File: common.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (1767 lines) | stat: -rw-r--r-- 60,479 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
import warnings
from contextlib import suppress
from html import escape
from textwrap import dedent
from typing import (
    Any,
    Callable,
    Dict,
    Hashable,
    Iterable,
    Iterator,
    List,
    Mapping,
    Tuple,
    TypeVar,
    Union,
)

import numpy as np
import pandas as pd

from . import dtypes, duck_array_ops, formatting, formatting_html, ops
from .arithmetic import SupportsArithmetic
from .npcompat import DTypeLike
from .options import OPTIONS, _get_keep_attrs
from .pycompat import is_duck_dask_array
from .rolling_exp import RollingExp
from .utils import Frozen, either_dict_or_kwargs, is_scalar

# Used as a sentinel value to indicate a all dimensions
ALL_DIMS = ...


C = TypeVar("C")
T = TypeVar("T")


class ImplementsArrayReduce:
    __slots__ = ()

    @classmethod
    def _reduce_method(cls, func: Callable, include_skipna: bool, numeric_only: bool):
        if include_skipna:

            def wrapped_func(self, dim=None, axis=None, skipna=None, **kwargs):
                return self.reduce(func, dim, axis, skipna=skipna, **kwargs)

        else:

            def wrapped_func(self, dim=None, axis=None, **kwargs):  # type: ignore
                return self.reduce(func, dim, axis, **kwargs)

        return wrapped_func

    _reduce_extra_args_docstring = dedent(
        """\
        dim : str or sequence of str, optional
            Dimension(s) over which to apply `{name}`.
        axis : int or sequence of int, optional
            Axis(es) over which to apply `{name}`. Only one of the 'dim'
            and 'axis' arguments can be supplied. If neither are supplied, then
            `{name}` is calculated over axes."""
    )

    _cum_extra_args_docstring = dedent(
        """\
        dim : str or sequence of str, optional
            Dimension over which to apply `{name}`.
        axis : int or sequence of int, optional
            Axis over which to apply `{name}`. Only one of the 'dim'
            and 'axis' arguments can be supplied."""
    )


class ImplementsDatasetReduce:
    __slots__ = ()

    @classmethod
    def _reduce_method(cls, func: Callable, include_skipna: bool, numeric_only: bool):
        if include_skipna:

            def wrapped_func(self, dim=None, skipna=None, **kwargs):
                return self.reduce(
                    func, dim, skipna=skipna, numeric_only=numeric_only, **kwargs
                )

        else:

            def wrapped_func(self, dim=None, **kwargs):  # type: ignore
                return self.reduce(func, dim, numeric_only=numeric_only, **kwargs)

        return wrapped_func

    _reduce_extra_args_docstring = dedent(
        """
        dim : str or sequence of str, optional
            Dimension(s) over which to apply `{name}`.  By default `{name}` is
            applied over all dimensions.
        """
    ).strip()

    _cum_extra_args_docstring = dedent(
        """
        dim : str or sequence of str, optional
            Dimension over which to apply `{name}`.
        axis : int or sequence of int, optional
            Axis over which to apply `{name}`. Only one of the 'dim'
            and 'axis' arguments can be supplied.
        """
    ).strip()


class AbstractArray(ImplementsArrayReduce):
    """Shared base class for DataArray and Variable."""

    __slots__ = ()

    def __bool__(self: Any) -> bool:
        return bool(self.values)

    def __float__(self: Any) -> float:
        return float(self.values)

    def __int__(self: Any) -> int:
        return int(self.values)

    def __complex__(self: Any) -> complex:
        return complex(self.values)

    def __array__(self: Any, dtype: DTypeLike = None) -> np.ndarray:
        return np.asarray(self.values, dtype=dtype)

    def __repr__(self) -> str:
        return formatting.array_repr(self)

    def _repr_html_(self):
        if OPTIONS["display_style"] == "text":
            return f"<pre>{escape(repr(self))}</pre>"
        return formatting_html.array_repr(self)

    def _iter(self: Any) -> Iterator[Any]:
        for n in range(len(self)):
            yield self[n]

    def __iter__(self: Any) -> Iterator[Any]:
        if self.ndim == 0:
            raise TypeError("iteration over a 0-d array")
        return self._iter()

    def get_axis_num(
        self, dim: Union[Hashable, Iterable[Hashable]]
    ) -> Union[int, Tuple[int, ...]]:
        """Return axis number(s) corresponding to dimension(s) in this array.

        Parameters
        ----------
        dim : str or iterable of str
            Dimension name(s) for which to lookup axes.

        Returns
        -------
        int or tuple of int
            Axis number or numbers corresponding to the given dimensions.
        """
        if isinstance(dim, Iterable) and not isinstance(dim, str):
            return tuple(self._get_axis_num(d) for d in dim)
        else:
            return self._get_axis_num(dim)

    def _get_axis_num(self: Any, dim: Hashable) -> int:
        try:
            return self.dims.index(dim)
        except ValueError:
            raise ValueError(f"{dim!r} not found in array dimensions {self.dims!r}")

    @property
    def sizes(self: Any) -> Mapping[Hashable, int]:
        """Ordered mapping from dimension names to lengths.

        Immutable.

        See also
        --------
        Dataset.sizes
        """
        return Frozen(dict(zip(self.dims, self.shape)))


class AttrAccessMixin:
    """Mixin class that allows getting keys with attribute access"""

    __slots__ = ()

    def __init_subclass__(cls):
        """Verify that all subclasses explicitly define ``__slots__``. If they don't,
        raise error in the core xarray module and a FutureWarning in third-party
        extensions.
        """
        if not hasattr(object.__new__(cls), "__dict__"):
            pass
        elif cls.__module__.startswith("xarray."):
            raise AttributeError("%s must explicitly define __slots__" % cls.__name__)
        else:
            cls.__setattr__ = cls._setattr_dict
            warnings.warn(
                "xarray subclass %s should explicitly define __slots__" % cls.__name__,
                FutureWarning,
                stacklevel=2,
            )

    @property
    def _attr_sources(self) -> List[Mapping[Hashable, Any]]:
        """List of places to look-up items for attribute-style access"""
        return []

    @property
    def _item_sources(self) -> List[Mapping[Hashable, Any]]:
        """List of places to look-up items for key-autocompletion"""
        return []

    def __getattr__(self, name: str) -> Any:
        if name not in {"__dict__", "__setstate__"}:
            # this avoids an infinite loop when pickle looks for the
            # __setstate__ attribute before the xarray object is initialized
            for source in self._attr_sources:
                with suppress(KeyError):
                    return source[name]
        raise AttributeError(
            "{!r} object has no attribute {!r}".format(type(self).__name__, name)
        )

