cf_datetime_dtype(data, units, calendar, self.use_cftime)
            transform = partial(
                decode_cf_datetime,
                units=units,
                calendar=calendar,
                use_cftime=self.use_cftime,
            )
            data = lazy_elemwise_func(data, transform, dtype)

        return Variable(dims, data, attrs, encoding)


class CFTimedeltaCoder(VariableCoder):
    def encode(self, variable, name=None):
        dims, data, attrs, encoding = unpack_for_encoding(variable)

        if np.issubdtype(data.dtype, np.timedelta64):
            data, units = encode_cf_timedelta(data, encoding.pop("units", None))
            safe_setitem(attrs, "units", units, name=name)

        return Variable(dims, data, attrs, encoding)

    def decode(self, variable, name=None):
        dims, data, attrs, encoding = unpack_for_decoding(variable)

        if "units" in attrs and attrs["units"] in TIME_UNITS:
            units = pop_to(attrs, encoding, "units")
            transform = partial(decode_cf_timedelta, units=units)
            dtype = np.dtype("timedelta64[ns]")
            data = lazy_elemwise_func(data, transform, dtype=dtype)

        return Variable(dims, data, attrs, encoding)