1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
|
import warnings
from contextlib import suppress
from html import escape
from textwrap import dedent
from typing import (
Any,
Callable,
Dict,
Hashable,
Iterable,
Iterator,
List,
Mapping,
Tuple,
TypeVar,
Union,
)
import numpy as np
import pandas as pd
from . import dtypes, duck_array_ops, formatting, formatting_html, ops
from .arithmetic import SupportsArithmetic
from .npcompat import DTypeLike
from .options import OPTIONS, _get_keep_attrs
from .pycompat import is_duck_dask_array
from .rolling_exp import RollingExp
from .utils import Frozen, either_dict_or_kwargs, is_scalar
# Used as a sentinel value to indicate a all dimensions
ALL_DIMS = ...
C = TypeVar("C")
T = TypeVar("T")
class ImplementsArrayReduce:
__slots__ = ()
@classmethod
def _reduce_method(cls, func: Callable, include_skipna: bool, numeric_only: bool):
if include_skipna:
def wrapped_func(self, dim=None, axis=None, skipna=None, **kwargs):
return self.reduce(func, dim, axis, skipna=skipna, **kwargs)
else:
def wrapped_func(self, dim=None, axis=None, **kwargs): # type: ignore
return self.reduce(func, dim, axis, **kwargs)
return wrapped_func
_reduce_extra_args_docstring = dedent(
"""\
dim : str or sequence of str, optional
Dimension(s) over which to apply `{name}`.
axis : int or sequence of int, optional
Axis(es) over which to apply `{name}`. Only one of the 'dim'
and 'axis' arguments can be supplied. If neither are supplied, then
`{name}` is calculated over axes."""
)
_cum_extra_args_docstring = dedent(
"""\
dim : str or sequence of str, optional
Dimension over which to apply `{name}`.
axis : int or sequence of int, optional
Axis over which to apply `{name}`. Only one of the 'dim'
and 'axis' arguments can be supplied."""
)
class ImplementsDatasetReduce:
__slots__ = ()
@classmethod
def _reduce_method(cls, func: Callable, include_skipna: bool, numeric_only: bool):
if include_skipna:
def wrapped_func(self, dim=None, skipna=None, **kwargs):
return self.reduce(
func, dim, skipna=skipna, numeric_only=numeric_only, **kwargs
)
else:
def wrapped_func(self, dim=None, **kwargs): # type: ignore
return self.reduce(func, dim, numeric_only=numeric_only, **kwargs)
return wrapped_func
_reduce_extra_args_docstring = dedent(
"""
dim : str or sequence of str, optional
Dimension(s) over which to apply `{name}`. By default `{name}` is
applied over all dimensions.
"""
).strip()
_cum_extra_args_docstring = dedent(
"""
dim : str or sequence of str, optional
Dimension over which to apply `{name}`.
axis : int or sequence of int, optional
Axis over which to apply `{name}`. Only one of the 'dim'
and 'axis' arguments can be supplied.
"""
).strip()
class AbstractArray(ImplementsArrayReduce):
"""Shared base class for DataArray and Variable."""
__slots__ = ()
def __bool__(self: Any) -> bool:
return bool(self.values)
def __float__(self: Any) -> float:
return float(self.values)
def __int__(self: Any) -> int:
return int(self.values)
def __complex__(self: Any) -> complex:
return complex(self.values)
def __array__(self: Any, dtype: DTypeLike = None) -> np.ndarray:
return np.asarray(self.values, dtype=dtype)
def __repr__(self) -> str:
return formatting.array_repr(self)
def _repr_html_(self):
if OPTIONS["display_style"] == "text":
return f"<pre>{escape(repr(self))}</pre>"
return formatting_html.array_repr(self)
def _iter(self: Any) -> Iterator[Any]:
for n in range(len(self)):
yield self[n]
def __iter__(self: Any) -> Iterator[Any]:
if self.ndim == 0:
raise TypeError("iteration over a 0-d array")
return self._iter()
def get_axis_num(
self, dim: Union[Hashable, Iterable[Hashable]]
) -> Union[int, Tuple[int, ...]]:
"""Return axis number(s) corresponding to dimension(s) in this array.
Parameters
----------
dim : str or iterable of str
Dimension name(s) for which to lookup axes.
Returns
-------
int or tuple of int
Axis number or numbers corresponding to the given dimensions.
"""
if isinstance(dim, Iterable) and not isinstance(dim, str):
return tuple(self._get_axis_num(d) for d in dim)
else:
return self._get_axis_num(dim)
def _get_axis_num(self: Any, dim: Hashable) -> int:
try:
return self.dims.index(dim)
except ValueError:
raise ValueError(f"{dim!r} not found in array dimensions {self.dims!r}")
@property
def sizes(self: Any) -> Mapping[Hashable, int]:
"""Ordered mapping from dimension names to lengths.
Immutable.
See also
--------
Dataset.sizes
"""
return Frozen(dict(zip(self.dims, self.shape)))
class AttrAccessMixin:
"""Mixin class that allows getting keys with attribute access"""
__slots__ = ()
def __init_subclass__(cls):
"""Verify that all subclasses explicitly define ``__slots__``. If they don't,
raise error in the core xarray module and a FutureWarning in third-party
extensions.