    # This complicated two-method design boosts overall performance of simple operations
    # - particularly DataArray methods that perform a _to_temp_dataset() round-trip - by
    # a whopping 8% compared to a single method that checks hasattr(self, "__dict__") at
    # runtime before every single assignment. All of this is just temporary until the
    # FutureWarning can be changed into a hard crash.
    def _setattr_dict(self, name: str, value: Any) -> None:
        """Deprecated third party subclass (see ``__init_subclass__`` above)"""
        object.__setattr__(self, name, value)
        if name in self.__dict__:
            # Custom, non-slotted attr, or improperly assigned variable?
            warnings.warn(
                "Setting attribute %r on a %r object. Explicitly define __slots__ "
                "to suppress this warning for legitimate custom attributes and "
                "raise an error when attempting variables assignments."
                % (name, type(self).__name__),
                FutureWarning,
                stacklevel=2,
            )

    def __setattr__(self, name: str, value: Any) -> None:
        """Objects with ``__slots__`` raise AttributeError if you try setting an
        undeclared attribute. This is desirable, but the error message could use some
        improvement.
        """
        try:
            object.__setattr__(self, name, value)
        except AttributeError as e:
            # Don't accidentally shadow custom AttributeErrors, e.g.
            # DataArray.dims.setter
            if str(e) != "{!r} object has no attribute {!r}".format(
                type(self).__name__, name
            ):
                raise
            raise AttributeError(
                "cannot set attribute %r on a %r object. Use __setitem__ style"
                "assignment (e.g., `ds['name'] = ...`) instead of assigning variables."
                % (name, type(self).__name__)
            ) from e

    def __dir__(self) -> List[str]:
        """Provide method name lookup and completion. Only provide 'public'
        methods.
        """
        extra_attrs = [
            item
            for sublist in self._attr_sources
            for item in sublist
            if isinstance(item, str)
        ]
        return sorted(set(dir(type(self)) + extra_attrs))

    def _ipython_key_completions_(self) -> List[str]:
        """Provide method for the key-autocompletions in IPython.
        See http://ipython.readthedocs.io/en/stable/config/integrating.html#tab-completion
        For the details.
        """
        item_lists = [
            item
            for sublist in self._item_sources
            for item in sublist
            if isinstance(item, str)
        ]
        return list(set(item_lists))


def get_squeeze_dims(
    xarray_obj,
    dim: Union[Hashable, Iterable[Hashable], None] = None,
    axis: Union[int, Iterable[int], None] = None,
) -> List[Hashable]:
    """Get a list of dimensions to squeeze out."""
    if dim is not None and axis is not None:
        raise ValueError("cannot use both parameters `axis` and `dim`")
    if dim is None and axis is None:
        return [d for d, s in xarray_obj.sizes.items() if s == 1]

    if isinstance(dim, Iterable) and not isinstance(dim, str):
        dim = list(dim)
    elif dim is not None:
        dim = [dim]
    else:
        assert axis is not None
        if isinstance(axis, int):
            axis = [axis]
        axis = list(axis)
        if any(not isinstance(a, int) for a in axis):
            raise TypeError("parameter `axis` must be int or iterable of int.")
        alldims = list(xarray_obj.sizes.keys())
        dim = [alldims[a] for a in axis]

    if any(xarray_obj.sizes[k] > 1 for k in dim):
        raise ValueError(
            "cannot select a dimension to squeeze out "
            "which has length greater than one"
        )
    return dim


class DataWithCoords(SupportsArithmetic, AttrAccessMixin):
    """Shared base class for Dataset and DataArray."""

    __slots__ = ()

    _rolling_exp_cls = RollingExp

    def squeeze(
        self,
        dim: Union[Hashable, Iterable[Hashable], None] = None,
        drop: bool = False,
        axis: Union[int, Iterable[int], None] = None,
    ):
        """Return a new object with squeezed data.

        Parameters
        ----------
        dim : None or Hashable or iterable of Hashable, optional
            Selects a subset of the length one dimensions. If a dimension is
            selected with length greater than one, an error is raised. If
            None, all length one dimensions are squeezed.
        drop : bool, optional
            If ``drop=True``, drop squeezed coordinates instead of making them
            scalar.
        axis : None or int or iterable of int, optional
            Like dim, but positional.

        Returns
        -------
        squeezed : same type as caller
            This object, but with with all or a subset of the dimensions of
            length 1 removed.

        See Also
        --------
        numpy.squeeze
        """
        dims = get_squeeze_dims(self, dim, axis)
        return self.isel(drop=drop, **{d: 0 for d in dims})

    def get_index(self, key: Hashable) -> pd.Index:
        """Get an index for a dimension, with fall-back to a default RangeIndex"""
        if key not in self.dims:
            raise KeyError(key)

        try:
            return self.indexes[key]
        except KeyError:
            # need to ensure dtype=int64 in case range is empty on Python 2
            return pd.Index(range(self.sizes[key]), name=key, dtype=np.int64)

    def _calc_assign_results(
        self: C, kwargs: Mapping[Hashable, Union[T, Callable[[C], T]]]
    ) -> Dict[Hashable, T]:
        return {k: v(self) if callable(v) else v for k, v in kwargs.items()}

    def assign_coords(self, coords=None, **coords_kwargs):
        """Assign new coordinates to this object.

        Returns a new object with all the original data in addition to the new
        coordinates.

        Parameters
        ----------
        coords : dict, optional
            A dict where the keys are the names of the coordinates
            with the new values to assign. If the values are callable, they are
            computed on this object and assigned to new coordinate variables.
            If the values are not callable, (e.g. a ``DataArray``, scalar, or
            array), they are simply assigned. A new coordinate can also be
            defined and attached to an existing dimension using a tuple with
            the first element the dimension name and the second element the
            values for this new coordinate.

        **coords_kwargs : optional
            The keyword arguments form of ``coords``.
            One of ``coords`` or ``coords_kwargs`` must be provided.

        Returns
        -------
        assigned : same type as caller
            A new object with the new coordinates in addition to the existing
            data.

