1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
import warnings
from collections import defaultdict
import numpy as np
import pandas as pd
from .coding import strings, times, variables
from .coding.variables import SerializationWarning, pop_to
from .core import duck_array_ops, indexing
from .core.common import contains_cftime_datetimes
from .core.pycompat import is_duck_dask_array
from .core.variable import IndexVariable, Variable, as_variable
class NativeEndiannessArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Decode arrays on the fly from non-native to native endianness
This is useful for decoding arrays from netCDF3 files (which are all
big endian) into native endianness, so they can be used with Cython
functions, such as those found in bottleneck and pandas.
>>> x = np.arange(5, dtype=">i2")
>>> x.dtype
dtype('>i2')
>>> NativeEndiannessArray(x).dtype
dtype('int16')
>>> indexer = indexing.BasicIndexer((slice(None),))
>>> NativeEndiannessArray(x)[indexer].dtype
dtype('int16')
"""
__slots__ = ("array",)
def __init__(self, array):
self.array = indexing.as_indexable(array)
@property
def dtype(self):
return np.dtype(self.array.dtype.kind + str(self.array.dtype.itemsize))
def __getitem__(self, key):
return np.asarray(self.array[key], dtype=self.dtype)
class BoolTypeArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Decode arrays on the fly from integer to boolean datatype
This is useful for decoding boolean arrays from integer typed netCDF
variables.
>>> x = np.array([1, 0, 1, 1, 0], dtype="i1")
>>> x.dtype
dtype('int8')
>>> BoolTypeArray(x).dtype
dtype('bool')
>>> indexer = indexing.BasicIndexer((slice(None),))
>>> BoolTypeArray(x)[indexer].dtype
dtype('bool')
"""
__slots__ = ("array",)
def __init__(self, array):
self.array = indexing.as_indexable(array)
@property
def dtype(self):
return np.dtype("bool")
def __getitem__(self, key):
return np.asarray(self.array[key], dtype=self.dtype)
def _var_as_tuple(var):
return var.dims, var.data, var.attrs.copy(), var.encoding.copy()
def maybe_encode_nonstring_dtype(var, name=None):
if "dtype" in var.encoding and var.encoding["dtype"] not in ("S1", str):
dims, data, attrs, encoding = _var_as_tuple(var)
dtype = np.dtype(encoding.pop("dtype"))
if dtype != var.dtype:
if np.issubdtype(dtype, np.integer):
if (
np.issubdtype(var.dtype, np.floating)
and "_FillValue" not in var.attrs
and "missing_value" not in var.attrs
):
warnings.warn(
"saving variable %s with floating "
"point data as an integer dtype without "
"any _FillValue to use for NaNs" % name,
SerializationWarning,
stacklevel=10,
)
data = duck_array_ops.around(data)[...]
data = data.astype(dtype=dtype)
var = Variable(dims, data, attrs, encoding)
return var
def maybe_default_fill_value(var):
# make NaN the fill value for float types:
if (
"_FillValue" not in var.attrs
and "_FillValue" not in var.encoding
and np.issubdtype(var.dtype, np.floating)
):
var.attrs["_FillValue"] = var.dtype.type(np.nan)
return var
def maybe_encode_bools(var):
if (
(var.dtype == bool)
and ("dtype" not in var.encoding)
and ("dtype" not in var.attrs)
):
dims, data, attrs, encoding = _var_as_tuple(var)
attrs["dtype"] = "bool"
data = data.astype(dtype="i1", copy=True)
var = Variable(dims, data, attrs, encoding)
return var
def _infer_dtype(array, name=None):
"""Given an object array with no missing values, infer its dtype from its
first element
"""
if array.dtype.kind != "O":
raise TypeError("infer_type must be called on a dtype=object array")
if array.size == 0:
return np.dtype(float)
element = array[(0,) * array.ndim]
if isinstance(element, (bytes, str)):
return strings.create_vlen_dtype(type(element))
dtype = np.array(element).dtype
if dtype.kind != "O":
return dtype
raise ValueError(
"unable to infer dtype on variable {!r}; xarray "
"cannot serialize arbitrary Python objects".format(name)
)
def ensure_not_multiindex(var, name=None):
if isinstance(var, IndexVariable) and isinstance(var.to_index(), pd.MultiIndex):
raise NotImplementedError(
"variable {!r} is a MultiIndex, which cannot yet be "
"serialized to netCDF files "
"(https://github.com/pydata/xarray/issues/1077). Use "
"reset_index() to convert MultiIndex levels into coordinate "
"variables instead.".format(name)
)
def _copy_with_dtype(data, dtype):
"""Create a copy of an array with the given dtype.