"""
if not hasattr(object.__new__(cls), "__dict__"):
pass
elif cls.__module__.startswith("xarray."):
raise AttributeError("%s must explicitly define __slots__" % cls.__name__)
else:
cls.__setattr__ = cls._setattr_dict
warnings.warn(
"xarray subclass %s should explicitly define __slots__" % cls.__name__,
FutureWarning,
stacklevel=2,
)
@property
def _attr_sources(self) -> List[Mapping[Hashable, Any]]:
"""List of places to look-up items for attribute-style access"""
return []
@property
def _item_sources(self) -> List[Mapping[Hashable, Any]]:
"""List of places to look-up items for key-autocompletion"""
return []
def __getattr__(self, name: str) -> Any:
if name not in {"__dict__", "__setstate__"}:
# this avoids an infinite loop when pickle looks for the
# __setstate__ attribute before the xarray object is initialized
for source in self._attr_sources:
with suppress(KeyError):
return source[name]
raise AttributeError(
"{!r} object has no attribute {!r}".format(type(self).__name__, name)
)
# This complicated two-method design boosts overall performance of simple operations
# - particularly DataArray methods that perform a _to_temp_dataset() round-trip - by
# a whopping 8% compared to a single method that checks hasattr(self, "__dict__") at
# runtime before every single assignment. All of this is just temporary until the
# FutureWarning can be changed into a hard crash.
def _setattr_dict(self, name: str, value: Any) -> None:
"""Deprecated third party subclass (see ``__init_subclass__`` above)"""
object.__setattr__(self, name, value)
if name in self.__dict__:
# Custom, non-slotted attr, or improperly assigned variable?
warnings.warn(
"Setting attribute %r on a %r object. Explicitly define __slots__ "
"to suppress this warning for legitimate custom attributes and "
"raise an error when attempting variables assignments."
% (name, type(self).__name__),
FutureWarning,
stacklevel=2,
)
def __setattr__(self, name: str, value: Any) -> None:
"""Objects with ``__slots__`` raise AttributeError if you try setting an
undeclared attribute. This is desirable, but the error message could use some
improvement.
"""
try:
object.__setattr__(self, name, value)
except AttributeError as e:
# Don't accidentally shadow custom AttributeErrors, e.g.
# DataArray.dims.setter
if str(e) != "{!r} object has no attribute {!r}".format(
type(self).__name__, name
):
raise
raise AttributeError(
"cannot set attribute %r on a %r object. Use __setitem__ style"
"assignment (e.g., `ds['name'] = ...`) instead of assigning variables."
% (name, type(self).__name__)
) from e
def __dir__(self) -> List[str]:
"""Provide method name lookup and completion. Only provide 'public'
methods.
"""
extra_attrs = [
item
for sublist in self._attr_sources
for item in sublist
if isinstance(item, str)
]
return sorted(set(dir(type(self)) + extra_attrs))
def _ipython_key_completions_(self) -> List[str]:
"""Provide method for the key-autocompletions in IPython.
See http://ipython.readthedocs.io/en/stable/config/integrating.html#tab-completion
For the details.
"""
item_lists = [
item
for sublist in self._item_sources
for item in sublist
if isinstance(item, str)
]
return list(set(item_lists))
def get_squeeze_dims(
xarray_obj,
dim: Union[Hashable, Iterable[Hashable], None] = None,
axis: Union[int, Iterable[int], None] = None,
) -> List[Hashable]:
"""Get a list of dimensions to squeeze out."""
if dim is not None and axis is not None:
raise ValueError("cannot use both parameters `axis` and `dim`")
if dim is None and axis is None:
return [d for d, s in xarray_obj.sizes.items() if s == 1]
if isinstance(dim, Iterable) and not isinstance(dim, str):
dim = list(dim)
elif dim is not None:
dim = [dim]
else:
assert axis is not None
if isinstance(axis, int):
axis = [axis]
axis = list(axis)
if any(not isinstance(a, int) for a in axis):
raise TypeError("parameter `axis` must be int or iterable of int.")
alldims = list(xarray_obj.sizes.keys())
dim = [alldims[a] for a in axis]
if any(xarray_obj.sizes[k] > 1 for k in dim):
raise ValueError(
"cannot select a dimension to squeeze out "
"which has length greater than one"
)
return dim
class DataWithCoords(SupportsArithmetic, AttrAccessMixin):
"""Shared base class for Dataset and DataArray."""
__slots__ = ()
_rolling_exp_cls = RollingExp
def squeeze(
self,
dim: Union[Hashable, Iterable[Hashable], None] = None,
drop: bool = False,
axis: Union[int, Iterable[int], None] = None,
):
"""Return a new object with squeezed data.
Parameters
----------
dim : None or Hashable or iterable of Hashable, optional
Selects a subset of the length one dimensions. If a dimension is
selected with length greater than one, an error is raised. If
None, all length one dimensions are squeezed.
drop : bool, optional
If ``drop=True``, drop squeezed coordinates instead of making them
scalar.
axis : None or int or iterable of int, optional
Like dim, but positional.
Returns
-------
squeezed : same type as caller
This object, but with with all or a subset of the dimensions of
length 1 removed.
See Also
--------
numpy.squeeze
"""
dims = get_squeeze_dims(self, dim, axis)
return self.isel(drop=drop, **{d: 0 for d in dims})
def get_index(self, key: Hashable) -> pd.Index:
"""Get an index for a dimension, with fall-back to a default RangeIndex"""
if key not in self.dims:
raise KeyError(key)
try:
return self.indexes[key]
except KeyError:
# need to ensure dtype=int64 in case range is empty on Python 2
return pd.Index(range(self.sizes[key]), name=key, dtype=np.int64)
def _calc_assign_results(
self: C, kwargs: Mapping[Hashable, Union[T, Callable[[C], T]]]
) -> Dict[Hashable, T]:
return {k: v(self) if callable(v) else v for k, v in kwargs.items()}
def assign_coords(self, coords=None, **coords_kwargs):
"""Assign new coordinates to this object.
Returns a new object with all the original data in addition to the new
coordinates.
Parameters
----------
coords : dict, optional
A dict where the keys are the names of the coordinates
with the new values to assign. If the values are callable, they are
computed on this object and assigned to new coordinate variables.
If the values are not callable, (e.g. a ``DataArray``, scalar, or
array), they are simply assigned. A new coordinate can also be
defined and attached to an existing dimension using a tuple with
the first element the dimension name and the second element the
values for this new coordinate.
**coords_kwargs : optional
The keyword arguments form of ``coords``.
One of ``coords`` or ``coords_kwargs`` must be provided.
Returns
-------
assigned : same type as caller
A new object with the new coordinates in addition to the existing
data.
