1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
import warnings
from distutils.version import LooseVersion
import numpy as np
import pandas as pd
from .common import (
_contains_datetime_like_objects,
is_np_datetime_like,
is_np_timedelta_like,
)
from .pycompat import is_duck_dask_array
def _season_from_months(months):
"""Compute season (DJF, MAM, JJA, SON) from month ordinal"""
# TODO: Move "season" accessor upstream into pandas
seasons = np.array(["DJF", "MAM", "JJA", "SON"])
months = np.asarray(months)
return seasons[(months // 3) % 4]
def _access_through_cftimeindex(values, name):
"""Coerce an array of datetime-like values to a CFTimeIndex
and access requested datetime component
"""
from ..coding.cftimeindex import CFTimeIndex
values_as_cftimeindex = CFTimeIndex(values.ravel())
if name == "season":
months = values_as_cftimeindex.month
field_values = _season_from_months(months)
else:
field_values = getattr(values_as_cftimeindex, name)
return field_values.reshape(values.shape)
def _access_through_series(values, name):
"""Coerce an array of datetime-like values to a pandas Series and
access requested datetime component
"""
values_as_series = pd.Series(values.ravel())
if name == "season":
months = values_as_series.dt.month.values
field_values = _season_from_months(months)
elif name == "isocalendar":
# isocalendar returns iso- year, week, and weekday -> reshape
field_values = np.array(values_as_series.dt.isocalendar(), dtype=np.int64)
return field_values.T.reshape(3, *values.shape)
else:
field_values = getattr(values_as_series.dt, name).values
return field_values.reshape(values.shape)
def _get_date_field(values, name, dtype):
"""Indirectly access pandas' libts.get_date_field by wrapping data
as a Series and calling through `.dt` attribute.
Parameters
----------
values : np.ndarray or dask.array-like
Array-like container of datetime-like values
name : str
Name of datetime field to access
dtype : dtype-like
dtype for output date field values
Returns
-------
datetime_fields : same type as values
Array-like of datetime fields accessed for each element in values
"""
if is_np_datetime_like(values.dtype):
access_method = _access_through_series
else:
access_method = _access_through_cftimeindex
if is_duck_dask_array(values):
from dask.array import map_blocks
new_axis = chunks = None
# isocalendar adds adds an axis
if name == "isocalendar":
chunks = (3,) + values.chunksize
new_axis = 0
return map_blocks(
access_method, values, name, dtype=dtype, new_axis=new_axis, chunks=chunks
)
else:
return access_method(values, name)
def _round_through_series_or_index(values, name, freq):
"""Coerce an array of datetime-like values to a pandas Series or xarray
CFTimeIndex and apply requested rounding
"""
from ..coding.cftimeindex import CFTimeIndex
if is_np_datetime_like(values.dtype):
values_as_series = pd.Series(values.ravel())
method = getattr(values_as_series.dt, name)
else:
values_as_cftimeindex = CFTimeIndex(values.ravel())
method = getattr(values_as_cftimeindex, name)
field_values = method(freq=freq).values
return field_values.reshape(values.shape)
def _round_field(values, name, freq):
"""Indirectly access rounding functions by wrapping data
as a Series or CFTimeIndex
Parameters
----------
values : np.ndarray or dask.array-like
Array-like container of datetime-like values
name : {"ceil", "floor", "round"}
Name of rounding function
freq : str
a freq string indicating the rounding resolution
Returns
-------
rounded timestamps : same type as values
Array-like of datetime fields accessed for each element in values
"""
if is_duck_dask_array(values):
from dask.array import map_blocks
dtype = np.datetime64 if is_np_datetime_like(values.dtype) else np.dtype("O")
return map_blocks(
_round_through_series_or_index, values, name, freq=freq, dtype=dtype
)
else:
return _round_through_series_or_index(values, name, freq)
def _strftime_through_cftimeindex(values, date_format):
"""Coerce an array of cftime-like values to a CFTimeIndex
and access requested datetime component
"""
from ..coding.cftimeindex import CFTimeIndex
values_as_cftimeindex = CFTimeIndex(values.ravel())
field_values = values_as_cftimeindex.strftime(date_format)
return field_values.values.reshape(values.shape)
def _strftime_through_series(values, date_format):
"""Coerce an array of datetime-like values to a pandas Series and
apply string formatting
"""
values_as_series = pd.Series(values.ravel())
strs = values_as_series.dt.strftime(date_format)