We use this instead of np.array() to ensure that custom object dtypes end
up on the resulting array.
"""
result = np.empty(data.shape, dtype)
result[...] = data
return result
def ensure_dtype_not_object(var, name=None):
# TODO: move this from conventions to backends? (it's not CF related)
if var.dtype.kind == "O":
dims, data, attrs, encoding = _var_as_tuple(var)
if is_duck_dask_array(data):
warnings.warn(
"variable {} has data in the form of a dask array with "
"dtype=object, which means it is being loaded into memory "
"to determine a data type that can be safely stored on disk. "
"To avoid this, coerce this variable to a fixed-size dtype "
"with astype() before saving it.".format(name),
SerializationWarning,
)
data = data.compute()
missing = pd.isnull(data)
if missing.any():
# nb. this will fail for dask.array data
non_missing_values = data[~missing]
inferred_dtype = _infer_dtype(non_missing_values, name)
# There is no safe bit-pattern for NA in typical binary string
# formats, we so can't set a fill_value. Unfortunately, this means
# we can't distinguish between missing values and empty strings.
if strings.is_bytes_dtype(inferred_dtype):
fill_value = b""
elif strings.is_unicode_dtype(inferred_dtype):
fill_value = ""
else:
# insist on using float for numeric values
if not np.issubdtype(inferred_dtype, np.floating):
inferred_dtype = np.dtype(float)
fill_value = inferred_dtype.type(np.nan)
data = _copy_with_dtype(data, dtype=inferred_dtype)
data[missing] = fill_value
else:
data = _copy_with_dtype(data, dtype=_infer_dtype(data, name))
assert data.dtype.kind != "O" or data.dtype.metadata
var = Variable(dims, data, attrs, encoding)
return var
def encode_cf_variable(var, needs_copy=True, name=None):
"""
Converts an Variable into an Variable which follows some
of the CF conventions:
- Nans are masked using _FillValue (or the deprecated missing_value)
- Rescaling via: scale_factor and add_offset
- datetimes are converted to the CF 'units since time' format
- dtype encodings are enforced.
Parameters
----------
var : Variable
A variable holding un-encoded data.
Returns
-------
out : Variable
A variable which has been encoded as described above.
"""
ensure_not_multiindex(var, name=name)
for coder in [
times.CFDatetimeCoder(),
times.CFTimedeltaCoder(),
variables.CFScaleOffsetCoder(),
variables.CFMaskCoder(),
variables.UnsignedIntegerCoder(),
]:
var = coder.encode(var, name=name)
# TODO(shoyer): convert all of these to use coders, too:
var = maybe_encode_nonstring_dtype(var, name=name)
var = maybe_default_fill_value(var)
var = maybe_encode_bools(var)
var = ensure_dtype_not_object(var, name=name)
return var
def decode_cf_variable(
name,
var,
concat_characters=True,
mask_and_scale=True,
decode_times=True,
decode_endianness=True,
stack_char_dim=True,
use_cftime=None,
decode_timedelta=None,
):
"""
Decodes a variable which may hold CF encoded information.
This includes variables that have been masked and scaled, which
hold CF style time variables (this is almost always the case if
the dataset has been serialized) and which have strings encoded
as character arrays.
Parameters
----------
name : str
Name of the variable. Used for better error messages.
var : Variable
A variable holding potentially CF encoded information.
concat_characters : bool
Should character arrays be concatenated to strings, for
example: ["h", "e", "l", "l", "o"] -> "hello"
mask_and_scale : bool
Lazily scale (using scale_factor and add_offset) and mask
(using _FillValue). If the _Unsigned attribute is present
treat integer arrays as unsigned.
decode_times : bool
Decode cf times ("hours since 2000-01-01") to np.datetime64.
decode_endianness : bool
Decode arrays from non-native to native endianness.
stack_char_dim : bool
Whether to stack characters into bytes along the last dimension of this
array. Passed as an argument because we need to look at the full
dataset to figure out if this is appropriate.
use_cftime : bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error.