        Examples
        --------
        Convert longitude coordinates from 0-359 to -180-179:

        >>> da = xr.DataArray(
        ...     np.random.rand(4),
        ...     coords=[np.array([358, 359, 0, 1])],
        ...     dims="lon",
        ... )
        >>> da
        <xarray.DataArray (lon: 4)>
        array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
        Coordinates:
          * lon      (lon) int64 358 359 0 1
        >>> da.assign_coords(lon=(((da.lon + 180) % 360) - 180))
        <xarray.DataArray (lon: 4)>
        array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
        Coordinates:
          * lon      (lon) int64 -2 -1 0 1

        The function also accepts dictionary arguments:

        >>> da.assign_coords({"lon": (((da.lon + 180) % 360) - 180)})
        <xarray.DataArray (lon: 4)>
        array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
        Coordinates:
          * lon      (lon) int64 -2 -1 0 1

        New coordinate can also be attached to an existing dimension:

        >>> lon_2 = np.array([300, 289, 0, 1])
        >>> da.assign_coords(lon_2=("lon", lon_2))
        <xarray.DataArray (lon: 4)>
        array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
        Coordinates:
          * lon      (lon) int64 358 359 0 1
            lon_2    (lon) int64 300 289 0 1

        Note that the same result can also be obtained with a dict e.g.

        >>> _ = da.assign_coords({"lon_2": ("lon", lon_2)})

        Notes
        -----
        Since ``coords_kwargs`` is a dictionary, the order of your arguments
        may not be preserved, and so the order of the new variables is not well
        defined. Assigning multiple variables within the same ``assign_coords``
        is possible, but you cannot reference other variables created within
        the same ``assign_coords`` call.

        See also
        --------
        Dataset.assign
        Dataset.swap_dims
        """
        coords_kwargs = either_dict_or_kwargs(coords, coords_kwargs, "assign_coords")
        data = self.copy(deep=False)
        results = self._calc_assign_results(coords_kwargs)
        data.coords.update(results)
        return data

    def assign_attrs(self, *args, **kwargs):
        """Assign new attrs to this object.

        Returns a new object equivalent to ``self.attrs.update(*args, **kwargs)``.

        Parameters
        ----------
        args
            positional arguments passed into ``attrs.update``.
        kwargs
            keyword arguments passed into ``attrs.update``.

        Returns
        -------
        assigned : same type as caller
            A new object with the new attrs in addition to the existing data.

        See also
        --------
        Dataset.assign
        """
        out = self.copy(deep=False)
        out.attrs.update(*args, **kwargs)
        return out

    def pipe(
        self,
        func: Union[Callable[..., T], Tuple[Callable[..., T], str]],
        *args,
        **kwargs,
    ) -> T:
        """
        Apply ``func(self, *args, **kwargs)``

        This method replicates the pandas method of the same name.

        Parameters
        ----------
        func : callable
            function to apply to this xarray object (Dataset/DataArray).
            ``args``, and ``kwargs`` are passed into ``func``.
            Alternatively a ``(callable, data_keyword)`` tuple where
            ``data_keyword`` is a string indicating the keyword of
            ``callable`` that expects the xarray object.
        args
            positional arguments passed into ``func``.
        kwargs
            a dictionary of keyword arguments passed into ``func``.

        Returns
        -------
        object : Any
            the return type of ``func``.

        Notes
        -----

        Use ``.pipe`` when chaining together functions that expect
        xarray or pandas objects, e.g., instead of writing

        .. code:: python

            f(g(h(ds), arg1=a), arg2=b, arg3=c)

        You can write

        .. code:: python

            (ds.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c))

        If you have a function that takes the data as (say) the second
        argument, pass a tuple indicating which keyword expects the
        data. For example, suppose ``f`` takes its data as ``arg2``:

        .. code:: python

            (ds.pipe(h).pipe(g, arg1=a).pipe((f, "arg2"), arg1=a, arg3=c))

        Examples
        --------

        >>> import numpy as np
        >>> import xarray as xr
        >>> x = xr.Dataset(
        ...     {
        ...         "temperature_c": (
        ...             ("lat", "lon"),
        ...             20 * np.random.rand(4).reshape(2, 2),
        ...         ),
        ...         "precipitation": (("lat", "lon"), np.random.rand(4).reshape(2, 2)),
        ...     },
        ...     coords={"lat": [10, 20], "lon": [150, 160]},
        ... )
        >>> x
        <xarray.Dataset>
        Dimensions:        (lat: 2, lon: 2)
        Coordinates:
          * lat            (lat) int64 10 20
          * lon            (lon) int64 150 160
        Data variables:
            temperature_c  (lat, lon) float64 10.98 14.3 12.06 10.9
            precipitation  (lat, lon) float64 0.4237 0.6459 0.4376 0.8918

        >>> def adder(data, arg):
        ...     return data + arg
        ...
        >>> def div(data, arg):
        ...     return data / arg
        ...
        >>> def sub_mult(data, sub_arg, mult_arg):
        ...     return (data * mult_arg) - sub_arg
        ...
        >>> x.pipe(adder, 2)
        <xarray.Dataset>
        Dimensions:        (lat: 2, lon: 2)
        Coordinates:
          * lat            (lat) int64 10 20
          * lon            (lon) int64 150 160
        Data variables:
            temperature_c  (lat, lon) float64 12.98 16.3 14.06 12.9
            precipitation  (lat, lon) float64 2.424 2.646 2.438 2.892

        >>> x.pipe(adder, arg=2)
        <xarray.Dataset>
        Dimensions:        (lat: 2, lon: 2)
        Coordinates:
          * lat            (lat) int64 10 20
          * lon            (lon) int64 150 160
        Data variables:
            temperature_c  (lat, lon) float64 12.98 16.3 14.06 12.9
            precipitation  (lat, lon) float64 2.424 2.646 2.438 2.892

        >>> (
        ...     x.pipe(adder, arg=2)
        ...     .pipe(div, arg=2)
        ...     .pipe(sub_mult, sub_arg=2, mult_arg=2)
        ... )
        <xarray.Dataset>
        Dimensions:        (lat: 2, lon: 2)
        Coordinates:
          * lat            (lat) int64 10 20
          * lon            (lon) int64 150 160
        Data variables:
            temperature_c  (lat, lon) float64 10.98 14.3 12.06 10.9
            precipitation  (lat, lon) float64 0.4237 0.6459 0.4376 0.8918

        See Also
        --------
        pandas.DataFrame.pipe
        """
        if isinstance(func, tuple):
            func, target = func
            if target in kwargs:
                raise ValueError(
                    "%s is both the pipe target and a keyword argument" % target
                )
            kwargs[target] = self
            return func(*args, **kwargs)
        else:
            return func(self, *args, **kwargs)

    def groupby(self, group, squeeze: bool = True, restore_coord_dims: bool = None):
        """Returns a GroupBy object for performing grouped operations.

        Parameters
        ----------
        group : str, DataArray or IndexVariable
            Array whose unique values should be used to group this array. If a
            string, must be the name of a variable contained in this dataset.
        squeeze : bool, optional
            If "group" is a dimension of any arrays in this dataset, `squeeze`
            controls whether the subarrays have a dimension of length 1 along
            that dimension or if the dimension is squeezed out.
        restore_coord_dims : bool, optional
            If True, also restore the dimension order of multi-dimensional
            coordinates.