Examples
--------
Convert longitude coordinates from 0-359 to -180-179:
>>> da = xr.DataArray(
... np.random.rand(4),
... coords=[np.array([358, 359, 0, 1])],
... dims="lon",
... )
>>> da
<xarray.DataArray (lon: 4)>
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
Coordinates:
* lon (lon) int64 358 359 0 1
>>> da.assign_coords(lon=(((da.lon + 180) % 360) - 180))
<xarray.DataArray (lon: 4)>
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
Coordinates:
* lon (lon) int64 -2 -1 0 1
The function also accepts dictionary arguments:
>>> da.assign_coords({"lon": (((da.lon + 180) % 360) - 180)})
<xarray.DataArray (lon: 4)>
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
Coordinates:
* lon (lon) int64 -2 -1 0 1
New coordinate can also be attached to an existing dimension:
>>> lon_2 = np.array([300, 289, 0, 1])
>>> da.assign_coords(lon_2=("lon", lon_2))
<xarray.DataArray (lon: 4)>
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
Coordinates:
* lon (lon) int64 358 359 0 1
lon_2 (lon) int64 300 289 0 1
Note that the same result can also be obtained with a dict e.g.
>>> _ = da.assign_coords({"lon_2": ("lon", lon_2)})
Notes
-----
Since ``coords_kwargs`` is a dictionary, the order of your arguments
may not be preserved, and so the order of the new variables is not well
defined. Assigning multiple variables within the same ``assign_coords``
is possible, but you cannot reference other variables created within
the same ``assign_coords`` call.
See also
--------
Dataset.assign
Dataset.swap_dims
"""
coords_kwargs = either_dict_or_kwargs(coords, coords_kwargs, "assign_coords")
data = self.copy(deep=False)
results = self._calc_assign_results(coords_kwargs)
data.coords.update(results)
return data
def assign_attrs(self, *args, **kwargs):
"""Assign new attrs to this object.
Returns a new object equivalent to ``self.attrs.update(*args, **kwargs)``.
Parameters
----------
args
positional arguments passed into ``attrs.update``.
kwargs
keyword arguments passed into ``attrs.update``.
Returns
-------
assigned : same type as caller
A new object with the new attrs in addition to the existing data.
See also
--------
Dataset.assign
"""
out = self.copy(deep=False)
out.attrs.update(*args, **kwargs)
return out
def pipe(
self,
func: Union[Callable[..., T], Tuple[Callable[..., T], str]],
*args,
**kwargs,
) -> T:
"""
Apply ``func(self, *args, **kwargs)``
This method replicates the pandas method of the same name.
Parameters
----------
func : callable
function to apply to this xarray object (Dataset/DataArray).
``args``, and ``kwargs`` are passed into ``func``.
Alternatively a ``(callable, data_keyword)`` tuple where
``data_keyword`` is a string indicating the keyword of
``callable`` that expects the xarray object.
args
positional arguments passed into ``func``.
kwargs
a dictionary of keyword arguments passed into ``func``.
Returns
-------
object : Any
the return type of ``func``.
Notes
-----
Use ``.pipe`` when chaining together functions that expect
xarray or pandas objects, e.g., instead of writing
.. code:: python
f(g(h(ds), arg1=a), arg2=b, arg3=c)
You can write
.. code:: python
(ds.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c))
If you have a function that takes the data as (say) the second
argument, pass a tuple indicating which keyword expects the
data. For example, suppose ``f`` takes its data as ``arg2``:
.. code:: python
(ds.pipe(h).pipe(g, arg1=a).pipe((f, "arg2"), arg1=a, arg3=c))
Examples
--------
>>> import numpy as np
>>> import xarray as xr
>>> x = xr.Dataset(
... {
... "temperature_c": (
... ("lat", "lon"),
... 20 * np.random.rand(4).reshape(2, 2),
... ),
... "precipitation": (("lat", "lon"), np.random.rand(4).reshape(2, 2)),
... },
... coords={"lat": [10, 20], "lon": [150, 160]},
... )
>>> x
<xarray.Dataset>
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 10 20
* lon (lon) int64 150 160
Data variables:
temperature_c (lat, lon) float64 10.98 14.3 12.06 10.9
precipitation (lat, lon) float64 0.4237 0.6459 0.4376 0.8918
>>> def adder(data, arg):
... return data + arg
...
>>> def div(data, arg):
... return data / arg
...
>>> def sub_mult(data, sub_arg, mult_arg):
... return (data * mult_arg) - sub_arg
...
>>> x.pipe(adder, 2)
<xarray.Dataset>
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 10 20
* lon (lon) int64 150 160
Data variables:
temperature_c (lat, lon) float64 12.98 16.3 14.06 12.9
precipitation (lat, lon) float64 2.424 2.646 2.438 2.892
>>> x.pipe(adder, arg=2)
<xarray.Dataset>
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 10 20
* lon (lon) int64 150 160
Data variables:
temperature_c (lat, lon) float64 12.98 16.3 14.06 12.9
precipitation (lat, lon) float64 2.424 2.646 2.438 2.892
>>> (
... x.pipe(adder, arg=2)
... .pipe(div, arg=2)
... .pipe(sub_mult, sub_arg=2, mult_arg=2)
... )
<xarray.Dataset>
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 10 20
* lon (lon) int64 150 160
Data variables:
temperature_c (lat, lon) float64 10.98 14.3 12.06 10.9
precipitation (lat, lon) float64 0.4237 0.6459 0.4376 0.8918
See Also
--------
pandas.DataFrame.pipe
"""
if isinstance(func, tuple):
func, target = func
if target in kwargs:
raise ValueError(
"%s is both the pipe target and a keyword argument" % target
)
kwargs[target] = self
return func(*args, **kwargs)
else:
return func(self, *args, **kwargs)
def groupby(self, group, squeeze: bool = True, restore_coord_dims: bool = None):
"""Returns a GroupBy object for performing grouped operations.
Parameters
----------
group : str, DataArray or IndexVariable
Array whose unique values should be used to group this array. If a
string, must be the name of a variable contained in this dataset.
squeeze : bool, optional
If "group" is a dimension of any arrays in this dataset, `squeeze`
controls whether the subarrays have a dimension of length 1 along
that dimension or if the dimension is squeezed out.
restore_coord_dims : bool, optional
If True, also restore the dimension order of multi-dimensional
coordinates.
