File: convert.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (297 lines) | stat: -rw-r--r-- 9,643 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""Functions for converting to and from xarray objects
"""
from collections import Counter

import numpy as np
import pandas as pd

from .coding.times import CFDatetimeCoder, CFTimedeltaCoder
from .conventions import decode_cf
from .core import duck_array_ops
from .core.dataarray import DataArray
from .core.dtypes import get_fill_value
from .core.pycompat import dask_array_type

cdms2_ignored_attrs = {"name", "tileIndex"}
iris_forbidden_keys = {
    "standard_name",
    "long_name",
    "units",
    "bounds",
    "axis",
    "calendar",
    "leap_month",
    "leap_year",
    "month_lengths",
    "coordinates",
    "grid_mapping",
    "climatology",
    "cell_methods",
    "formula_terms",
    "compress",
    "missing_value",
    "add_offset",
    "scale_factor",
    "valid_max",
    "valid_min",
    "valid_range",
    "_FillValue",
}
cell_methods_strings = {
    "point",
    "sum",
    "maximum",
    "median",
    "mid_range",
    "minimum",
    "mean",
    "mode",
    "standard_deviation",
    "variance",
}


def encode(var):
    return CFTimedeltaCoder().encode(CFDatetimeCoder().encode(var.variable))


def _filter_attrs(attrs, ignored_attrs):
    """Return attrs that are not in ignored_attrs"""
    return {k: v for k, v in attrs.items() if k not in ignored_attrs}


def from_cdms2(variable):
    """Convert a cdms2 variable into an DataArray"""
    values = np.asarray(variable)
    name = variable.id
    dims = variable.getAxisIds()
    coords = {}
    for axis in variable.getAxisList():
        coords[axis.id] = DataArray(
            np.asarray(axis),
            dims=[axis.id],
            attrs=_filter_attrs(axis.attributes, cdms2_ignored_attrs),
        )
    grid = variable.getGrid()
    if grid is not None:
        ids = [a.id for a in grid.getAxisList()]
        for axis in grid.getLongitude(), grid.getLatitude():
            if axis.id not in variable.getAxisIds():
                coords[axis.id] = DataArray(
                    np.asarray(axis[:]),
                    dims=ids,
                    attrs=_filter_attrs(axis.attributes, cdms2_ignored_attrs),
                )
    attrs = _filter_attrs(variable.attributes, cdms2_ignored_attrs)
    dataarray = DataArray(values, dims=dims, coords=coords, name=name, attrs=attrs)
    return decode_cf(dataarray.to_dataset())[dataarray.name]


def to_cdms2(dataarray, copy=True):
    """Convert a DataArray into a cdms2 variable"""
    # we don't want cdms2 to be a hard dependency
    import cdms2

    def set_cdms2_attrs(var, attrs):
        for k, v in attrs.items():
            setattr(var, k, v)

    # 1D axes
    axes = []
    for dim in dataarray.dims:
        coord = encode(dataarray.coords[dim])
        axis = cdms2.createAxis(coord.values, id=dim)
        set_cdms2_attrs(axis, coord.attrs)
        axes.append(axis)

    # Data
    var = encode(dataarray)
    cdms2_var = cdms2.createVariable(
        var.values, axes=axes, id=dataarray.name, mask=pd.isnull(var.values), copy=copy
    )

    # Attributes
    set_cdms2_attrs(cdms2_var, var.attrs)

    # Curvilinear and unstructured grids
    if dataarray.name not in dataarray.coords:

        cdms2_axes = {}
        for coord_name in set(dataarray.coords.keys()) - set(dataarray.dims):

            coord_array = dataarray.coords[coord_name].to_cdms2()

            cdms2_axis_cls = (
                cdms2.coord.TransientAxis2D
                if coord_array.ndim
                else cdms2.auxcoord.TransientAuxAxis1D
            )
            cdms2_axis = cdms2_axis_cls(coord_array)
            if cdms2_axis.isLongitude():
                cdms2_axes["lon"] = cdms2_axis
            elif cdms2_axis.isLatitude():
                cdms2_axes["lat"] = cdms2_axis

        if "lon" in cdms2_axes and "lat" in cdms2_axes:
            if len(cdms2_axes["lon"].shape) == 2:
                cdms2_grid = cdms2.hgrid.TransientCurveGrid(
                    cdms2_axes["lat"], cdms2_axes["lon"]
                )
            else:
                cdms2_grid = cdms2.gengrid.AbstractGenericGrid(
                    cdms2_axes["lat"], cdms2_axes["lon"]
                )
            for axis in cdms2_grid.getAxisList():
                cdms2_var.setAxis(cdms2_var.getAxisIds().index(axis.id), axis)
            cdms2_var.setGrid(cdms2_grid)

    return cdms2_var


def _pick_attrs(attrs, keys):
    """Return attrs with keys in keys list"""
    return {k: v for k, v in attrs.items() if k in keys}


def _get_iris_args(attrs):
    """Converts the xarray attrs into args that can be passed into Iris"""
    # iris.unit is deprecated in Iris v1.9
    import cf_units

    args = {"attributes": _filter_attrs(attrs, iris_forbidden_keys)}
    args.update(_pick_attrs(attrs, ("standard_name", "long_name")))
    unit_args = _pick_attrs(attrs, ("calendar",))
    if "units" in attrs:
        args["units"] = cf_units.Unit(attrs["units"], **unit_args)
    return args


