File: conventions.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (795 lines) | stat: -rw-r--r-- 27,237 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
import warnings
from collections import defaultdict

import numpy as np
import pandas as pd

from .coding import strings, times, variables
from .coding.variables import SerializationWarning, pop_to
from .core import duck_array_ops, indexing
from .core.common import contains_cftime_datetimes
from .core.pycompat import is_duck_dask_array
from .core.variable import IndexVariable, Variable, as_variable


class NativeEndiannessArray(indexing.ExplicitlyIndexedNDArrayMixin):
    """Decode arrays on the fly from non-native to native endianness

    This is useful for decoding arrays from netCDF3 files (which are all
    big endian) into native endianness, so they can be used with Cython
    functions, such as those found in bottleneck and pandas.

    >>> x = np.arange(5, dtype=">i2")

    >>> x.dtype
    dtype('>i2')

    >>> NativeEndiannessArray(x).dtype
    dtype('int16')

    >>> indexer = indexing.BasicIndexer((slice(None),))
    >>> NativeEndiannessArray(x)[indexer].dtype
    dtype('int16')
    """

    __slots__ = ("array",)

    def __init__(self, array):
        self.array = indexing.as_indexable(array)

    @property
    def dtype(self):
        return np.dtype(self.array.dtype.kind + str(self.array.dtype.itemsize))

    def __getitem__(self, key):
        return np.asarray(self.array[key], dtype=self.dtype)


class BoolTypeArray(indexing.ExplicitlyIndexedNDArrayMixin):
    """Decode arrays on the fly from integer to boolean datatype

    This is useful for decoding boolean arrays from integer typed netCDF
    variables.

    >>> x = np.array([1, 0, 1, 1, 0], dtype="i1")

    >>> x.dtype
    dtype('int8')

    >>> BoolTypeArray(x).dtype
    dtype('bool')

    >>> indexer = indexing.BasicIndexer((slice(None),))
    >>> BoolTypeArray(x)[indexer].dtype
    dtype('bool')
    """

    __slots__ = ("array",)

    def __init__(self, array):
        self.array = indexing.as_indexable(array)

    @property
    def dtype(self):
        return np.dtype("bool")

    def __getitem__(self, key):
        return np.asarray(self.array[key], dtype=self.dtype)


def _var_as_tuple(var):
    return var.dims, var.data, var.attrs.copy(), var.encoding.copy()


def maybe_encode_nonstring_dtype(var, name=None):
    if "dtype" in var.encoding and var.encoding["dtype"] not in ("S1", str):
        dims, data, attrs, encoding = _var_as_tuple(var)
        dtype = np.dtype(encoding.pop("dtype"))
        if dtype != var.dtype:
            if np.issubdtype(dtype, np.integer):
                if (
                    np.issubdtype(var.dtype, np.floating)
                    and "_FillValue" not in var.attrs
                    and "missing_value" not in var.attrs
                ):
                    warnings.warn(
                        "saving variable %s with floating "
                        "point data as an integer dtype without "
                        "any _FillValue to use for NaNs" % name,
                        SerializationWarning,
                        stacklevel=10,
                    )
                data = duck_array_ops.around(data)[...]
            data = data.astype(dtype=dtype)
        var = Variable(dims, data, attrs, encoding)
    return var


def maybe_default_fill_value(var):
    # make NaN the fill value for float types:
    if (
        "_FillValue" not in var.attrs
        and "_FillValue" not in var.encoding
        and np.issubdtype(var.dtype, np.floating)
    ):
        var.attrs["_FillValue"] = var.dtype.type(np.nan)
    return var


def maybe_encode_bools(var):
    if (
        (var.dtype == bool)
        and ("dtype" not in var.encoding)
        and ("dtype" not in var.attrs)
    ):
        dims, data, attrs, encoding = _var_as_tuple(var)
        attrs["dtype"] = "bool"
        data = data.astype(dtype="i1", copy=True)
        var = Variable(dims, data, attrs, encoding)
    return var


def _infer_dtype(array, name=None):
    """Given an object array with no missing values, infer its dtype from its
    first element
    """
    if array.dtype.kind != "O":
        raise TypeError("infer_type must be called on a dtype=object array")