Returns
-------
grouped
A `GroupBy` object patterned after `pandas.GroupBy` that can be
iterated over in the form of `(unique_value, grouped_array)` pairs.
Examples
--------
Calculate daily anomalies for daily data:
>>> da = xr.DataArray(
... np.linspace(0, 1826, num=1827),
... coords=[pd.date_range("1/1/2000", "31/12/2004", freq="D")],
... dims="time",
... )
>>> da
<xarray.DataArray (time: 1827)>
array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.824e+03, 1.825e+03,
1.826e+03])
Coordinates:
* time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2004-12-31
>>> da.groupby("time.dayofyear") - da.groupby("time.dayofyear").mean("time")
<xarray.DataArray (time: 1827)>
array([-730.8, -730.8, -730.8, ..., 730.2, 730.2, 730.5])
Coordinates:
* time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2004-12-31
dayofyear (time) int64 1 2 3 4 5 6 7 8 ... 359 360 361 362 363 364 365 366
See Also
--------
core.groupby.DataArrayGroupBy
core.groupby.DatasetGroupBy
"""
# While we don't generally check the type of every arg, passing
# multiple dimensions as multiple arguments is common enough, and the
# consequences hidden enough (strings evaluate as true) to warrant
# checking here.
# A future version could make squeeze kwarg only, but would face
# backward-compat issues.
if not isinstance(squeeze, bool):
raise TypeError(
f"`squeeze` must be True or False, but {squeeze} was supplied"
)
return self._groupby_cls(
self, group, squeeze=squeeze, restore_coord_dims=restore_coord_dims
)
def groupby_bins(
self,
group,
bins,
right: bool = True,
labels=None,
precision: int = 3,
include_lowest: bool = False,
squeeze: bool = True,
restore_coord_dims: bool = None,
):
"""Returns a GroupBy object for performing grouped operations.
Rather than using all unique values of `group`, the values are discretized
first by applying `pandas.cut` [1]_ to `group`.
Parameters
----------
group : str, DataArray or IndexVariable
Array whose binned values should be used to group this array. If a
string, must be the name of a variable contained in this dataset.
bins : int or array-like
If bins is an int, it defines the number of equal-width bins in the
range of x. However, in this case, the range of x is extended by .1%
on each side to include the min or max values of x. If bins is a
sequence it defines the bin edges allowing for non-uniform bin
width. No extension of the range of x is done in this case.
right : bool, default: True
Indicates whether the bins include the rightmost edge or not. If
right == True (the default), then the bins [1,2,3,4] indicate
(1,2], (2,3], (3,4].
labels : array-like or bool, default: None
Used as labels for the resulting bins. Must be of the same length as
the resulting bins. If False, string bin labels are assigned by
`pandas.cut`.
precision : int
The precision at which to store and display the bins labels.
include_lowest : bool
Whether the first interval should be left-inclusive or not.
squeeze : bool, default: True
If "group" is a dimension of any arrays in this dataset, `squeeze`
controls whether the subarrays have a dimension of length 1 along
that dimension or if the dimension is squeezed out.
restore_coord_dims : bool, optional
If True, also restore the dimension order of multi-dimensional
coordinates.
Returns
-------
grouped
A `GroupBy` object patterned after `pandas.GroupBy` that can be
iterated over in the form of `(unique_value, grouped_array)` pairs.
The name of the group has the added suffix `_bins` in order to
distinguish it from the original variable.
References
----------
.. [1] http://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
"""
return self._groupby_cls(
self,
group,
squeeze=squeeze,
bins=bins,
restore_coord_dims=restore_coord_dims,
cut_kwargs={
"right": right,
"labels": labels,
"precision": precision,
"include_lowest": include_lowest,
},
)
def weighted(self, weights):
"""
Weighted operations.
Parameters
----------
weights : DataArray
An array of weights associated with the values in this Dataset.
Each value in the data contributes to the reduction operation
according to its associated weight.
Notes
-----
``weights`` must be a DataArray and cannot contain missing values.
Missing values can be replaced by ``weights.fillna(0)``.
"""
return self._weighted_cls(self, weights)
def rolling(
self,
dim: Mapping[Hashable, int] = None,
min_periods: int = None,
center: Union[bool, Mapping[Hashable, bool]] = False,
keep_attrs: bool = None,
**window_kwargs: int,
):
"""
Rolling window object.
Parameters
----------
dim: dict, optional
Mapping from the dimension name to create the rolling iterator
along (e.g. `time`) to its moving window size.
min_periods : int, default: None
Minimum number of observations in window required to have a value
(otherwise result is NA). The default, None, is equivalent to
setting min_periods equal to the size of the window.
center : bool or mapping, default: False
Set the labels at the center of the window.
**window_kwargs : optional
The keyword arguments form of ``dim``.
One of dim or window_kwargs must be provided.
Returns
-------
Rolling object (core.rolling.DataArrayRolling for DataArray,
core.rolling.DatasetRolling for Dataset.)
Examples
--------
Create rolling seasonal average of monthly data e.g. DJF, JFM, ..., SON:
>>> da = xr.DataArray(
... np.linspace(0, 11, num=12),
... coords=[
... pd.date_range(
... "15/12/1999",
... periods=12,
... freq=pd.DateOffset(months=1),
... )
... ],
... dims="time",
... )
>>> da
<xarray.DataArray (time: 12)>
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.])
Coordinates:
* time (time) datetime64[ns] 1999-12-15 2000-01-15 ... 2000-11-15
>>> da.rolling(time=3, center=True).mean()
<xarray.DataArray (time: 12)>
array([nan, 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., nan])
Coordinates:
* time (time) datetime64[ns] 1999-12-15 2000-01-15 ... 2000-11-15
Remove the NaNs using ``dropna()``:
>>> da.rolling(time=3, center=True).mean().dropna("time")
<xarray.DataArray (time: 10)>
array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
Coordinates:
* time (time) datetime64[ns] 2000-01-15 2000-02-15 ... 2000-10-15
See Also
--------
core.rolling.DataArrayRolling
core.rolling.DatasetRolling
"""
dim = either_dict_or_kwargs(dim, window_kwargs, "rolling")
return self._rolling_cls(
self, dim, min_periods=min_periods, center=center, keep_attrs=keep_attrs
)
def rolling_exp(
self,
window: Mapping[Hashable, int] = None,
window_type: str = "span",
**window_kwargs,
):
"""
Exponentially-weighted moving window.