        Returns
        -------
        grouped
            A `GroupBy` object patterned after `pandas.GroupBy` that can be
            iterated over in the form of `(unique_value, grouped_array)` pairs.

        Examples
        --------
        Calculate daily anomalies for daily data:

        >>> da = xr.DataArray(
        ...     np.linspace(0, 1826, num=1827),
        ...     coords=[pd.date_range("1/1/2000", "31/12/2004", freq="D")],
        ...     dims="time",
        ... )
        >>> da
        <xarray.DataArray (time: 1827)>
        array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.824e+03, 1.825e+03,
               1.826e+03])
        Coordinates:
          * time     (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2004-12-31
        >>> da.groupby("time.dayofyear") - da.groupby("time.dayofyear").mean("time")
        <xarray.DataArray (time: 1827)>
        array([-730.8, -730.8, -730.8, ...,  730.2,  730.2,  730.5])
        Coordinates:
          * time       (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2004-12-31
            dayofyear  (time) int64 1 2 3 4 5 6 7 8 ... 359 360 361 362 363 364 365 366

        See Also
        --------
        core.groupby.DataArrayGroupBy
        core.groupby.DatasetGroupBy
        """
        # While we don't generally check the type of every arg, passing
        # multiple dimensions as multiple arguments is common enough, and the
        # consequences hidden enough (strings evaluate as true) to warrant
        # checking here.
        # A future version could make squeeze kwarg only, but would face
        # backward-compat issues.
        if not isinstance(squeeze, bool):
            raise TypeError(
                f"`squeeze` must be True or False, but {squeeze} was supplied"
            )

        return self._groupby_cls(
            self, group, squeeze=squeeze, restore_coord_dims=restore_coord_dims
        )

    def groupby_bins(
        self,
        group,
        bins,
        right: bool = True,
        labels=None,
        precision: int = 3,
        include_lowest: bool = False,
        squeeze: bool = True,
        restore_coord_dims: bool = None,
    ):
        """Returns a GroupBy object for performing grouped operations.

        Rather than using all unique values of `group`, the values are discretized
        first by applying `pandas.cut` [1]_ to `group`.

        Parameters
        ----------
        group : str, DataArray or IndexVariable
            Array whose binned values should be used to group this array. If a
            string, must be the name of a variable contained in this dataset.
        bins : int or array-like
            If bins is an int, it defines the number of equal-width bins in the
            range of x. However, in this case, the range of x is extended by .1%
            on each side to include the min or max values of x. If bins is a
            sequence it defines the bin edges allowing for non-uniform bin
            width. No extension of the range of x is done in this case.
        right : bool, default: True
            Indicates whether the bins include the rightmost edge or not. If
            right == True (the default), then the bins [1,2,3,4] indicate
            (1,2], (2,3], (3,4].
        labels : array-like or bool, default: None
            Used as labels for the resulting bins. Must be of the same length as
            the resulting bins. If False, string bin labels are assigned by
            `pandas.cut`.
        precision : int
            The precision at which to store and display the bins labels.
        include_lowest : bool
            Whether the first interval should be left-inclusive or not.
        squeeze : bool, default: True
            If "group" is a dimension of any arrays in this dataset, `squeeze`
            controls whether the subarrays have a dimension of length 1 along
            that dimension or if the dimension is squeezed out.
        restore_coord_dims : bool, optional
            If True, also restore the dimension order of multi-dimensional
            coordinates.

        Returns
        -------
        grouped
            A `GroupBy` object patterned after `pandas.GroupBy` that can be
            iterated over in the form of `(unique_value, grouped_array)` pairs.
            The name of the group has the added suffix `_bins` in order to
            distinguish it from the original variable.

        References
        ----------
        .. [1] http://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
        """
        return self._groupby_cls(
            self,
            group,
            squeeze=squeeze,
            bins=bins,
            restore_coord_dims=restore_coord_dims,
            cut_kwargs={
                "right": right,
                "labels": labels,
                "precision": precision,
                "include_lowest": include_lowest,
            },
        )

    def weighted(self, weights):
        """
        Weighted operations.

        Parameters
        ----------
        weights : DataArray
            An array of weights associated with the values in this Dataset.
            Each value in the data contributes to the reduction operation
            according to its associated weight.

        Notes
        -----
        ``weights`` must be a DataArray and cannot contain missing values.
        Missing values can be replaced by ``weights.fillna(0)``.
        """

        return self._weighted_cls(self, weights)

    def rolling(
        self,
        dim: Mapping[Hashable, int] = None,
        min_periods: int = None,
        center: Union[bool, Mapping[Hashable, bool]] = False,
        keep_attrs: bool = None,
        **window_kwargs: int,
    ):
        """
        Rolling window object.

        Parameters
        ----------
        dim: dict, optional
            Mapping from the dimension name to create the rolling iterator
            along (e.g. `time`) to its moving window size.
        min_periods : int, default: None
            Minimum number of observations in window required to have a value
            (otherwise result is NA). The default, None, is equivalent to
            setting min_periods equal to the size of the window.
        center : bool or mapping, default: False
            Set the labels at the center of the window.
        **window_kwargs : optional
            The keyword arguments form of ``dim``.
            One of dim or window_kwargs must be provided.

        Returns
        -------
        Rolling object (core.rolling.DataArrayRolling for DataArray,
        core.rolling.DatasetRolling for Dataset.)

        Examples
        --------
        Create rolling seasonal average of monthly data e.g. DJF, JFM, ..., SON:

        >>> da = xr.DataArray(
        ...     np.linspace(0, 11, num=12),
        ...     coords=[
        ...         pd.date_range(
        ...             "15/12/1999",
        ...             periods=12,
        ...             freq=pd.DateOffset(months=1),
        ...         )
        ...     ],
        ...     dims="time",
        ... )
        >>> da
        <xarray.DataArray (time: 12)>
        array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11.])
        Coordinates:
          * time     (time) datetime64[ns] 1999-12-15 2000-01-15 ... 2000-11-15
        >>> da.rolling(time=3, center=True).mean()
        <xarray.DataArray (time: 12)>
        array([nan,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., nan])
        Coordinates:
          * time     (time) datetime64[ns] 1999-12-15 2000-01-15 ... 2000-11-15

        Remove the NaNs using ``dropna()``:

        >>> da.rolling(time=3, center=True).mean().dropna("time")
        <xarray.DataArray (time: 10)>
        array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])
        Coordinates:
          * time     (time) datetime64[ns] 2000-01-15 2000-02-15 ... 2000-10-15

        See Also
        --------
        core.rolling.DataArrayRolling
        core.rolling.DatasetRolling
        """

        dim = either_dict_or_kwargs(dim, window_kwargs, "rolling")
        return self._rolling_cls(
            self, dim, min_periods=min_periods, center=center, keep_attrs=keep_attrs
        )

    def rolling_exp(
        self,
        window: Mapping[Hashable, int] = None,
        window_type: str = "span",
        **window_kwargs,
    ):
        """
        Exponentially-weighted moving window.
        Similar to EWM in pandas

        Requires the optional Numbagg dependency.