    if array.size == 0:
        return np.dtype(float)

    element = array[(0,) * array.ndim]
    if isinstance(element, (bytes, str)):
        return strings.create_vlen_dtype(type(element))

    dtype = np.array(element).dtype
    if dtype.kind != "O":
        return dtype

    raise ValueError(
        "unable to infer dtype on variable {!r}; xarray "
        "cannot serialize arbitrary Python objects".format(name)
    )


def ensure_not_multiindex(var, name=None):
    if isinstance(var, IndexVariable) and isinstance(var.to_index(), pd.MultiIndex):
        raise NotImplementedError(
            "variable {!r} is a MultiIndex, which cannot yet be "
            "serialized to netCDF files "
            "(https://github.com/pydata/xarray/issues/1077). Use "
            "reset_index() to convert MultiIndex levels into coordinate "
            "variables instead.".format(name)
        )


def _copy_with_dtype(data, dtype):
    """Create a copy of an array with the given dtype.

    We use this instead of np.array() to ensure that custom object dtypes end
    up on the resulting array.
    """
    result = np.empty(data.shape, dtype)
    result[...] = data
    return result


def ensure_dtype_not_object(var, name=None):
    # TODO: move this from conventions to backends? (it's not CF related)
    if var.dtype.kind == "O":
        dims, data, attrs, encoding = _var_as_tuple(var)

        if is_duck_dask_array(data):
            warnings.warn(
                "variable {} has data in the form of a dask array with "
                "dtype=object, which means it is being loaded into memory "
                "to determine a data type that can be safely stored on disk. "
                "To avoid this, coerce this variable to a fixed-size dtype "
                "with astype() before saving it.".format(name),
                SerializationWarning,
            )
            data = data.compute()

        missing = pd.isnull(data)
        if missing.any():
            # nb. this will fail for dask.array data
            non_missing_values = data[~missing]
            inferred_dtype = _infer_dtype(non_missing_values, name)

            # There is no safe bit-pattern for NA in typical binary string
            # formats, we so can't set a fill_value. Unfortunately, this means
            # we can't distinguish between missing values and empty strings.
            if strings.is_bytes_dtype(inferred_dtype):
                fill_value = b""
            elif strings.is_unicode_dtype(inferred_dtype):
                fill_value = ""
            else:
                # insist on using float for numeric values
                if not np.issubdtype(inferred_dtype, np.floating):
                    inferred_dtype = np.dtype(float)
                fill_value = inferred_dtype.type(np.nan)

            data = _copy_with_dtype(data, dtype=inferred_dtype)
            data[missing] = fill_value
        else:
            data = _copy_with_dtype(data, dtype=_infer_dtype(data, name))

        assert data.dtype.kind != "O" or data.dtype.metadata
        var = Variable(dims, data, attrs, encoding)
    return var


def encode_cf_variable(var, needs_copy=True, name=None):
    """
    Converts an Variable into an Variable which follows some
    of the CF conventions:

        - Nans are masked using _FillValue (or the deprecated missing_value)
        - Rescaling via: scale_factor and add_offset
        - datetimes are converted to the CF 'units since time' format
        - dtype encodings are enforced.

    Parameters
    ----------
    var : Variable
        A variable holding un-encoded data.

    Returns
    -------
    out : Variable
        A variable which has been encoded as described above.
    """
    ensure_not_multiindex(var, name=name)

    for coder in [
        times.CFDatetimeCoder(),
        times.CFTimedeltaCoder(),
        variables.CFScaleOffsetCoder(),
        variables.CFMaskCoder(),
        variables.UnsignedIntegerCoder(),
    ]:
        var = coder.encode(var, name=name)

    # TODO(shoyer): convert all of these to use coders, too:
    var = maybe_encode_nonstring_dtype(var, name=name)
    var = maybe_default_fill_value(var)
    var = maybe_encode_bools(var)
    var = ensure_dtype_not_object(var, name=name)
    return var


def decode_cf_variable(
    name,
    var,
    concat_characters=True,
    mask_and_scale=True,
    decode_times=True,
    decode_endianness=True,
    stack_char_dim=True,
    use_cftime=None,
    decode_timedelta=None,
):
    """
    Decodes a variable which may hold CF encoded information.