Similar to EWM in pandas
Requires the optional Numbagg dependency.
Parameters
----------
window : mapping of hashable to int, optional
A mapping from the name of the dimension to create the rolling
exponential window along (e.g. `time`) to the size of the moving window.
window_type : {"span", "com", "halflife", "alpha"}, default: "span"
The format of the previously supplied window. Each is a simple
numerical transformation of the others. Described in detail:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html
**window_kwargs : optional
The keyword arguments form of ``window``.
One of window or window_kwargs must be provided.
See Also
--------
core.rolling_exp.RollingExp
"""
window = either_dict_or_kwargs(window, window_kwargs, "rolling_exp")
return self._rolling_exp_cls(self, window, window_type)
def coarsen(
self,
dim: Mapping[Hashable, int] = None,
boundary: str = "exact",
side: Union[str, Mapping[Hashable, str]] = "left",
coord_func: str = "mean",
keep_attrs: bool = None,
**window_kwargs: int,
):
"""
Coarsen object.
Parameters
----------
dim : mapping of hashable to int, optional
Mapping from the dimension name to the window size.
boundary : {"exact", "trim", "pad"}, default: "exact"
If 'exact', a ValueError will be raised if dimension size is not a
multiple of the window size. If 'trim', the excess entries are
dropped. If 'pad', NA will be padded.
side : {"left", "right"} or mapping of str to {"left", "right"}
coord_func : str or mapping of hashable to str, default: "mean"
function (name) that is applied to the coordinates,
or a mapping from coordinate name to function (name).
keep_attrs : bool, optional
If True, the object's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
Returns
-------
Coarsen object (core.rolling.DataArrayCoarsen for DataArray,
core.rolling.DatasetCoarsen for Dataset.)
Examples
--------
Coarsen the long time series by averaging over every four days.
>>> da = xr.DataArray(
... np.linspace(0, 364, num=364),
... dims="time",
... coords={"time": pd.date_range("15/12/1999", periods=364)},
... )
>>> da # +doctest: ELLIPSIS
<xarray.DataArray (time: 364)>
array([ 0. , 1.00275482, 2.00550964, 3.00826446,
4.01101928, 5.0137741 , 6.01652893, 7.01928375,
8.02203857, 9.02479339, 10.02754821, 11.03030303,
...
356.98071625, 357.98347107, 358.9862259 , 359.98898072,
360.99173554, 361.99449036, 362.99724518, 364. ])
Coordinates:
* time (time) datetime64[ns] 1999-12-15 1999-12-16 ... 2000-12-12
>>> da.coarsen(time=3, boundary="trim").mean() # +doctest: ELLIPSIS
<xarray.DataArray (time: 121)>
array([ 1.00275482, 4.01101928, 7.01928375, 10.02754821,
13.03581267, 16.04407713, 19.0523416 , 22.06060606,
25.06887052, 28.07713499, 31.08539945, 34.09366391,
...
349.96143251, 352.96969697, 355.97796143, 358.9862259 ,
361.99449036])
Coordinates:
* time (time) datetime64[ns] 1999-12-16 1999-12-19 ... 2000-12-10
>>>
See Also
--------
core.rolling.DataArrayCoarsen
core.rolling.DatasetCoarsen
"""
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
dim = either_dict_or_kwargs(dim, window_kwargs, "coarsen")
return self._coarsen_cls(
self,
dim,
boundary=boundary,
side=side,
coord_func=coord_func,
keep_attrs=keep_attrs,
)
def resample(
self,
indexer: Mapping[Hashable, str] = None,
skipna=None,
closed: str = None,
label: str = None,
base: int = 0,
keep_attrs: bool = None,
loffset=None,
restore_coord_dims: bool = None,
**indexer_kwargs: str,
):
"""Returns a Resample object for performing resampling operations.
Handles both downsampling and upsampling. The resampled
dimension must be a datetime-like coordinate. If any intervals
contain no values from the original object, they will be given
the value ``NaN``.
Parameters
----------
indexer : {dim: freq}, optional
Mapping from the dimension name to resample frequency [1]_. The
dimension must be datetime-like.
skipna : bool, optional
Whether to skip missing values when aggregating in downsampling.
closed : {"left", "right"}, optional
Side of each interval to treat as closed.
label : {"left", "right"}, optional
Side of each interval to use for labeling.
base : int, optional
For frequencies that evenly subdivide 1 day, the "origin" of the
aggregated intervals. For example, for "24H" frequency, base could
range from 0 through 23.
loffset : timedelta or str, optional
Offset used to adjust the resampled time labels. Some pandas date
offset strings are supported.
keep_attrs : bool, optional
If True, the object's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
restore_coord_dims : bool, optional
If True, also restore the dimension order of multi-dimensional
coordinates.
**indexer_kwargs : {dim: freq}
The keyword arguments form of ``indexer``.
One of indexer or indexer_kwargs must be provided.
Returns
-------
resampled : same type as caller
This object resampled.
Examples
--------
Downsample monthly time-series data to seasonal data:
>>> da = xr.DataArray(
... np.linspace(0, 11, num=12),
... coords=[
... pd.date_range(
... "15/12/1999",
... periods=12,
... freq=pd.DateOffset(months=1),
... )
... ],
... dims="time",
... )
>>> da
<xarray.DataArray (time: 12)>
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.])
Coordinates:
* time (time) datetime64[ns] 1999-12-15 2000-01-15 ... 2000-11-15
>>> da.resample(time="QS-DEC").mean()
<xarray.DataArray (time: 4)>
array([ 1., 4., 7., 10.])