        Parameters
        ----------
        window : mapping of hashable to int, optional
            A mapping from the name of the dimension to create the rolling
            exponential window along (e.g. `time`) to the size of the moving window.
        window_type : {"span", "com", "halflife", "alpha"}, default: "span"
            The format of the previously supplied window. Each is a simple
            numerical transformation of the others. Described in detail:
            https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html
        **window_kwargs : optional
            The keyword arguments form of ``window``.
            One of window or window_kwargs must be provided.

        See Also
        --------
        core.rolling_exp.RollingExp
        """
        window = either_dict_or_kwargs(window, window_kwargs, "rolling_exp")

        return self._rolling_exp_cls(self, window, window_type)

    def coarsen(
        self,
        dim: Mapping[Hashable, int] = None,
        boundary: str = "exact",
        side: Union[str, Mapping[Hashable, str]] = "left",
        coord_func: str = "mean",
        keep_attrs: bool = None,
        **window_kwargs: int,
    ):
        """
        Coarsen object.

        Parameters
        ----------
        dim : mapping of hashable to int, optional
            Mapping from the dimension name to the window size.
        boundary : {"exact", "trim", "pad"}, default: "exact"
            If 'exact', a ValueError will be raised if dimension size is not a
            multiple of the window size. If 'trim', the excess entries are
            dropped. If 'pad', NA will be padded.
        side : {"left", "right"} or mapping of str to {"left", "right"}
        coord_func : str or mapping of hashable to str, default: "mean"
            function (name) that is applied to the coordinates,
            or a mapping from coordinate name to function (name).
        keep_attrs : bool, optional
            If True, the object's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.

        Returns
        -------
        Coarsen object (core.rolling.DataArrayCoarsen for DataArray,
        core.rolling.DatasetCoarsen for Dataset.)

        Examples
        --------
        Coarsen the long time series by averaging over every four days.

        >>> da = xr.DataArray(
        ...     np.linspace(0, 364, num=364),
        ...     dims="time",
        ...     coords={"time": pd.date_range("15/12/1999", periods=364)},
        ... )
        >>> da  # +doctest: ELLIPSIS
        <xarray.DataArray (time: 364)>
        array([  0.        ,   1.00275482,   2.00550964,   3.00826446,
                 4.01101928,   5.0137741 ,   6.01652893,   7.01928375,
                 8.02203857,   9.02479339,  10.02754821,  11.03030303,
        ...
               356.98071625, 357.98347107, 358.9862259 , 359.98898072,
               360.99173554, 361.99449036, 362.99724518, 364.        ])
        Coordinates:
          * time     (time) datetime64[ns] 1999-12-15 1999-12-16 ... 2000-12-12
        >>> da.coarsen(time=3, boundary="trim").mean()  # +doctest: ELLIPSIS
        <xarray.DataArray (time: 121)>
        array([  1.00275482,   4.01101928,   7.01928375,  10.02754821,
                13.03581267,  16.04407713,  19.0523416 ,  22.06060606,
                25.06887052,  28.07713499,  31.08539945,  34.09366391,
        ...
               349.96143251, 352.96969697, 355.97796143, 358.9862259 ,
               361.99449036])
        Coordinates:
          * time     (time) datetime64[ns] 1999-12-16 1999-12-19 ... 2000-12-10
        >>>

        See Also
        --------
        core.rolling.DataArrayCoarsen
        core.rolling.DatasetCoarsen
        """
        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=False)

        dim = either_dict_or_kwargs(dim, window_kwargs, "coarsen")
        return self._coarsen_cls(
            self,
            dim,
            boundary=boundary,
            side=side,
            coord_func=coord_func,
            keep_attrs=keep_attrs,
        )

    def resample(
        self,
        indexer: Mapping[Hashable, str] = None,
        skipna=None,
        closed: str = None,
        label: str = None,
        base: int = 0,
        keep_attrs: bool = None,
        loffset=None,
        restore_coord_dims: bool = None,
        **indexer_kwargs: str,
    ):
        """Returns a Resample object for performing resampling operations.

        Handles both downsampling and upsampling. The resampled
        dimension must be a datetime-like coordinate. If any intervals
        contain no values from the original object, they will be given
        the value ``NaN``.

        Parameters
        ----------
        indexer : {dim: freq}, optional
            Mapping from the dimension name to resample frequency [1]_. The
            dimension must be datetime-like.
        skipna : bool, optional
            Whether to skip missing values when aggregating in downsampling.
        closed : {"left", "right"}, optional
            Side of each interval to treat as closed.
        label : {"left", "right"}, optional
            Side of each interval to use for labeling.
        base : int, optional
            For frequencies that evenly subdivide 1 day, the "origin" of the
            aggregated intervals. For example, for "24H" frequency, base could
            range from 0 through 23.
        loffset : timedelta or str, optional
            Offset used to adjust the resampled time labels. Some pandas date
            offset strings are supported.
        keep_attrs : bool, optional
            If True, the object's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.
        restore_coord_dims : bool, optional
            If True, also restore the dimension order of multi-dimensional
            coordinates.
        **indexer_kwargs : {dim: freq}
            The keyword arguments form of ``indexer``.
            One of indexer or indexer_kwargs must be provided.

        Returns
        -------
        resampled : same type as caller
            This object resampled.

