File: computation.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (1677 lines) | stat: -rw-r--r-- 57,693 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
"""
Functions for applying functions that act on arrays to xarray's labeled data.
"""
import functools
import itertools
import operator
import warnings
from collections import Counter
from distutils.version import LooseVersion
from typing import (
    TYPE_CHECKING,
    AbstractSet,
    Any,
    Callable,
    Dict,
    Hashable,
    Iterable,
    List,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Union,
)

import numpy as np

from . import dtypes, duck_array_ops, utils
from .alignment import align, deep_align
from .merge import merge_coordinates_without_align
from .options import OPTIONS
from .pycompat import is_duck_dask_array
from .utils import is_dict_like
from .variable import Variable

if TYPE_CHECKING:
    from .coordinates import Coordinates  # noqa
    from .dataset import Dataset

_NO_FILL_VALUE = utils.ReprObject("<no-fill-value>")
_DEFAULT_NAME = utils.ReprObject("<default-name>")
_JOINS_WITHOUT_FILL_VALUES = frozenset({"inner", "exact"})


def _first_of_type(args, kind):
    """ Return either first object of type 'kind' or raise if not found. """
    for arg in args:
        if isinstance(arg, kind):
            return arg
    raise ValueError("This should be unreachable.")


class _UFuncSignature:
    """Core dimensions signature for a given function.

    Based on the signature provided by generalized ufuncs in NumPy.

    Attributes
    ----------
    input_core_dims : tuple[tuple]
        Core dimension names on each input variable.
    output_core_dims : tuple[tuple]
        Core dimension names on each output variable.
    """

    __slots__ = (
        "input_core_dims",
        "output_core_dims",
        "_all_input_core_dims",
        "_all_output_core_dims",
        "_all_core_dims",
    )

    def __init__(self, input_core_dims, output_core_dims=((),)):
        self.input_core_dims = tuple(tuple(a) for a in input_core_dims)
        self.output_core_dims = tuple(tuple(a) for a in output_core_dims)
        self._all_input_core_dims = None
        self._all_output_core_dims = None
        self._all_core_dims = None

    @property
    def all_input_core_dims(self):
        if self._all_input_core_dims is None:
            self._all_input_core_dims = frozenset(
                dim for dims in self.input_core_dims for dim in dims
            )
        return self._all_input_core_dims

    @property
    def all_output_core_dims(self):
        if self._all_output_core_dims is None:
            self._all_output_core_dims = frozenset(
                dim for dims in self.output_core_dims for dim in dims
            )
        return self._all_output_core_dims

    @property
    def all_core_dims(self):
        if self._all_core_dims is None:
            self._all_core_dims = self.all_input_core_dims | self.all_output_core_dims
        return self._all_core_dims

    @property
    def dims_map(self):
        return {
            core_dim: f"dim{n}" for n, core_dim in enumerate(sorted(self.all_core_dims))
        }

    @property
    def num_inputs(self):
        return len(self.input_core_dims)

    @property
    def num_outputs(self):
        return len(self.output_core_dims)

    def __eq__(self, other):
        try:
            return (
                self.input_core_dims == other.input_core_dims
                and self.output_core_dims == other.output_core_dims
            )
        except AttributeError:
            return False

    def __ne__(self, other):
        return not self == other

    def __repr__(self):
        return "{}({!r}, {!r})".format(
            type(self).__name__,
            list(self.input_core_dims),
            list(self.output_core_dims),
        )

    def __str__(self):
        lhs = ",".join("({})".format(",".join(dims)) for dims in self.input_core_dims)
        rhs = ",".join("({})".format(",".join(dims)) for dims in self.output_core_dims)
        return f"{lhs}->{rhs}"

    def to_gufunc_string(self, exclude_dims=frozenset()):
        """Create an equivalent signature string for a NumPy gufunc.

        Unlike __str__, handles dimensions that don't map to Python
        identifiers.