    This includes variables that have been masked and scaled, which
    hold CF style time variables (this is almost always the case if
    the dataset has been serialized) and which have strings encoded
    as character arrays.

    Parameters
    ----------
    name : str
        Name of the variable. Used for better error messages.
    var : Variable
        A variable holding potentially CF encoded information.
    concat_characters : bool
        Should character arrays be concatenated to strings, for
        example: ["h", "e", "l", "l", "o"] -> "hello"
    mask_and_scale : bool
        Lazily scale (using scale_factor and add_offset) and mask
        (using _FillValue). If the _Unsigned attribute is present
        treat integer arrays as unsigned.
    decode_times : bool
        Decode cf times ("hours since 2000-01-01") to np.datetime64.
    decode_endianness : bool
        Decode arrays from non-native to native endianness.
    stack_char_dim : bool
        Whether to stack characters into bytes along the last dimension of this
        array. Passed as an argument because we need to look at the full
        dataset to figure out if this is appropriate.
    use_cftime : bool, optional
        Only relevant if encoded dates come from a standard calendar
        (e.g. "gregorian", "proleptic_gregorian", "standard", or not
        specified).  If None (default), attempt to decode times to
        ``np.datetime64[ns]`` objects; if this is not possible, decode times to
        ``cftime.datetime`` objects. If True, always decode times to
        ``cftime.datetime`` objects, regardless of whether or not they can be
        represented using ``np.datetime64[ns]`` objects.  If False, always
        decode times to ``np.datetime64[ns]`` objects; if this is not possible
        raise an error.

    Returns
    -------
    out : Variable
        A variable holding the decoded equivalent of var.
    """
    var = as_variable(var)
    original_dtype = var.dtype

    if decode_timedelta is None:
        decode_timedelta = decode_times

    if concat_characters:
        if stack_char_dim:
            var = strings.CharacterArrayCoder().decode(var, name=name)
        var = strings.EncodedStringCoder().decode(var)

    if mask_and_scale:
        for coder in [
            variables.UnsignedIntegerCoder(),
            variables.CFMaskCoder(),
            variables.CFScaleOffsetCoder(),
        ]:
            var = coder.decode(var, name=name)

    if decode_timedelta:
        var = times.CFTimedeltaCoder().decode(var, name=name)
    if decode_times:
        var = times.CFDatetimeCoder(use_cftime=use_cftime).decode(var, name=name)

    dimensions, data, attributes, encoding = variables.unpack_for_decoding(var)
    # TODO(shoyer): convert everything below to use coders

    if decode_endianness and not data.dtype.isnative:
        # do this last, so it's only done if we didn't already unmask/scale
        data = NativeEndiannessArray(data)
        original_dtype = data.dtype

    encoding.setdefault("dtype", original_dtype)

    if "dtype" in attributes and attributes["dtype"] == "bool":
        del attributes["dtype"]
        data = BoolTypeArray(data)

    if not is_duck_dask_array(data):
        data = indexing.LazilyOuterIndexedArray(data)

    return Variable(dimensions, data, attributes, encoding=encoding)


def _update_bounds_attributes(variables):
    """Adds time attributes to time bounds variables.

    Variables handling time bounds ("Cell boundaries" in the CF
    conventions) do not necessarily carry the necessary attributes to be
    decoded. This copies the attributes from the time variable to the
    associated boundaries.

    See Also:

    http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/
         cf-conventions.html#cell-boundaries

    https://github.com/pydata/xarray/issues/2565
    """

    # For all time variables with bounds
    for v in variables.values():
        attrs = v.attrs
        has_date_units = "units" in attrs and "since" in attrs["units"]
        if has_date_units and "bounds" in attrs:
            if attrs["bounds"] in variables:
                bounds_attrs = variables[attrs["bounds"]].attrs
                bounds_attrs.setdefault("units", attrs["units"])
                if "calendar" in attrs:
                    bounds_attrs.setdefault("calendar", attrs["calendar"])


def _update_bounds_encoding(variables):
    """Adds time encoding to time bounds variables.