return strs.values.reshape(values.shape)
def _strftime(values, date_format):
if is_np_datetime_like(values.dtype):
access_method = _strftime_through_series
else:
access_method = _strftime_through_cftimeindex
if is_duck_dask_array(values):
from dask.array import map_blocks
return map_blocks(access_method, values, date_format)
else:
return access_method(values, date_format)
class Properties:
def __init__(self, obj):
self._obj = obj
def _tslib_field_accessor( # type: ignore
name: str, docstring: str = None, dtype: np.dtype = None
):
def f(self, dtype=dtype):
if dtype is None:
dtype = self._obj.dtype
obj_type = type(self._obj)
result = _get_date_field(self._obj.data, name, dtype)
return obj_type(
result, name=name, coords=self._obj.coords, dims=self._obj.dims
)
f.__name__ = name
f.__doc__ = docstring
return property(f)
def _tslib_round_accessor(self, name, freq):
obj_type = type(self._obj)
result = _round_field(self._obj.data, name, freq)
return obj_type(result, name=name, coords=self._obj.coords, dims=self._obj.dims)
def floor(self, freq):
"""
Round timestamps downward to specified frequency resolution.
Parameters
----------
freq : str
a freq string indicating the rounding resolution e.g. "D" for daily resolution
Returns
-------
floor-ed timestamps : same type as values
Array-like of datetime fields accessed for each element in values
"""
return self._tslib_round_accessor("floor", freq)
def ceil(self, freq):
"""
Round timestamps upward to specified frequency resolution.
Parameters
----------
freq : str
a freq string indicating the rounding resolution e.g. "D" for daily resolution
Returns
-------
ceil-ed timestamps : same type as values
Array-like of datetime fields accessed for each element in values
"""
return self._tslib_round_accessor("ceil", freq)
def round(self, freq):
"""
Round timestamps to specified frequency resolution.
Parameters
----------
freq : str
a freq string indicating the rounding resolution e.g. "D" for daily resolution
Returns
-------
rounded timestamps : same type as values
Array-like of datetime fields accessed for each element in values
"""
return self._tslib_round_accessor("round", freq)
class DatetimeAccessor(Properties):
"""Access datetime fields for DataArrays with datetime-like dtypes.
Fields can be accessed through the `.dt` attribute
for applicable DataArrays.
Examples
---------
>>> import xarray as xr
>>> import pandas as pd
>>> dates = pd.date_range(start="2000/01/01", freq="D", periods=10)
>>> ts = xr.DataArray(dates, dims=("time"))
>>> ts
<xarray.DataArray (time: 10)>
array(['2000-01-01T00:00:00.000000000', '2000-01-02T00:00:00.000000000',
'2000-01-03T00:00:00.000000000', '2000-01-04T00:00:00.000000000',
'2000-01-05T00:00:00.000000000', '2000-01-06T00:00:00.000000000',
'2000-01-07T00:00:00.000000000', '2000-01-08T00:00:00.000000000',
'2000-01-09T00:00:00.000000000', '2000-01-10T00:00:00.000000000'],
dtype='datetime64[ns]')
Coordinates:
* time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2000-01-10
>>> ts.dt # doctest: +ELLIPSIS
<xarray.core.accessor_dt.DatetimeAccessor object at 0x...>
>>> ts.dt.dayofyear
<xarray.DataArray 'dayofyear' (time: 10)>
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
Coordinates:
* time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2000-01-10
>>> ts.dt.quarter
<xarray.DataArray 'quarter' (time: 10)>
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
Coordinates:
* time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2000-01-10
"""
def strftime(self, date_format):
"""
Return an array of formatted strings specified by date_format, which
supports the same string format as the python standard library. Details
of the string format can be found in `python string format doc
<https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior>`__
Parameters
----------
date_format : str
date format string (e.g. "%Y-%m-%d")
Returns
-------
formatted strings : same type as values
Array-like of strings formatted for each element in values
Examples
--------
>>> import datetime
>>> rng = xr.Dataset({"time": datetime.datetime(2000, 1, 1)})
>>> rng["time"].dt.strftime("%B %d, %Y, %r")
<xarray.DataArray 'strftime' ()>
array('January 01, 2000, 12:00:00 AM', dtype=object)
"""
obj_type = type(self._obj)
result = _strftime(self._obj.data, date_format)
return obj_type(
result, name="strftime", coords=self._obj.coords, dims=self._obj.dims
)
def isocalendar(self):
"""Dataset containing ISO year, week number, and weekday.