        Also creates unique names for input_core_dims contained in exclude_dims.
        """
        input_core_dims = [
            [self.dims_map[dim] for dim in core_dims]
            for core_dims in self.input_core_dims
        ]
        output_core_dims = [
            [self.dims_map[dim] for dim in core_dims]
            for core_dims in self.output_core_dims
        ]

        # enumerate input_core_dims contained in exclude_dims to make them unique
        if exclude_dims:

            exclude_dims = [self.dims_map[dim] for dim in exclude_dims]

            counter = Counter()

            def _enumerate(dim):
                if dim in exclude_dims:
                    n = counter[dim]
                    counter.update([dim])
                    dim = f"{dim}_{n}"
                return dim

            input_core_dims = [
                [_enumerate(dim) for dim in arg] for arg in input_core_dims
            ]

        alt_signature = type(self)(input_core_dims, output_core_dims)
        return str(alt_signature)


def result_name(objects: list) -> Any:
    # use the same naming heuristics as pandas:
    # https://github.com/blaze/blaze/issues/458#issuecomment-51936356
    names = {getattr(obj, "name", _DEFAULT_NAME) for obj in objects}
    names.discard(_DEFAULT_NAME)
    if len(names) == 1:
        (name,) = names
    else:
        name = None
    return name


def _get_coords_list(args) -> List["Coordinates"]:
    coords_list = []
    for arg in args:
        try:
            coords = arg.coords
        except AttributeError:
            pass  # skip this argument
        else:
            coords_list.append(coords)
    return coords_list


def build_output_coords(
    args: list, signature: _UFuncSignature, exclude_dims: AbstractSet = frozenset()
) -> "List[Dict[Any, Variable]]":
    """Build output coordinates for an operation.

    Parameters
    ----------
    args : list
        List of raw operation arguments. Any valid types for xarray operations
        are OK, e.g., scalars, Variable, DataArray, Dataset.
    signature : _UfuncSignature
        Core dimensions signature for the operation.
    exclude_dims : set, optional
        Dimensions excluded from the operation. Coordinates along these
        dimensions are dropped.

    Returns
    -------
    Dictionary of Variable objects with merged coordinates.
    """
    coords_list = _get_coords_list(args)

    if len(coords_list) == 1 and not exclude_dims:
        # we can skip the expensive merge
        (unpacked_coords,) = coords_list
        merged_vars = dict(unpacked_coords.variables)
    else:
        # TODO: save these merged indexes, instead of re-computing them later
        merged_vars, unused_indexes = merge_coordinates_without_align(
            coords_list, exclude_dims=exclude_dims
        )

    output_coords = []
    for output_dims in signature.output_core_dims:
        dropped_dims = signature.all_input_core_dims - set(output_dims)
        if dropped_dims:
            filtered = {
                k: v for k, v in merged_vars.items() if dropped_dims.isdisjoint(v.dims)
            }
        else:
            filtered = merged_vars
        output_coords.append(filtered)

    return output_coords


def apply_dataarray_vfunc(
    func, *args, signature, join="inner", exclude_dims=frozenset(), keep_attrs=False
):
    """Apply a variable level function over DataArray, Variable and/or ndarray
    objects.
    """
    from .dataarray import DataArray

    if len(args) > 1:
        args = deep_align(
            args, join=join, copy=False, exclude=exclude_dims, raise_on_invalid=False
        )

    if keep_attrs:
        first_obj = _first_of_type(args, DataArray)
        name = first_obj.name
    else:
        name = result_name(args)
    result_coords = build_output_coords(args, signature, exclude_dims)

    data_vars = [getattr(a, "variable", a) for a in args]
    result_var = func(*data_vars)

    if signature.num_outputs > 1:
        out = tuple(
            DataArray(variable, coords, name=name, fastpath=True)
            for variable, coords in zip(result_var, result_coords)
        )
    else:
        (coords,) = result_coords
        out = DataArray(result_var, coords, name=name, fastpath=True)

    if keep_attrs:
        if isinstance(out, tuple):
            for da in out:
                # This is adding attrs in place
                da._copy_attrs_from(first_obj)
        else:
            out._copy_attrs_from(first_obj)