    Variables handling time bounds ("Cell boundaries" in the CF
    conventions) do not necessarily carry the necessary attributes to be
    decoded. This copies the encoding from the time variable to the
    associated bounds variable so that we write CF-compliant files.

    See Also:

    http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/
         cf-conventions.html#cell-boundaries

    https://github.com/pydata/xarray/issues/2565
    """

    # For all time variables with bounds
    for v in variables.values():
        attrs = v.attrs
        encoding = v.encoding
        has_date_units = "units" in encoding and "since" in encoding["units"]
        is_datetime_type = np.issubdtype(
            v.dtype, np.datetime64
        ) or contains_cftime_datetimes(v)

        if (
            is_datetime_type
            and not has_date_units
            and "bounds" in attrs
            and attrs["bounds"] in variables
        ):
            warnings.warn(
                "Variable '{0}' has datetime type and a "
                "bounds variable but {0}.encoding does not have "
                "units specified. The units encodings for '{0}' "
                "and '{1}' will be determined independently "
                "and may not be equal, counter to CF-conventions. "
                "If this is a concern, specify a units encoding for "
                "'{0}' before writing to a file.".format(v.name, attrs["bounds"]),
                UserWarning,
            )

        if has_date_units and "bounds" in attrs:
            if attrs["bounds"] in variables:
                bounds_encoding = variables[attrs["bounds"]].encoding
                bounds_encoding.setdefault("units", encoding["units"])
                if "calendar" in encoding:
                    bounds_encoding.setdefault("calendar", encoding["calendar"])


def decode_cf_variables(
    variables,
    attributes,
    concat_characters=True,
    mask_and_scale=True,
    decode_times=True,
    decode_coords=True,
    drop_variables=None,
    use_cftime=None,
    decode_timedelta=None,
):
    """
    Decode several CF encoded variables.

    See: decode_cf_variable
    """
    dimensions_used_by = defaultdict(list)
    for v in variables.values():
        for d in v.dims:
            dimensions_used_by[d].append(v)

    def stackable(dim):
        # figure out if a dimension can be concatenated over
        if dim in variables:
            return False
        for v in dimensions_used_by[dim]:
            if v.dtype.kind != "S" or dim != v.dims[-1]:
                return False
        return True

    coord_names = set()

    if isinstance(drop_variables, str):
        drop_variables = [drop_variables]
    elif drop_variables is None:
        drop_variables = []
    drop_variables = set(drop_variables)

    # Time bounds coordinates might miss the decoding attributes
    if decode_times:
        _update_bounds_attributes(variables)

    new_vars = {}
    for k, v in variables.items():
        if k in drop_variables:
            continue
        stack_char_dim = (
            concat_characters
            and v.dtype == "S1"
            and v.ndim > 0
            and stackable(v.dims[-1])
        )
        new_vars[k] = decode_cf_variable(
            k,
            v,
            concat_characters=concat_characters,
            mask_and_scale=mask_and_scale,
            decode_times=decode_times,
            stack_char_dim=stack_char_dim,
            use_cftime=use_cftime,
            decode_timedelta=decode_timedelta,
        )
        if decode_coords:
            var_attrs = new_vars[k].attrs
            if "coordinates" in var_attrs:
                coord_str = var_attrs["coordinates"]
                var_coord_names = coord_str.split()
                if all(k in variables for k in var_coord_names):
                    new_vars[k].encoding["coordinates"] = coord_str
                    del var_attrs["coordinates"]
                    coord_names.update(var_coord_names)

    if decode_coords and "coordinates" in attributes:
        attributes = dict(attributes)
        coord_names.update(attributes.pop("coordinates").split())

    return new_vars, attributes, coord_names


def decode_cf(
    obj,
    concat_characters=True,
    mask_and_scale=True,
    decode_times=True,
    decode_coords=True,
    drop_variables=None,
    use_cftime=None,
    decode_timedelta=None,
):
    """Decode the given Dataset or Datastore according to CF conventions into
    a new Dataset.