Returns
-------
out : Variable
A variable holding the decoded equivalent of var.
"""
var = as_variable(var)
original_dtype = var.dtype
if decode_timedelta is None:
decode_timedelta = decode_times
if concat_characters:
if stack_char_dim:
var = strings.CharacterArrayCoder().decode(var, name=name)
var = strings.EncodedStringCoder().decode(var)
if mask_and_scale:
for coder in [
variables.UnsignedIntegerCoder(),
variables.CFMaskCoder(),
variables.CFScaleOffsetCoder(),
]:
var = coder.decode(var, name=name)
if decode_timedelta:
var = times.CFTimedeltaCoder().decode(var, name=name)
if decode_times:
var = times.CFDatetimeCoder(use_cftime=use_cftime).decode(var, name=name)
dimensions, data, attributes, encoding = variables.unpack_for_decoding(var)
# TODO(shoyer): convert everything below to use coders
if decode_endianness and not data.dtype.isnative:
# do this last, so it's only done if we didn't already unmask/scale
data = NativeEndiannessArray(data)
original_dtype = data.dtype
encoding.setdefault("dtype", original_dtype)
if "dtype" in attributes and attributes["dtype"] == "bool":
del attributes["dtype"]
data = BoolTypeArray(data)
if not is_duck_dask_array(data):
data = indexing.LazilyOuterIndexedArray(data)
return Variable(dimensions, data, attributes, encoding=encoding)
def _update_bounds_attributes(variables):
"""Adds time attributes to time bounds variables.
Variables handling time bounds ("Cell boundaries" in the CF
conventions) do not necessarily carry the necessary attributes to be
decoded. This copies the attributes from the time variable to the
associated boundaries.
See Also:
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/
cf-conventions.html#cell-boundaries
https://github.com/pydata/xarray/issues/2565
"""
# For all time variables with bounds
for v in variables.values():
attrs = v.attrs
has_date_units = "units" in attrs and "since" in attrs["units"]
if has_date_units and "bounds" in attrs:
if attrs["bounds"] in variables:
bounds_attrs = variables[attrs["bounds"]].attrs
bounds_attrs.setdefault("units", attrs["units"])
if "calendar" in attrs:
bounds_attrs.setdefault("calendar", attrs["calendar"])
def _update_bounds_encoding(variables):
"""Adds time encoding to time bounds variables.
Variables handling time bounds ("Cell boundaries" in the CF
conventions) do not necessarily carry the necessary attributes to be
decoded. This copies the encoding from the time variable to the
associated bounds variable so that we write CF-compliant files.
See Also:
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/
cf-conventions.html#cell-boundaries
https://github.com/pydata/xarray/issues/2565
"""
# For all time variables with bounds
for v in variables.values():
attrs = v.attrs
encoding = v.encoding
has_date_units = "units" in encoding and "since" in encoding["units"]
is_datetime_type = np.issubdtype(
v.dtype, np.datetime64
) or contains_cftime_datetimes(v)
if (
is_datetime_type
and not has_date_units
and "bounds" in attrs
and attrs["bounds"] in variables
):
warnings.warn(
"Variable '{0}' has datetime type and a "
"bounds variable but {0}.encoding does not have "
"units specified. The units encodings for '{0}' "
"and '{1}' will be determined independently "
"and may not be equal, counter to CF-conventions. "
"If this is a concern, specify a units encoding for "
"'{0}' before writing to a file.".format(v.name, attrs["bounds"]),
UserWarning,
)
if has_date_units and "bounds" in attrs:
if attrs["bounds"] in variables:
bounds_encoding = variables[attrs["bounds"]].encoding
bounds_encoding.setdefault("units", encoding["units"])
if "calendar" in encoding:
bounds_encoding.setdefault("calendar", encoding["calendar"])
def decode_cf_variables(
variables,
attributes,
concat_characters=True,
mask_and_scale=True,
decode_times=True,
decode_coords=True,
drop_variables=None,
use_cftime=None,
decode_timedelta=None,
):
"""
Decode several CF encoded variables.