Coordinates:
* time (time) datetime64[ns] 1999-12-01 2000-03-01 2000-06-01 2000-09-01
Upsample monthly time-series data to daily data:
>>> da.resample(time="1D").interpolate("linear") # +doctest: ELLIPSIS
<xarray.DataArray (time: 337)>
array([ 0. , 0.03225806, 0.06451613, 0.09677419, 0.12903226,
0.16129032, 0.19354839, 0.22580645, 0.25806452, 0.29032258,
0.32258065, 0.35483871, 0.38709677, 0.41935484, 0.4516129 ,
...
10.80645161, 10.83870968, 10.87096774, 10.90322581, 10.93548387,
10.96774194, 11. ])
Coordinates:
* time (time) datetime64[ns] 1999-12-15 1999-12-16 ... 2000-11-15
Limit scope of upsampling method
>>> da.resample(time="1D").nearest(tolerance="1D")
<xarray.DataArray (time: 337)>
array([ 0., 0., nan, ..., nan, 11., 11.])
Coordinates:
* time (time) datetime64[ns] 1999-12-15 1999-12-16 ... 2000-11-15
See Also
--------
pandas.Series.resample
pandas.DataFrame.resample
References
----------
.. [1] http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
"""
# TODO support non-string indexer after removing the old API.
from ..coding.cftimeindex import CFTimeIndex
from .dataarray import DataArray
from .resample import RESAMPLE_DIM
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
# note: the second argument (now 'skipna') use to be 'dim'
if (
(skipna is not None and not isinstance(skipna, bool))
or ("how" in indexer_kwargs and "how" not in self.dims)
or ("dim" in indexer_kwargs and "dim" not in self.dims)
):
raise TypeError(
"resample() no longer supports the `how` or "
"`dim` arguments. Instead call methods on resample "
"objects, e.g., data.resample(time='1D').mean()"
)
indexer = either_dict_or_kwargs(indexer, indexer_kwargs, "resample")
if len(indexer) != 1:
raise ValueError("Resampling only supported along single dimensions.")
dim, freq = next(iter(indexer.items()))
dim_name = dim
dim_coord = self[dim]
# TODO: remove once pandas=1.1 is the minimum required version
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
r"'(base|loffset)' in .resample\(\) and in Grouper\(\) is deprecated.",
category=FutureWarning,
)
if isinstance(self.indexes[dim_name], CFTimeIndex):
from .resample_cftime import CFTimeGrouper
grouper = CFTimeGrouper(freq, closed, label, base, loffset)
else:
grouper = pd.Grouper(
freq=freq, closed=closed, label=label, base=base, loffset=loffset
)
group = DataArray(
dim_coord, coords=dim_coord.coords, dims=dim_coord.dims, name=RESAMPLE_DIM
)
resampler = self._resample_cls(
self,
group=group,
dim=dim_name,
grouper=grouper,
resample_dim=RESAMPLE_DIM,
restore_coord_dims=restore_coord_dims,
)
return resampler
def where(self, cond, other=dtypes.NA, drop: bool = False):
"""Filter elements from this object according to a condition.
This operation follows the normal broadcasting and alignment rules that
xarray uses for binary arithmetic.
Parameters
----------
cond : DataArray, Dataset, or callable
Locations at which to preserve this object's values. dtype must be `bool`.
If a callable, it must expect this object as its only parameter.
other : scalar, DataArray or Dataset, optional
Value to use for locations in this object where ``cond`` is False.
By default, these locations filled with NA.
drop : bool, optional
If True, coordinate labels that only correspond to False values of
the condition are dropped from the result. Mutually exclusive with
``other``.
Returns
-------
DataArray or Dataset
Same xarray type as caller, with dtype float64.
Examples
--------
>>> import numpy as np
>>> a = xr.DataArray(np.arange(25).reshape(5, 5), dims=("x", "y"))
>>> a
<xarray.DataArray (x: 5, y: 5)>
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
Dimensions without coordinates: x, y
>>> a.where(a.x + a.y < 4)
<xarray.DataArray (x: 5, y: 5)>
array([[ 0., 1., 2., 3., nan],
[ 5., 6., 7., nan, nan],
[10., 11., nan, nan, nan],
[15., nan, nan, nan, nan],
[nan, nan, nan, nan, nan]])
Dimensions without coordinates: x, y
>>> a.where(a.x + a.y < 5, -1)
<xarray.DataArray (x: 5, y: 5)>
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, -1],
[10, 11, 12, -1, -1],
[15, 16, -1, -1, -1],
[20, -1, -1, -1, -1]])
Dimensions without coordinates: x, y
>>> a.where(a.x + a.y < 4, drop=True)
<xarray.DataArray (x: 4, y: 4)>
array([[ 0., 1., 2., 3.],
[ 5., 6., 7., nan],
[10., 11., nan, nan],
[15., nan, nan, nan]])
Dimensions without coordinates: x, y
>>> a.where(lambda x: x.x + x.y < 4, drop=True)
<xarray.DataArray (x: 4, y: 4)>
array([[ 0., 1., 2., 3.],
[ 5., 6., 7., nan],
[10., 11., nan, nan],
[15., nan, nan, nan]])
Dimensions without coordinates: x, y
See also
--------
numpy.where : corresponding numpy function
where : equivalent function
"""
from .alignment import align
from .dataarray import DataArray
from .dataset import Dataset
if callable(cond):
cond = cond(self)
if drop:
if other is not dtypes.NA:
raise ValueError("cannot set `other` if drop=True")
if not isinstance(cond, (Dataset, DataArray)):
raise TypeError(
"cond argument is %r but must be a %r or %r"
% (cond, Dataset, DataArray)
)
# align so we can use integer indexing
self, cond = align(self, cond)
# get cond with the minimal size needed for the Dataset
if isinstance(cond, Dataset):
clipcond = cond.to_array().any("variable")
else:
clipcond = cond
# clip the data corresponding to coordinate dims that are not used
nonzeros = zip(clipcond.dims, np.nonzero(clipcond.values))
indexers = {k: np.unique(v) for k, v in nonzeros}
self = self.isel(**indexers)
cond = cond.isel(**indexers)
return ops.where_method(self, cond, other)
def close(self: Any) -> None:
"""Close any files linked to this object"""
if self._file_obj is not None:
self._file_obj.close()
self._file_obj = None
def isnull(self, keep_attrs: bool = None):
"""Test each value in the array for whether it is a missing value.