    Parameters
    ----------
    obj : Dataset or DataStore
        Object to decode.
    concat_characters : bool, optional
        Should character arrays be concatenated to strings, for
        example: ["h", "e", "l", "l", "o"] -> "hello"
    mask_and_scale : bool, optional
        Lazily scale (using scale_factor and add_offset) and mask
        (using _FillValue).
    decode_times : bool, optional
        Decode cf times (e.g., integers since "hours since 2000-01-01") to
        np.datetime64.
    decode_coords : bool, optional
        Use the 'coordinates' attribute on variable (or the dataset itself) to
        identify coordinates.
    drop_variables : str or iterable, optional
        A variable or list of variables to exclude from being parsed from the
        dataset. This may be useful to drop variables with problems or
        inconsistent values.
    use_cftime : bool, optional
        Only relevant if encoded dates come from a standard calendar
        (e.g. "gregorian", "proleptic_gregorian", "standard", or not
        specified).  If None (default), attempt to decode times to
        ``np.datetime64[ns]`` objects; if this is not possible, decode times to
        ``cftime.datetime`` objects. If True, always decode times to
        ``cftime.datetime`` objects, regardless of whether or not they can be
        represented using ``np.datetime64[ns]`` objects.  If False, always
        decode times to ``np.datetime64[ns]`` objects; if this is not possible
        raise an error.
    decode_timedelta : bool, optional
        If True, decode variables and coordinates with time units in
        {"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"}
        into timedelta objects. If False, leave them encoded as numbers.
        If None (default), assume the same value of decode_time.

    Returns
    -------
    decoded : Dataset
    """
    from .backends.common import AbstractDataStore
    from .core.dataset import Dataset

    if isinstance(obj, Dataset):
        vars = obj._variables
        attrs = obj.attrs
        extra_coords = set(obj.coords)
        file_obj = obj._file_obj
        encoding = obj.encoding
    elif isinstance(obj, AbstractDataStore):
        vars, attrs = obj.load()
        extra_coords = set()
        file_obj = obj
        encoding = obj.get_encoding()
    else:
        raise TypeError("can only decode Dataset or DataStore objects")

    vars, attrs, coord_names = decode_cf_variables(
        vars,
        attrs,
        concat_characters,
        mask_and_scale,
        decode_times,
        decode_coords,
        drop_variables=drop_variables,
        use_cftime=use_cftime,
        decode_timedelta=decode_timedelta,
    )
    ds = Dataset(vars, attrs=attrs)
    ds = ds.set_coords(coord_names.union(extra_coords).intersection(vars))
    ds._file_obj = file_obj
    ds.encoding = encoding

    return ds


def cf_decoder(
    variables,
    attributes,
    concat_characters=True,
    mask_and_scale=True,
    decode_times=True,
):
    """
    Decode a set of CF encoded variables and attributes.

    Parameters
    ----------
    variables : dict
        A dictionary mapping from variable name to xarray.Variable
    attributes : dict
        A dictionary mapping from attribute name to value
    concat_characters : bool
        Should character arrays be concatenated to strings, for
        example: ["h", "e", "l", "l", "o"] -> "hello"
    mask_and_scale: bool
        Lazily scale (using scale_factor and add_offset) and mask
        (using _FillValue).
    decode_times : bool
        Decode cf times ("hours since 2000-01-01") to np.datetime64.

    Returns
    -------
    decoded_variables : dict
        A dictionary mapping from variable name to xarray.Variable objects.
    decoded_attributes : dict
        A dictionary mapping from attribute name to values.

    See also
    --------
    decode_cf_variable
    """
    variables, attributes, _ = decode_cf_variables(
        variables, attributes, concat_characters, mask_and_scale, decode_times
    )
    return variables, attributes


def _encode_coordinates(variables, attributes, non_dim_coord_names):
    # calculate global and variable specific coordinates
    non_dim_coord_names = set(non_dim_coord_names)

    for name in list(non_dim_coord_names):
        if isinstance(name, str) and " " in name:
            warnings.warn(
                "coordinate {!r} has a space in its name, which means it "
                "cannot be marked as a coordinate on disk and will be "
                "saved as a data variable instead".format(name),
                SerializationWarning,
                stacklevel=6,
            )
            non_dim_coord_names.discard(name)