        Examples
        --------
        Downsample monthly time-series data to seasonal data:

        >>> da = xr.DataArray(
        ...     np.linspace(0, 11, num=12),
        ...     coords=[
        ...         pd.date_range(
        ...             "15/12/1999",
        ...             periods=12,
        ...             freq=pd.DateOffset(months=1),
        ...         )
        ...     ],
        ...     dims="time",
        ... )
        >>> da
        <xarray.DataArray (time: 12)>
        array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11.])
        Coordinates:
          * time     (time) datetime64[ns] 1999-12-15 2000-01-15 ... 2000-11-15
        >>> da.resample(time="QS-DEC").mean()
        <xarray.DataArray (time: 4)>
        array([ 1.,  4.,  7., 10.])
        Coordinates:
          * time     (time) datetime64[ns] 1999-12-01 2000-03-01 2000-06-01 2000-09-01

        Upsample monthly time-series data to daily data:

        >>> da.resample(time="1D").interpolate("linear")  # +doctest: ELLIPSIS
        <xarray.DataArray (time: 337)>
        array([ 0.        ,  0.03225806,  0.06451613,  0.09677419,  0.12903226,
                0.16129032,  0.19354839,  0.22580645,  0.25806452,  0.29032258,
                0.32258065,  0.35483871,  0.38709677,  0.41935484,  0.4516129 ,
        ...
               10.80645161, 10.83870968, 10.87096774, 10.90322581, 10.93548387,
               10.96774194, 11.        ])
        Coordinates:
          * time     (time) datetime64[ns] 1999-12-15 1999-12-16 ... 2000-11-15

        Limit scope of upsampling method

        >>> da.resample(time="1D").nearest(tolerance="1D")
        <xarray.DataArray (time: 337)>
        array([ 0.,  0., nan, ..., nan, 11., 11.])
        Coordinates:
          * time     (time) datetime64[ns] 1999-12-15 1999-12-16 ... 2000-11-15

        See Also
        --------
        pandas.Series.resample
        pandas.DataFrame.resample

        References
        ----------

        .. [1] http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
        """
        # TODO support non-string indexer after removing the old API.

        from ..coding.cftimeindex import CFTimeIndex
        from .dataarray import DataArray
        from .resample import RESAMPLE_DIM

        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=False)

        # note: the second argument (now 'skipna') use to be 'dim'
        if (
            (skipna is not None and not isinstance(skipna, bool))
            or ("how" in indexer_kwargs and "how" not in self.dims)
            or ("dim" in indexer_kwargs and "dim" not in self.dims)
        ):
            raise TypeError(
                "resample() no longer supports the `how` or "
                "`dim` arguments. Instead call methods on resample "
                "objects, e.g., data.resample(time='1D').mean()"
            )

        indexer = either_dict_or_kwargs(indexer, indexer_kwargs, "resample")
        if len(indexer) != 1:
            raise ValueError("Resampling only supported along single dimensions.")
        dim, freq = next(iter(indexer.items()))

        dim_name = dim
        dim_coord = self[dim]

        # TODO: remove once pandas=1.1 is the minimum required version
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore",
                r"'(base|loffset)' in .resample\(\) and in Grouper\(\) is deprecated.",
                category=FutureWarning,
            )

            if isinstance(self.indexes[dim_name], CFTimeIndex):
                from .resample_cftime import CFTimeGrouper

                grouper = CFTimeGrouper(freq, closed, label, base, loffset)
            else:
                grouper = pd.Grouper(
                    freq=freq, closed=closed, label=label, base=base, loffset=loffset
                )
        group = DataArray(
            dim_coord, coords=dim_coord.coords, dims=dim_coord.dims, name=RESAMPLE_DIM
        )
        resampler = self._resample_cls(
            self,
            group=group,
            dim=dim_name,
            grouper=grouper,
            resample_dim=RESAMPLE_DIM,
            restore_coord_dims=restore_coord_dims,
        )

        return resampler

    def where(self, cond, other=dtypes.NA, drop: bool = False):
        """Filter elements from this object according to a condition.

        This operation follows the normal broadcasting and alignment rules that
        xarray uses for binary arithmetic.

        Parameters
        ----------
        cond : DataArray, Dataset, or callable
            Locations at which to preserve this object's values. dtype must be `bool`.
            If a callable, it must expect this object as its only parameter.
        other : scalar, DataArray or Dataset, optional
            Value to use for locations in this object where ``cond`` is False.
            By default, these locations filled with NA.
        drop : bool, optional
            If True, coordinate labels that only correspond to False values of
            the condition are dropped from the result. Mutually exclusive with
            ``other``.

        Returns
        -------
        DataArray or Dataset
            Same xarray type as caller, with dtype float64.

        Examples
        --------

        >>> import numpy as np
        >>> a = xr.DataArray(np.arange(25).reshape(5, 5), dims=("x", "y"))
        >>> a
        <xarray.DataArray (x: 5, y: 5)>
        array([[ 0,  1,  2,  3,  4],
               [ 5,  6,  7,  8,  9],
               [10, 11, 12, 13, 14],
               [15, 16, 17, 18, 19],
               [20, 21, 22, 23, 24]])
        Dimensions without coordinates: x, y

        >>> a.where(a.x + a.y < 4)
        <xarray.DataArray (x: 5, y: 5)>
        array([[ 0.,  1.,  2.,  3., nan],
               [ 5.,  6.,  7., nan, nan],
               [10., 11., nan, nan, nan],
               [15., nan, nan, nan, nan],
               [nan, nan, nan, nan, nan]])
        Dimensions without coordinates: x, y

        >>> a.where(a.x + a.y < 5, -1)
        <xarray.DataArray (x: 5, y: 5)>
        array([[ 0,  1,  2,  3,  4],
               [ 5,  6,  7,  8, -1],
               [10, 11, 12, -1, -1],
               [15, 16, -1, -1, -1],
               [20, -1, -1, -1, -1]])
        Dimensions without coordinates: x, y

        >>> a.where(a.x + a.y < 4, drop=True)
        <xarray.DataArray (x: 4, y: 4)>
        array([[ 0.,  1.,  2.,  3.],
               [ 5.,  6.,  7., nan],
               [10., 11., nan, nan],
               [15., nan, nan, nan]])
        Dimensions without coordinates: x, y

        >>> a.where(lambda x: x.x + x.y < 4, drop=True)
        <xarray.DataArray (x: 4, y: 4)>
        array([[ 0.,  1.,  2.,  3.],
               [ 5.,  6.,  7., nan],
               [10., 11., nan, nan],
               [15., nan, nan, nan]])
        Dimensions without coordinates: x, y

        See also
        --------
        numpy.where : corresponding numpy function
        where : equivalent function
        """
        from .alignment import align
        from .dataarray import DataArray
        from .dataset import Dataset

        if callable(cond):
            cond = cond(self)

        if drop:
            if other is not dtypes.NA:
                raise ValueError("cannot set `other` if drop=True")

            if not isinstance(cond, (Dataset, DataArray)):
                raise TypeError(
                    "cond argument is %r but must be a %r or %r"
                    % (cond, Dataset, DataArray)
                )

            # align so we can use integer indexing
            self, cond = align(self, cond)

            # get cond with the minimal size needed for the Dataset
            if isinstance(cond, Dataset):
                clipcond = cond.to_array().any("variable")
            else:
                clipcond = cond

            # clip the data corresponding to coordinate dims that are not used
            nonzeros = zip(clipcond.dims, np.nonzero(clipcond.values))
            indexers = {k: np.unique(v) for k, v in nonzeros}

            self = self.isel(**indexers)
            cond = cond.isel(**indexers)

        return ops.where_method(self, cond, other)

    def close(self: Any) -> None:
        """Close any files linked to this object"""
        if self._file_obj is not None:
            self._file_obj.close()
        self._file_obj = None

    def isnull(self, keep_attrs: bool = None):
        """Test each value in the array for whether it is a missing value.