Returns
-------
isnull : DataArray or Dataset
Same type and shape as object, but the dtype of the data is bool.
See Also
--------
pandas.isnull
Examples
--------
>>> array = xr.DataArray([1, np.nan, 3], dims="x")
>>> array
<xarray.DataArray (x: 3)>
array([ 1., nan, 3.])
Dimensions without coordinates: x
>>> array.isnull()
<xarray.DataArray (x: 3)>
array([False, True, False])
Dimensions without coordinates: x
"""
from .computation import apply_ufunc
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
return apply_ufunc(
duck_array_ops.isnull,
self,
dask="allowed",
keep_attrs=keep_attrs,
)
def notnull(self, keep_attrs: bool = None):
"""Test each value in the array for whether it is not a missing value.
Returns
-------
notnull : DataArray or Dataset
Same type and shape as object, but the dtype of the data is bool.
See Also
--------
pandas.notnull
Examples
--------
>>> array = xr.DataArray([1, np.nan, 3], dims="x")
>>> array
<xarray.DataArray (x: 3)>
array([ 1., nan, 3.])
Dimensions without coordinates: x
>>> array.notnull()
<xarray.DataArray (x: 3)>
array([ True, False, True])
Dimensions without coordinates: x
"""
from .computation import apply_ufunc
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
return apply_ufunc(
duck_array_ops.notnull,
self,
dask="allowed",
keep_attrs=keep_attrs,
)
def isin(self, test_elements):
"""Tests each value in the array for whether it is in test elements.
Parameters
----------
test_elements : array_like
The values against which to test each value of `element`.
This argument is flattened if an array or array_like.
See numpy notes for behavior with non-array-like parameters.
Returns
-------
isin : DataArray or Dataset
Has the same type and shape as this object, but with a bool dtype.
Examples
--------
>>> array = xr.DataArray([1, 2, 3], dims="x")
>>> array.isin([1, 3])
<xarray.DataArray (x: 3)>
array([ True, False, True])
Dimensions without coordinates: x
See also
--------
numpy.isin
"""
from .computation import apply_ufunc
from .dataarray import DataArray
from .dataset import Dataset
from .variable import Variable
if isinstance(test_elements, Dataset):
raise TypeError(
"isin() argument must be convertible to an array: {}".format(
test_elements
)
)
elif isinstance(test_elements, (Variable, DataArray)):
# need to explicitly pull out data to support dask arrays as the
# second argument
test_elements = test_elements.data
return apply_ufunc(
duck_array_ops.isin,
self,
kwargs=dict(test_elements=test_elements),
dask="allowed",
)
def astype(self, dtype, casting="unsafe", copy=True, keep_attrs=True):
"""
Copy of the xarray object, with data cast to a specified type.
Leaves coordinate dtype unchanged.
Parameters
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur. Defaults to 'unsafe'
for backwards compatibility.
* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
copy : bool, optional
By default, astype always returns a newly allocated array. If this
is set to False and the `dtype` requirement is satisfied, the input
array is returned instead of a copy.
keep_attrs : bool, optional
By default, astype keeps attributes. Set to False to remove
attributes in the returned object.
Returns
-------
out : same as object
New object with data cast to the specified type.
See also
--------
np.ndarray.astype
dask.array.Array.astype
"""
from .computation import apply_ufunc
return apply_ufunc(
duck_array_ops.astype,
self,
kwargs=dict(dtype=dtype, casting=casting, copy=copy),
keep_attrs=keep_attrs,
dask="allowed",
)
def __enter__(self: T) -> T:
return self
def __exit__(self, exc_type, exc_value, traceback) -> None:
self.close()
def __getitem__(self, value):
# implementations of this class should implement this method
raise NotImplementedError()
def full_like(other, fill_value, dtype: DTypeLike = None):
"""Return a new object with the same shape and type as a given object.
Parameters
----------
other : DataArray, Dataset or Variable
The reference object in input
fill_value : scalar or dict-like
Value to fill the new object with before returning it. If
other is a Dataset, may also be a dict-like mapping data
variables to fill values.
dtype : dtype or dict-like of dtype, optional
dtype of the new array. If a dict-like, maps dtypes to
variables. If omitted, it defaults to other.dtype.
Returns
-------
out : same as object
New object with the same shape and type as other, with the data
filled with fill_value. Coords will be copied from other.
If other is based on dask, the new one will be as well, and will be
split in the same chunks.
Examples
--------
>>> import numpy as np
>>> import xarray as xr
>>> x = xr.DataArray(
... np.arange(6).reshape(2, 3),
... dims=["lat", "lon"],
... coords={"lat": [1, 2], "lon": [0, 1, 2]},
... )
>>> x
<xarray.DataArray (lat: 2, lon: 3)>
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
>>> xr.full_like(x, 1)
<xarray.DataArray (lat: 2, lon: 3)>
array([[1, 1, 1],
[1, 1, 1]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
>>> xr.full_like(x, 0.5)
<xarray.DataArray (lat: 2, lon: 3)>
array([[0, 0, 0],
[0, 0, 0]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
>>> xr.full_like(x, 0.5, dtype=np.double)
<xarray.DataArray (lat: 2, lon: 3)>
array([[0.5, 0.5, 0.5],
[0.5, 0.5, 0.5]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
>>> xr.full_like(x, np.nan, dtype=np.double)
<xarray.DataArray (lat: 2, lon: 3)>
array([[nan, nan, nan],
[nan, nan, nan]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
>>> ds = xr.Dataset(
... {"a": ("x", [3, 5, 2]), "b": ("x", [9, 1, 0])}, coords={"x": [2, 4, 6]}
... )
>>> ds
<xarray.Dataset>
Dimensions: (x: 3)
Coordinates:
* x (x) int64 2 4 6
Data variables:
a (x) int64 3 5 2
b (x) int64 9 1 0
>>> xr.full_like(ds, fill_value={"a": 1, "b": 2})
<xarray.Dataset>
Dimensions: (x: 3)
Coordinates:
* x (x) int64 2 4 6
Data variables:
a (x) int64 1 1 1
b (x) int64 2 2 2
>>> xr.full_like(ds, fill_value={"a": 1, "b": 2}, dtype={"a": bool, "b": float})
<xarray.Dataset>
Dimensions: (x: 3)
Coordinates:
* x (x) int64 2 4 6
Data variables:
a (x) bool True True True
b (x) float64 2.0 2.0 2.0
See also
--------
zeros_like
ones_like
"""
from .dataarray import DataArray
from .dataset import Dataset
from .variable import Variable
if not is_scalar(fill_value) and not (
isinstance(other, Dataset) and isinstance(fill_value, dict)
):
raise ValueError(
f"fill_value must be scalar or, for datasets, a dict-like. Received {fill_value} instead."