    global_coordinates = non_dim_coord_names.copy()
    variable_coordinates = defaultdict(set)
    for coord_name in non_dim_coord_names:
        target_dims = variables[coord_name].dims
        for k, v in variables.items():
            if (
                k not in non_dim_coord_names
                and k not in v.dims
                and set(target_dims) <= set(v.dims)
            ):
                variable_coordinates[k].add(coord_name)

    variables = {k: v.copy(deep=False) for k, v in variables.items()}

    # keep track of variable names written to file under the "coordinates" attributes
    written_coords = set()
    for name, var in variables.items():
        encoding = var.encoding
        attrs = var.attrs
        if "coordinates" in attrs and "coordinates" in encoding:
            raise ValueError(
                f"'coordinates' found in both attrs and encoding for variable {name!r}."
            )

        # this will copy coordinates from encoding to attrs if "coordinates" in attrs
        # after the next line, "coordinates" is never in encoding
        # we get support for attrs["coordinates"] for free.
        coords_str = pop_to(encoding, attrs, "coordinates")
        if not coords_str and variable_coordinates[name]:
            attrs["coordinates"] = " ".join(map(str, variable_coordinates[name]))
        if "coordinates" in attrs:
            written_coords.update(attrs["coordinates"].split())

    # These coordinates are not associated with any particular variables, so we
    # save them under a global 'coordinates' attribute so xarray can roundtrip
    # the dataset faithfully. Because this serialization goes beyond CF
    # conventions, only do it if necessary.
    # Reference discussion:
    # http://mailman.cgd.ucar.edu/pipermail/cf-metadata/2014/007571.html
    global_coordinates.difference_update(written_coords)
    if global_coordinates:
        attributes = dict(attributes)
        if "coordinates" in attributes:
            warnings.warn(
                f"cannot serialize global coordinates {global_coordinates!r} because the global "
                f"attribute 'coordinates' already exists. This may prevent faithful roundtripping"
                f"of xarray datasets",
                SerializationWarning,
            )
        else:
            attributes["coordinates"] = " ".join(map(str, global_coordinates))

    return variables, attributes


def encode_dataset_coordinates(dataset):
    """Encode coordinates on the given dataset object into variable specific
    and global attributes.

    When possible, this is done according to CF conventions.

    Parameters
    ----------
    dataset : Dataset
        Object to encode.

    Returns
    -------
    variables : dict
    attrs : dict
    """
    non_dim_coord_names = set(dataset.coords) - set(dataset.dims)
    return _encode_coordinates(
        dataset._variables, dataset.attrs, non_dim_coord_names=non_dim_coord_names
    )


def cf_encoder(variables, attributes):
    """
    Encode a set of CF encoded variables and attributes.
    Takes a dicts of variables and attributes and encodes them
    to conform to CF conventions as much as possible.
    This includes masking, scaling, character array handling,
    and CF-time encoding.


    Parameters
    ----------
    variables : dict
        A dictionary mapping from variable name to xarray.Variable
    attributes : dict
        A dictionary mapping from attribute name to value

    Returns
    -------
    encoded_variables : dict
        A dictionary mapping from variable name to xarray.Variable,
    encoded_attributes : dict
        A dictionary mapping from attribute name to value

    See also
    --------
    decode_cf_variable, encode_cf_variable
    """

    # add encoding for time bounds variables if present.
    _update_bounds_encoding(variables)

    new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}

    # Remove attrs from bounds variables (issue #2921)
    for var in new_vars.values():
        bounds = var.attrs["bounds"] if "bounds" in var.attrs else None
        if bounds and bounds in new_vars:
            # see http://cfconventions.org/cf-conventions/cf-conventions.html#cell-boundaries
            for attr in [
                "units",
                "standard_name",
                "axis",
                "positive",
                "calendar",
                "long_name",
                "leap_month",
                "leap_year",
                "month_lengths",
            ]:
                if attr in new_vars[bounds].attrs and attr in var.attrs:
                    if new_vars[bounds].attrs[attr] == var.attrs[attr]:
                        new_vars[bounds].attrs.pop(attr)

    return new_vars, attributes