    return out


def ordered_set_union(all_keys: List[Iterable]) -> Iterable:
    return {key: None for keys in all_keys for key in keys}.keys()


def ordered_set_intersection(all_keys: List[Iterable]) -> Iterable:
    intersection = set(all_keys[0])
    for keys in all_keys[1:]:
        intersection.intersection_update(keys)
    return [key for key in all_keys[0] if key in intersection]


def assert_and_return_exact_match(all_keys):
    first_keys = all_keys[0]
    for keys in all_keys[1:]:
        if keys != first_keys:
            raise ValueError(
                "exact match required for all data variable names, "
                "but %r != %r" % (keys, first_keys)
            )
    return first_keys


_JOINERS = {
    "inner": ordered_set_intersection,
    "outer": ordered_set_union,
    "left": operator.itemgetter(0),
    "right": operator.itemgetter(-1),
    "exact": assert_and_return_exact_match,
}


def join_dict_keys(
    objects: Iterable[Union[Mapping, Any]], how: str = "inner"
) -> Iterable:
    joiner = _JOINERS[how]
    all_keys = [obj.keys() for obj in objects if hasattr(obj, "keys")]
    return joiner(all_keys)


def collect_dict_values(
    objects: Iterable[Union[Mapping, Any]], keys: Iterable, fill_value: object = None
) -> List[list]:
    return [
        [obj.get(key, fill_value) if is_dict_like(obj) else obj for obj in objects]
        for key in keys
    ]


def _as_variables_or_variable(arg):
    try:
        return arg.variables
    except AttributeError:
        try:
            return arg.variable
        except AttributeError:
            return arg


def _unpack_dict_tuples(
    result_vars: Mapping[Hashable, Tuple[Variable, ...]], num_outputs: int
) -> Tuple[Dict[Hashable, Variable], ...]:
    out: Tuple[Dict[Hashable, Variable], ...] = tuple({} for _ in range(num_outputs))
    for name, values in result_vars.items():
        for value, results_dict in zip(values, out):
            results_dict[name] = value
    return out


def apply_dict_of_variables_vfunc(
    func, *args, signature, join="inner", fill_value=None
):
    """Apply a variable level function over dicts of DataArray, DataArray,
    Variable and ndarray objects.
    """
    args = [_as_variables_or_variable(arg) for arg in args]
    names = join_dict_keys(args, how=join)
    grouped_by_name = collect_dict_values(args, names, fill_value)

    result_vars = {}
    for name, variable_args in zip(names, grouped_by_name):
        result_vars[name] = func(*variable_args)

    if signature.num_outputs > 1:
        return _unpack_dict_tuples(result_vars, signature.num_outputs)
    else:
        return result_vars


def _fast_dataset(
    variables: Dict[Hashable, Variable], coord_variables: Mapping[Hashable, Variable]
) -> "Dataset":
    """Create a dataset as quickly as possible.

    Beware: the `variables` dict is modified INPLACE.
    """
    from .dataset import Dataset

    variables.update(coord_variables)
    coord_names = set(coord_variables)
    return Dataset._construct_direct(variables, coord_names)


def apply_dataset_vfunc(
    func,
    *args,
    signature,
    join="inner",
    dataset_join="exact",
    fill_value=_NO_FILL_VALUE,
    exclude_dims=frozenset(),
    keep_attrs=False,
):
    """Apply a variable level function over Dataset, dict of DataArray,
    DataArray, Variable and/or ndarray objects.
    """
    from .dataset import Dataset

    if dataset_join not in _JOINS_WITHOUT_FILL_VALUES and fill_value is _NO_FILL_VALUE:
        raise TypeError(
            "to apply an operation to datasets with different "
            "data variables with apply_ufunc, you must supply the "
            "dataset_fill_value argument."
        )

    if keep_attrs:
        first_obj = _first_of_type(args, Dataset)