Note
----
The iso year and weekday differ from the nominal year and weekday.
"""
from .dataset import Dataset
if not is_np_datetime_like(self._obj.data.dtype):
raise AttributeError("'CFTimeIndex' object has no attribute 'isocalendar'")
if LooseVersion(pd.__version__) < "1.1.0":
raise AttributeError("'isocalendar' not available in pandas < 1.1.0")
values = _get_date_field(self._obj.data, "isocalendar", np.int64)
obj_type = type(self._obj)
data_vars = {}
for i, name in enumerate(["year", "week", "weekday"]):
data_vars[name] = obj_type(
values[i], name=name, coords=self._obj.coords, dims=self._obj.dims
)
return Dataset(data_vars)
year = Properties._tslib_field_accessor(
"year", "The year of the datetime", np.int64
)
month = Properties._tslib_field_accessor(
"month", "The month as January=1, December=12", np.int64
)
day = Properties._tslib_field_accessor("day", "The days of the datetime", np.int64)
hour = Properties._tslib_field_accessor(
"hour", "The hours of the datetime", np.int64
)
minute = Properties._tslib_field_accessor(
"minute", "The minutes of the datetime", np.int64
)
second = Properties._tslib_field_accessor(
"second", "The seconds of the datetime", np.int64
)
microsecond = Properties._tslib_field_accessor(
"microsecond", "The microseconds of the datetime", np.int64
)
nanosecond = Properties._tslib_field_accessor(
"nanosecond", "The nanoseconds of the datetime", np.int64
)
@property
def weekofyear(self):
"The week ordinal of the year"
warnings.warn(
"dt.weekofyear and dt.week have been deprecated. Please use "
"dt.isocalendar().week instead.",
FutureWarning,
)
if LooseVersion(pd.__version__) < "1.1.0":
weekofyear = Properties._tslib_field_accessor(
"weekofyear", "The week ordinal of the year", np.int64
).fget(self)
else:
weekofyear = self.isocalendar().week
return weekofyear
week = weekofyear
dayofweek = Properties._tslib_field_accessor(
"dayofweek", "The day of the week with Monday=0, Sunday=6", np.int64
)
weekday = dayofweek
weekday_name = Properties._tslib_field_accessor(
"weekday_name", "The name of day in a week", object
)
dayofyear = Properties._tslib_field_accessor(
"dayofyear", "The ordinal day of the year", np.int64
)
quarter = Properties._tslib_field_accessor("quarter", "The quarter of the date")
days_in_month = Properties._tslib_field_accessor(
"days_in_month", "The number of days in the month", np.int64
)
daysinmonth = days_in_month
season = Properties._tslib_field_accessor("season", "Season of the year", object)
time = Properties._tslib_field_accessor(
"time", "Timestamps corresponding to datetimes", object
)
is_month_start = Properties._tslib_field_accessor(
"is_month_start",
"Indicates whether the date is the first day of the month.",
bool,
)
is_month_end = Properties._tslib_field_accessor(
"is_month_end", "Indicates whether the date is the last day of the month.", bool
)
is_quarter_start = Properties._tslib_field_accessor(
"is_quarter_start",
"Indicator for whether the date is the first day of a quarter.",
bool,
)
is_quarter_end = Properties._tslib_field_accessor(
"is_quarter_end",
"Indicator for whether the date is the last day of a quarter.",
bool,
)
is_year_start = Properties._tslib_field_accessor(
"is_year_start", "Indicate whether the date is the first day of a year.", bool
)
is_year_end = Properties._tslib_field_accessor(
"is_year_end", "Indicate whether the date is the last day of the year.", bool
)
is_leap_year = Properties._tslib_field_accessor(
"is_leap_year", "Boolean indicator if the date belongs to a leap year.", bool
)
class TimedeltaAccessor(Properties):
"""Access Timedelta fields for DataArrays with Timedelta-like dtypes.