        Returns
        -------
        isnull : DataArray or Dataset
            Same type and shape as object, but the dtype of the data is bool.

        See Also
        --------
        pandas.isnull

        Examples
        --------
        >>> array = xr.DataArray([1, np.nan, 3], dims="x")
        >>> array
        <xarray.DataArray (x: 3)>
        array([ 1., nan,  3.])
        Dimensions without coordinates: x
        >>> array.isnull()
        <xarray.DataArray (x: 3)>
        array([False,  True, False])
        Dimensions without coordinates: x
        """
        from .computation import apply_ufunc

        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=False)

        return apply_ufunc(
            duck_array_ops.isnull,
            self,
            dask="allowed",
            keep_attrs=keep_attrs,
        )

    def notnull(self, keep_attrs: bool = None):
        """Test each value in the array for whether it is not a missing value.

        Returns
        -------
        notnull : DataArray or Dataset
            Same type and shape as object, but the dtype of the data is bool.

        See Also
        --------
        pandas.notnull

        Examples
        --------
        >>> array = xr.DataArray([1, np.nan, 3], dims="x")
        >>> array
        <xarray.DataArray (x: 3)>
        array([ 1., nan,  3.])
        Dimensions without coordinates: x
        >>> array.notnull()
        <xarray.DataArray (x: 3)>
        array([ True, False,  True])
        Dimensions without coordinates: x
        """
        from .computation import apply_ufunc

        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=False)

        return apply_ufunc(
            duck_array_ops.notnull,
            self,
            dask="allowed",
            keep_attrs=keep_attrs,
        )

    def isin(self, test_elements):
        """Tests each value in the array for whether it is in test elements.

        Parameters
        ----------
        test_elements : array_like
            The values against which to test each value of `element`.
            This argument is flattened if an array or array_like.
            See numpy notes for behavior with non-array-like parameters.

        Returns
        -------
        isin : DataArray or Dataset
            Has the same type and shape as this object, but with a bool dtype.

        Examples
        --------

        >>> array = xr.DataArray([1, 2, 3], dims="x")
        >>> array.isin([1, 3])
        <xarray.DataArray (x: 3)>
        array([ True, False,  True])
        Dimensions without coordinates: x

        See also
        --------
        numpy.isin
        """
        from .computation import apply_ufunc
        from .dataarray import DataArray
        from .dataset import Dataset
        from .variable import Variable

        if isinstance(test_elements, Dataset):
            raise TypeError(
                "isin() argument must be convertible to an array: {}".format(
                    test_elements
                )
            )
        elif isinstance(test_elements, (Variable, DataArray)):
            # need to explicitly pull out data to support dask arrays as the
            # second argument
            test_elements = test_elements.data

        return apply_ufunc(
            duck_array_ops.isin,
            self,
            kwargs=dict(test_elements=test_elements),
            dask="allowed",
        )

    def astype(self, dtype, casting="unsafe", copy=True, keep_attrs=True):
        """
        Copy of the xarray object, with data cast to a specified type.
        Leaves coordinate dtype unchanged.

        Parameters
        ----------
        dtype : str or dtype
            Typecode or data-type to which the array is cast.
        casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
            Controls what kind of data casting may occur. Defaults to 'unsafe'
            for backwards compatibility.

            * 'no' means the data types should not be cast at all.
            * 'equiv' means only byte-order changes are allowed.
            * 'safe' means only casts which can preserve values are allowed.
            * 'same_kind' means only safe casts or casts within a kind,
                like float64 to float32, are allowed.
            * 'unsafe' means any data conversions may be done.
        copy : bool, optional
            By default, astype always returns a newly allocated array. If this
            is set to False and the `dtype` requirement is satisfied, the input
            array is returned instead of a copy.
        keep_attrs : bool, optional
            By default, astype keeps attributes. Set to False to remove
            attributes in the returned object.

        Returns
        -------
        out : same as object
            New object with data cast to the specified type.

        See also
        --------
        np.ndarray.astype
        dask.array.Array.astype
        """
        from .computation import apply_ufunc

        return apply_ufunc(
            duck_array_ops.astype,
            self,
            kwargs=dict(dtype=dtype, casting=casting, copy=copy),
            keep_attrs=keep_attrs,
            dask="allowed",
        )

    def __enter__(self: T) -> T:
        return self

    def __exit__(self, exc_type, exc_value, traceback) -> None:
        self.close()

    def __getitem__(self, value):
        # implementations of this class should implement this method
        raise NotImplementedError()


def full_like(other, fill_value, dtype: DTypeLike = None):
    """Return a new object with the same shape and type as a given object.

    Parameters
    ----------
    other : DataArray, Dataset or Variable
        The reference object in input
    fill_value : scalar or dict-like
        Value to fill the new object with before returning it. If
        other is a Dataset, may also be a dict-like mapping data
        variables to fill values.
    dtype : dtype or dict-like of dtype, optional
        dtype of the new array. If a dict-like, maps dtypes to
        variables. If omitted, it defaults to other.dtype.

    Returns
    -------
    out : same as object
        New object with the same shape and type as other, with the data
        filled with fill_value. Coords will be copied from other.
        If other is based on dask, the new one will be as well, and will be
        split in the same chunks.