# TODO: Add converting bounds from xarray to Iris and back
def to_iris(dataarray):
    """Convert a DataArray into a Iris Cube"""
    # Iris not a hard dependency
    import iris
    from iris.fileformats.netcdf import parse_cell_methods

    dim_coords = []
    aux_coords = []

    for coord_name in dataarray.coords:
        coord = encode(dataarray.coords[coord_name])
        coord_args = _get_iris_args(coord.attrs)
        coord_args["var_name"] = coord_name
        axis = None
        if coord.dims:
            axis = dataarray.get_axis_num(coord.dims)
        if coord_name in dataarray.dims:
            try:
                iris_coord = iris.coords.DimCoord(coord.values, **coord_args)
                dim_coords.append((iris_coord, axis))
            except ValueError:
                iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
                aux_coords.append((iris_coord, axis))
        else:
            iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
            aux_coords.append((iris_coord, axis))

    args = _get_iris_args(dataarray.attrs)
    args["var_name"] = dataarray.name
    args["dim_coords_and_dims"] = dim_coords
    args["aux_coords_and_dims"] = aux_coords
    if "cell_methods" in dataarray.attrs:
        args["cell_methods"] = parse_cell_methods(dataarray.attrs["cell_methods"])

    masked_data = duck_array_ops.masked_invalid(dataarray.data)
    cube = iris.cube.Cube(masked_data, **args)

    return cube


def _iris_obj_to_attrs(obj):
    """Return a dictionary of attrs when given a Iris object"""
    attrs = {"standard_name": obj.standard_name, "long_name": obj.long_name}
    if obj.units.calendar:
        attrs["calendar"] = obj.units.calendar
    if obj.units.origin != "1" and not obj.units.is_unknown():
        attrs["units"] = obj.units.origin
    attrs.update(obj.attributes)
    return {k: v for k, v in attrs.items() if v is not None}


def _iris_cell_methods_to_str(cell_methods_obj):
    """Converts a Iris cell methods into a string"""
    cell_methods = []
    for cell_method in cell_methods_obj:
        names = "".join(f"{n}: " for n in cell_method.coord_names)
        intervals = " ".join(
            f"interval: {interval}" for interval in cell_method.intervals
        )
        comments = " ".join(f"comment: {comment}" for comment in cell_method.comments)
        extra = " ".join([intervals, comments]).strip()
        if extra:
            extra = f" ({extra})"
        cell_methods.append(names + cell_method.method + extra)
    return " ".join(cell_methods)


def _name(iris_obj, default="unknown"):
    """Mimicks `iris_obj.name()` but with different name resolution order.

    Similar to iris_obj.name() method, but using iris_obj.var_name first to
    enable roundtripping.
    """
    return iris_obj.var_name or iris_obj.standard_name or iris_obj.long_name or default


def from_iris(cube):
    """Convert a Iris cube into an DataArray"""
    import iris.exceptions

    name = _name(cube)
    if name == "unknown":
        name = None
    dims = []
    for i in range(cube.ndim):
        try:
            dim_coord = cube.coord(dim_coords=True, dimensions=(i,))
            dims.append(_name(dim_coord))
        except iris.exceptions.CoordinateNotFoundError:
            dims.append(f"dim_{i}")

    if len(set(dims)) != len(dims):
        duplicates = [k for k, v in Counter(dims).items() if v > 1]
        raise ValueError(f"Duplicate coordinate name {duplicates}.")

    coords = {}

    for coord in cube.coords():
        coord_attrs = _iris_obj_to_attrs(coord)
        coord_dims = [dims[i] for i in cube.coord_dims(coord)]
        if coord_dims:
            coords[_name(coord)] = (coord_dims, coord.points, coord_attrs)
        else:
            coords[_name(coord)] = ((), coord.points.item(), coord_attrs)

    array_attrs = _iris_obj_to_attrs(cube)
    cell_methods = _iris_cell_methods_to_str(cube.cell_methods)
    if cell_methods:
        array_attrs["cell_methods"] = cell_methods

    # Deal with iris 1.* and 2.*
    cube_data = cube.core_data() if hasattr(cube, "core_data") else cube.data

    # Deal with dask and numpy masked arrays
    if isinstance(cube_data, dask_array_type):
        from dask.array import ma as dask_ma

        filled_data = dask_ma.filled(cube_data, get_fill_value(cube.dtype))
    elif isinstance(cube_data, np.ma.MaskedArray):
        filled_data = np.ma.filled(cube_data, get_fill_value(cube.dtype))
    else:
        filled_data = cube_data

    dataarray = DataArray(
        filled_data, coords=coords, name=name, attrs=array_attrs, dims=dims
    )
    decoded_ds = decode_cf(dataarray._to_temp_dataset())
    return dataarray._from_temp_dataset(decoded_ds)