Fields can be accessed through the `.dt` attribute for applicable DataArrays.
Examples
--------
>>> import pandas as pd
>>> import xarray as xr
>>> dates = pd.timedelta_range(start="1 day", freq="6H", periods=20)
>>> ts = xr.DataArray(dates, dims=("time"))
>>> ts
<xarray.DataArray (time: 20)>
array([ 86400000000000, 108000000000000, 129600000000000, 151200000000000,
172800000000000, 194400000000000, 216000000000000, 237600000000000,
259200000000000, 280800000000000, 302400000000000, 324000000000000,
345600000000000, 367200000000000, 388800000000000, 410400000000000,
432000000000000, 453600000000000, 475200000000000, 496800000000000],
dtype='timedelta64[ns]')
Coordinates:
* time (time) timedelta64[ns] 1 days 00:00:00 ... 5 days 18:00:00
>>> ts.dt # doctest: +ELLIPSIS
<xarray.core.accessor_dt.TimedeltaAccessor object at 0x...>
>>> ts.dt.days
<xarray.DataArray 'days' (time: 20)>
array([1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5])
Coordinates:
* time (time) timedelta64[ns] 1 days 00:00:00 ... 5 days 18:00:00
>>> ts.dt.microseconds
<xarray.DataArray 'microseconds' (time: 20)>
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Coordinates:
* time (time) timedelta64[ns] 1 days 00:00:00 ... 5 days 18:00:00
>>> ts.dt.seconds
<xarray.DataArray 'seconds' (time: 20)>
array([ 0, 21600, 43200, 64800, 0, 21600, 43200, 64800, 0,
21600, 43200, 64800, 0, 21600, 43200, 64800, 0, 21600,
43200, 64800])
Coordinates:
* time (time) timedelta64[ns] 1 days 00:00:00 ... 5 days 18:00:00
"""
days = Properties._tslib_field_accessor(
"days", "Number of days for each element.", np.int64
)
seconds = Properties._tslib_field_accessor(
"seconds",
"Number of seconds (>= 0 and less than 1 day) for each element.",
np.int64,
)
microseconds = Properties._tslib_field_accessor(
"microseconds",
"Number of microseconds (>= 0 and less than 1 second) for each element.",
np.int64,
)
nanoseconds = Properties._tslib_field_accessor(
"nanoseconds",
"Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.",
np.int64,
)
class CombinedDatetimelikeAccessor(DatetimeAccessor, TimedeltaAccessor):
def __new__(cls, obj):
# CombinedDatetimelikeAccessor isn't really instatiated. Instead
# we need to choose which parent (datetime or timedelta) is
# appropriate. Since we're checking the dtypes anyway, we'll just
# do all the validation here.
if not _contains_datetime_like_objects(obj):
raise TypeError(
"'.dt' accessor only available for "
"DataArray with datetime64 timedelta64 dtype or "
"for arrays containing cftime datetime "
"objects."
)
if is_np_timedelta_like(obj.dtype):
return TimedeltaAccessor(obj)
else:
return DatetimeAccessor(obj)
|