    Examples
    --------

    >>> import numpy as np
    >>> import xarray as xr
    >>> x = xr.DataArray(
    ...     np.arange(6).reshape(2, 3),
    ...     dims=["lat", "lon"],
    ...     coords={"lat": [1, 2], "lon": [0, 1, 2]},
    ... )
    >>> x
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[0, 1, 2],
           [3, 4, 5]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    >>> xr.full_like(x, 1)
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[1, 1, 1],
           [1, 1, 1]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    >>> xr.full_like(x, 0.5)
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[0, 0, 0],
           [0, 0, 0]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    >>> xr.full_like(x, 0.5, dtype=np.double)
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[0.5, 0.5, 0.5],
           [0.5, 0.5, 0.5]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    >>> xr.full_like(x, np.nan, dtype=np.double)
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[nan, nan, nan],
           [nan, nan, nan]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    >>> ds = xr.Dataset(
    ...     {"a": ("x", [3, 5, 2]), "b": ("x", [9, 1, 0])}, coords={"x": [2, 4, 6]}
    ... )
    >>> ds
    <xarray.Dataset>
    Dimensions:  (x: 3)
    Coordinates:
      * x        (x) int64 2 4 6
    Data variables:
        a        (x) int64 3 5 2
        b        (x) int64 9 1 0
    >>> xr.full_like(ds, fill_value={"a": 1, "b": 2})
    <xarray.Dataset>
    Dimensions:  (x: 3)
    Coordinates:
      * x        (x) int64 2 4 6
    Data variables:
        a        (x) int64 1 1 1
        b        (x) int64 2 2 2
    >>> xr.full_like(ds, fill_value={"a": 1, "b": 2}, dtype={"a": bool, "b": float})
    <xarray.Dataset>
    Dimensions:  (x: 3)
    Coordinates:
      * x        (x) int64 2 4 6
    Data variables:
        a        (x) bool True True True
        b        (x) float64 2.0 2.0 2.0

    See also
    --------

    zeros_like
    ones_like

    """
    from .dataarray import DataArray
    from .dataset import Dataset
    from .variable import Variable

    if not is_scalar(fill_value) and not (
        isinstance(other, Dataset) and isinstance(fill_value, dict)
    ):
        raise ValueError(
            f"fill_value must be scalar or, for datasets, a dict-like. Received {fill_value} instead."
        )

    if isinstance(other, Dataset):
        if not isinstance(fill_value, dict):
            fill_value = {k: fill_value for k in other.data_vars.keys()}

        if not isinstance(dtype, dict):
            dtype = {k: dtype for k in other.data_vars.keys()}

        data_vars = {
            k: _full_like_variable(v, fill_value.get(k, dtypes.NA), dtype.get(k, None))
            for k, v in other.data_vars.items()
        }
        return Dataset(data_vars, coords=other.coords, attrs=other.attrs)
    elif isinstance(other, DataArray):
        return DataArray(
            _full_like_variable(other.variable, fill_value, dtype),
            dims=other.dims,
            coords=other.coords,
            attrs=other.attrs,
            name=other.name,
        )
    elif isinstance(other, Variable):
        return _full_like_variable(other, fill_value, dtype)
    else:
        raise TypeError("Expected DataArray, Dataset, or Variable")


def _full_like_variable(other, fill_value, dtype: DTypeLike = None):
    """Inner function of full_like, where other must be a variable"""
    from .variable import Variable

    if fill_value is dtypes.NA:
        fill_value = dtypes.get_fill_value(dtype if dtype is not None else other.dtype)

    if is_duck_dask_array(other.data):
        import dask.array

        if dtype is None:
            dtype = other.dtype
        data = dask.array.full(
            other.shape, fill_value, dtype=dtype, chunks=other.data.chunks
        )
    else:
        data = np.full_like(other.data, fill_value, dtype=dtype)

    return Variable(dims=other.dims, data=data, attrs=other.attrs)


def zeros_like(other, dtype: DTypeLike = None):
    """Return a new object of zeros with the same shape and
    type as a given dataarray or dataset.

    Parameters
    ----------
    other : DataArray, Dataset or Variable
        The reference object. The output will have the same dimensions and coordinates as this object.
    dtype : dtype, optional
        dtype of the new array. If omitted, it defaults to other.dtype.

    Returns
    -------
    out : DataArray, Dataset or Variable
        New object of zeros with the same shape and type as other.

    Examples
    --------

    >>> import numpy as np
    >>> import xarray as xr
    >>> x = xr.DataArray(
    ...     np.arange(6).reshape(2, 3),
    ...     dims=["lat", "lon"],
    ...     coords={"lat": [1, 2], "lon": [0, 1, 2]},
    ... )
    >>> x
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[0, 1, 2],
           [3, 4, 5]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    >>> xr.zeros_like(x)
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[0, 0, 0],
           [0, 0, 0]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    >>> xr.zeros_like(x, dtype=float)
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[0., 0., 0.],
           [0., 0., 0.]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    See also
    --------

    ones_like
    full_like

    """
    return full_like(other, 0, dtype)


def ones_like(other, dtype: DTypeLike = None):
    """Return a new object of ones with the same shape and
    type as a given dataarray or dataset.

    Parameters
    ----------
    other : DataArray, Dataset, or Variable
        The reference object. The output will have the same dimensions and coordinates as this object.
    dtype : dtype, optional
        dtype of the new array. If omitted, it defaults to other.dtype.

    Returns
    -------
    out : same as object
        New object of ones with the same shape and type as other.

    Examples
    --------

    >>> import numpy as np
    >>> import xarray as xr
    >>> x = xr.DataArray(
    ...     np.arange(6).reshape(2, 3),
    ...     dims=["lat", "lon"],
    ...     coords={"lat": [1, 2], "lon": [0, 1, 2]},
    ... )
    >>> x
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[0, 1, 2],
           [3, 4, 5]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    >>> xr.ones_like(x)
    <xarray.DataArray (lat: 2, lon: 3)>
    array([[1, 1, 1],
           [1, 1, 1]])
    Coordinates:
      * lat      (lat) int64 1 2
      * lon      (lon) int64 0 1 2

    See also
    --------

    zeros_like
    full_like

    """
    return full_like(other, 1, dtype)


def is_np_datetime_like(dtype: DTypeLike) -> bool:
    """Check if a dtype is a subclass of the numpy datetime types"""
    return np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)


def is_np_timedelta_like(dtype: DTypeLike) -> bool:
    """Check whether dtype is of the timedelta64 dtype."""
    return np.issubdtype(dtype, np.timedelta64)


def _contains_cftime_datetimes(array) -> bool:
    """Check if an array contains cftime.datetime objects"""
    try:
        from cftime import datetime as cftime_datetime
    except ImportError:
        return False
    else:
        if array.dtype == np.dtype("O") and array.size > 0:
            sample = array.ravel()[0]
            if is_duck_dask_array(sample):
                sample = sample.compute()
                if isinstance(sample, np.ndarray):
                    sample = sample.item()
            return isinstance(sample, cftime_datetime)
        else:
            return False


def contains_cftime_datetimes(var) -> bool:
    """Check if an xarray.Variable contains cftime.datetime objects"""
    return _contains_cftime_datetimes(var.data)


def _contains_datetime_like_objects(var) -> bool:
    """Check if a variable contains datetime like objects (either
    np.datetime64, np.timedelta64, or cftime.datetime)
    """
    return is_np_datetime_like(var.dtype) or contains_cftime_datetimes(var)