)
if isinstance(other, Dataset):
if not isinstance(fill_value, dict):
fill_value = {k: fill_value for k in other.data_vars.keys()}
if not isinstance(dtype, dict):
dtype = {k: dtype for k in other.data_vars.keys()}
data_vars = {
k: _full_like_variable(v, fill_value.get(k, dtypes.NA), dtype.get(k, None))
for k, v in other.data_vars.items()
}
return Dataset(data_vars, coords=other.coords, attrs=other.attrs)
elif isinstance(other, DataArray):
return DataArray(
_full_like_variable(other.variable, fill_value, dtype),
dims=other.dims,
coords=other.coords,
attrs=other.attrs,
name=other.name,
)
elif isinstance(other, Variable):
return _full_like_variable(other, fill_value, dtype)
else:
raise TypeError("Expected DataArray, Dataset, or Variable")
def _full_like_variable(other, fill_value, dtype: DTypeLike = None):
"""Inner function of full_like, where other must be a variable"""
from .variable import Variable
if fill_value is dtypes.NA:
fill_value = dtypes.get_fill_value(dtype if dtype is not None else other.dtype)
if is_duck_dask_array(other.data):
import dask.array
if dtype is None:
dtype = other.dtype
data = dask.array.full(
other.shape, fill_value, dtype=dtype, chunks=other.data.chunks
)
else:
data = np.full_like(other.data, fill_value, dtype=dtype)
return Variable(dims=other.dims, data=data, attrs=other.attrs)
def zeros_like(other, dtype: DTypeLike = None):
"""Return a new object of zeros with the same shape and
type as a given dataarray or dataset.
Parameters
----------
other : DataArray, Dataset or Variable
The reference object. The output will have the same dimensions and coordinates as this object.
dtype : dtype, optional
dtype of the new array. If omitted, it defaults to other.dtype.
Returns
-------
out : DataArray, Dataset or Variable
New object of zeros with the same shape and type as other.
Examples
--------
>>> import numpy as np
>>> import xarray as xr
>>> x = xr.DataArray(
... np.arange(6).reshape(2, 3),
... dims=["lat", "lon"],
... coords={"lat": [1, 2], "lon": [0, 1, 2]},
... )
>>> x
<xarray.DataArray (lat: 2, lon: 3)>
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
>>> xr.zeros_like(x)
<xarray.DataArray (lat: 2, lon: 3)>
array([[0, 0, 0],
[0, 0, 0]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
>>> xr.zeros_like(x, dtype=float)
<xarray.DataArray (lat: 2, lon: 3)>
array([[0., 0., 0.],
[0., 0., 0.]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
See also
--------
ones_like
full_like
"""
return full_like(other, 0, dtype)
def ones_like(other, dtype: DTypeLike = None):
"""Return a new object of ones with the same shape and
type as a given dataarray or dataset.
Parameters
----------
other : DataArray, Dataset, or Variable
The reference object. The output will have the same dimensions and coordinates as this object.
dtype : dtype, optional
dtype of the new array. If omitted, it defaults to other.dtype.
Returns
-------
out : same as object
New object of ones with the same shape and type as other.
Examples
--------
>>> import numpy as np
>>> import xarray as xr
>>> x = xr.DataArray(
... np.arange(6).reshape(2, 3),
... dims=["lat", "lon"],
... coords={"lat": [1, 2], "lon": [0, 1, 2]},
... )
>>> x
<xarray.DataArray (lat: 2, lon: 3)>
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
>>> xr.ones_like(x)
<xarray.DataArray (lat: 2, lon: 3)>
array([[1, 1, 1],
[1, 1, 1]])
Coordinates:
* lat (lat) int64 1 2
* lon (lon) int64 0 1 2
See also
--------
zeros_like
full_like
"""
return full_like(other, 1, dtype)
def is_np_datetime_like(dtype: DTypeLike) -> bool:
"""Check if a dtype is a subclass of the numpy datetime types"""
return np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)
def is_np_timedelta_like(dtype: DTypeLike) -> bool:
"""Check whether dtype is of the timedelta64 dtype."""
return np.issubdtype(dtype, np.timedelta64)
def _contains_cftime_datetimes(array) -> bool:
"""Check if an array contains cftime.datetime objects"""
try:
from cftime import datetime as cftime_datetime
except ImportError:
return False
else:
if array.dtype == np.dtype("O") and array.size > 0:
sample = array.ravel()[0]
if is_duck_dask_array(sample):
sample = sample.compute()
if isinstance(sample, np.ndarray):
sample = sample.item()
return isinstance(sample, cftime_datetime)
else:
return False
def contains_cftime_datetimes(var) -> bool:
"""Check if an xarray.Variable contains cftime.datetime objects"""
return _contains_cftime_datetimes(var.data)
def _contains_datetime_like_objects(var) -> bool:
"""Check if a variable contains datetime like objects (either
np.datetime64, np.timedelta64, or cftime.datetime)
"""
return is_np_datetime_like(var.dtype) or contains_cftime_datetimes(var)
|