See: decode_cf_variable
"""
dimensions_used_by = defaultdict(list)
for v in variables.values():
for d in v.dims:
dimensions_used_by[d].append(v)
def stackable(dim):
# figure out if a dimension can be concatenated over
if dim in variables:
return False
for v in dimensions_used_by[dim]:
if v.dtype.kind != "S" or dim != v.dims[-1]:
return False
return True
coord_names = set()
if isinstance(drop_variables, str):
drop_variables = [drop_variables]
elif drop_variables is None:
drop_variables = []
drop_variables = set(drop_variables)
# Time bounds coordinates might miss the decoding attributes
if decode_times:
_update_bounds_attributes(variables)
new_vars = {}
for k, v in variables.items():
if k in drop_variables:
continue
stack_char_dim = (
concat_characters
and v.dtype == "S1"
and v.ndim > 0
and stackable(v.dims[-1])
)
new_vars[k] = decode_cf_variable(
k,
v,
concat_characters=concat_characters,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
stack_char_dim=stack_char_dim,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
if decode_coords:
var_attrs = new_vars[k].attrs
if "coordinates" in var_attrs:
coord_str = var_attrs["coordinates"]
var_coord_names = coord_str.split()
if all(k in variables for k in var_coord_names):
new_vars[k].encoding["coordinates"] = coord_str
del var_attrs["coordinates"]
coord_names.update(var_coord_names)
if decode_coords and "coordinates" in attributes:
attributes = dict(attributes)
coord_names.update(attributes.pop("coordinates").split())
return new_vars, attributes, coord_names
def decode_cf(
obj,
concat_characters=True,
mask_and_scale=True,
decode_times=True,
decode_coords=True,
drop_variables=None,
use_cftime=None,
decode_timedelta=None,
):
"""Decode the given Dataset or Datastore according to CF conventions into
a new Dataset.
Parameters
----------
obj : Dataset or DataStore
Object to decode.
concat_characters : bool, optional
Should character arrays be concatenated to strings, for
example: ["h", "e", "l", "l", "o"] -> "hello"
mask_and_scale : bool, optional
Lazily scale (using scale_factor and add_offset) and mask
(using _FillValue).
decode_times : bool, optional
Decode cf times (e.g., integers since "hours since 2000-01-01") to
np.datetime64.
decode_coords : bool, optional
Use the 'coordinates' attribute on variable (or the dataset itself) to
identify coordinates.
drop_variables : str or iterable, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
use_cftime : bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error.
decode_timedelta : bool, optional
If True, decode variables and coordinates with time units in
{"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
Returns
-------
decoded : Dataset
"""
from .backends.common import AbstractDataStore
from .core.dataset import Dataset
if isinstance(obj, Dataset):
vars = obj._variables
attrs = obj.attrs
extra_coords = set(obj.coords)
file_obj = obj._file_obj
encoding = obj.encoding
elif isinstance(obj, AbstractDataStore):
vars, attrs = obj.load()
extra_coords = set()
file_obj = obj
encoding = obj.get_encoding()
else:
raise TypeError("can only decode Dataset or DataStore objects")
vars, attrs, coord_names = decode_cf_variables(
vars,
attrs,
concat_characters,
mask_and_scale,
decode_times,
decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
ds = Dataset(vars, attrs=attrs)
ds = ds.set_coords(coord_names.union(extra_coords).intersection(vars))
ds._file_obj = file_obj
ds.encoding = encoding
return ds
def cf_decoder(
variables,
attributes,
concat_characters=True,
mask_and_scale=True,
decode_times=True,
):
"""
Decode a set of CF encoded variables and attributes.
Parameters
----------
variables : dict
A dictionary mapping from variable name to xarray.Variable
attributes : dict
A dictionary mapping from attribute name to value
concat_characters : bool
Should character arrays be concatenated to strings, for
example: ["h", "e", "l", "l", "o"] -> "hello"
mask_and_scale: bool
Lazily scale (using scale_factor and add_offset) and mask
(using _FillValue).
decode_times : bool
Decode cf times ("hours since 2000-01-01") to np.datetime64.
Returns
-------
decoded_variables : dict
A dictionary mapping from variable name to xarray.Variable objects.
decoded_attributes : dict
A dictionary mapping from attribute name to values.
See also
--------
decode_cf_variable
"""
variables, attributes, _ = decode_cf_variables(
variables, attributes, concat_characters, mask_and_scale, decode_times
)
return variables, attributes
def _encode_coordinates(variables, attributes, non_dim_coord_names):
# calculate global and variable specific coordinates
non_dim_coord_names = set(non_dim_coord_names)
for name in list(non_dim_coord_names):
if isinstance(name, str) and " " in name:
warnings.warn(
"coordinate {!r} has a space in its name, which means it "
"cannot be marked as a coordinate on disk and will be "
"saved as a data variable instead".format(name),
SerializationWarning,
stacklevel=6,
)
non_dim_coord_names.discard(name)
global_coordinates = non_dim_coord_names.copy()
variable_coordinates = defaultdict(set)
for coord_name in non_dim_coord_names:
target_dims = variables[coord_name].dims
for k, v in variables.items():
if (
k not in non_dim_coord_names
and k not in v.dims
and set(target_dims) <= set(v.dims)
):
variable_coordinates[k].add(coord_name)
variables = {k: v.copy(deep=False) for k, v in variables.items()}
# keep track of variable names written to file under the "coordinates" attributes
written_coords = set()
for name, var in variables.items():
encoding = var.encoding
attrs = var.attrs
if "coordinates" in attrs and "coordinates" in encoding:
raise ValueError(
f"'coordinates' found in both attrs and encoding for variable {name!r}."
)
# this will copy coordinates from encoding to attrs if "coordinates" in attrs
# after the next line, "coordinates" is never in encoding
# we get support for attrs["coordinates"] for free.
coords_str = pop_to(encoding, attrs, "coordinates")
if not coords_str and variable_coordinates[name]:
attrs["coordinates"] = " ".join(map(str, variable_coordinates[name]))
if "coordinates" in attrs:
written_coords.update(attrs["coordinates"].split())
# These coordinates are not associated with any particular variables, so we
# save them under a global 'coordinates' attribute so xarray can roundtrip
# the dataset faithfully. Because this serialization goes beyond CF
# conventions, only do it if necessary.
# Reference discussion:
# http://mailman.cgd.ucar.edu/pipermail/cf-metadata/2014/007571.html
global_coordinates.difference_update(written_coords)
if global_coordinates:
attributes = dict(attributes)
if "coordinates" in attributes:
warnings.warn(
f"cannot serialize global coordinates {global_coordinates!r} because the global "
f"attribute 'coordinates' already exists. This may prevent faithful roundtripping"
f"of xarray datasets",
SerializationWarning,
)
else:
attributes["coordinates"] = " ".join(map(str, global_coordinates))
return variables, attributes
def encode_dataset_coordinates(dataset):
"""Encode coordinates on the given dataset object into variable specific
and global attributes.
When possible, this is done according to CF conventions.
Parameters
----------
dataset : Dataset
Object to encode.
Returns
-------
variables : dict
attrs : dict
"""
non_dim_coord_names = set(dataset.coords) - set(dataset.dims)
return _encode_coordinates(
dataset._variables, dataset.attrs, non_dim_coord_names=non_dim_coord_names
)
def cf_encoder(variables, attributes):
"""
Encode a set of CF encoded variables and attributes.
Takes a dicts of variables and attributes and encodes them
to conform to CF conventions as much as possible.
This includes masking, scaling, character array handling,
and CF-time encoding.
Parameters
----------
variables : dict
A dictionary mapping from variable name to xarray.Variable
attributes : dict
A dictionary mapping from attribute name to value
Returns
-------
encoded_variables : dict
A dictionary mapping from variable name to xarray.Variable,
encoded_attributes : dict
A dictionary mapping from attribute name to value
See also
--------
decode_cf_variable, encode_cf_variable
"""
# add encoding for time bounds variables if present.
_update_bounds_encoding(variables)
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
# Remove attrs from bounds variables (issue #2921)
for var in new_vars.values():
bounds = var.attrs["bounds"] if "bounds" in var.attrs else None
if bounds and bounds in new_vars:
# see http://cfconventions.org/cf-conventions/cf-conventions.html#cell-boundaries
for attr in [
"units",
"standard_name",
"axis",
"positive",
"calendar",
"long_name",
"leap_month",
"leap_year",
"month_lengths",
]:
if attr in new_vars[bounds].attrs and attr in var.attrs:
if new_vars[bounds].attrs[attr] == var.attrs[attr]:
new_vars[bounds].attrs.pop(attr)
return new_vars, attributes
|