    if len(args) > 1:
        args = deep_align(
            args, join=join, copy=False, exclude=exclude_dims, raise_on_invalid=False
        )

    list_of_coords = build_output_coords(args, signature, exclude_dims)
    args = [getattr(arg, "data_vars", arg) for arg in args]

    result_vars = apply_dict_of_variables_vfunc(
        func, *args, signature=signature, join=dataset_join, fill_value=fill_value
    )

    if signature.num_outputs > 1:
        out = tuple(_fast_dataset(*args) for args in zip(result_vars, list_of_coords))
    else:
        (coord_vars,) = list_of_coords
        out = _fast_dataset(result_vars, coord_vars)

    if keep_attrs:
        if isinstance(out, tuple):
            for ds in out:
                # This is adding attrs in place
                ds._copy_attrs_from(first_obj)
        else:
            out._copy_attrs_from(first_obj)
    return out


def _iter_over_selections(obj, dim, values):
    """Iterate over selections of an xarray object in the provided order."""
    from .groupby import _dummy_copy

    dummy = None
    for value in values:
        try:
            obj_sel = obj.sel(**{dim: value})
        except (KeyError, IndexError):
            if dummy is None:
                dummy = _dummy_copy(obj)
            obj_sel = dummy
        yield obj_sel


def apply_groupby_func(func, *args):
    """Apply a dataset or datarray level function over GroupBy, Dataset,
    DataArray, Variable and/or ndarray objects.
    """
    from .groupby import GroupBy, peek_at
    from .variable import Variable

    groupbys = [arg for arg in args if isinstance(arg, GroupBy)]
    assert groupbys, "must have at least one groupby to iterate over"
    first_groupby = groupbys[0]
    if any(not first_groupby._group.equals(gb._group) for gb in groupbys[1:]):
        raise ValueError(
            "apply_ufunc can only perform operations over "
            "multiple GroupBy objects at once if they are all "
            "grouped the same way"
        )

    grouped_dim = first_groupby._group.name
    unique_values = first_groupby._unique_coord.values

    iterators = []
    for arg in args:
        if isinstance(arg, GroupBy):
            iterator = (value for _, value in arg)
        elif hasattr(arg, "dims") and grouped_dim in arg.dims:
            if isinstance(arg, Variable):
                raise ValueError(
                    "groupby operations cannot be performed with "
                    "xarray.Variable objects that share a dimension with "
                    "the grouped dimension"
                )
            iterator = _iter_over_selections(arg, grouped_dim, unique_values)
        else:
            iterator = itertools.repeat(arg)
        iterators.append(iterator)

    applied = (func(*zipped_args) for zipped_args in zip(*iterators))
    applied_example, applied = peek_at(applied)
    combine = first_groupby._combine
    if isinstance(applied_example, tuple):
        combined = tuple(combine(output) for output in zip(*applied))
    else:
        combined = combine(applied)
    return combined


def unified_dim_sizes(
    variables: Iterable[Variable], exclude_dims: AbstractSet = frozenset()
) -> Dict[Hashable, int]:

    dim_sizes: Dict[Hashable, int] = {}

    for var in variables:
        if len(set(var.dims)) < len(var.dims):
            raise ValueError(
                "broadcasting cannot handle duplicate "
                "dimensions on a variable: %r" % list(var.dims)
            )
        for dim, size in zip(var.dims, var.shape):
            if dim not in exclude_dims:
                if dim not in dim_sizes:
                    dim_sizes[dim] = size
                elif dim_sizes[dim] != size:
                    raise ValueError(
                        "operands cannot be broadcast together "
                        "with mismatched lengths for dimension "
                        "%r: %s vs %s" % (dim, dim_sizes[dim], size)
                    )
    return dim_sizes


SLICE_NONE = slice(None)


def broadcast_compat_data(
    variable: Variable,
    broadcast_dims: Tuple[Hashable, ...],
    core_dims: Tuple[Hashable, ...],
) -> Any:
    data = variable.data

    old_dims = variable.dims
    new_dims = broadcast_dims + core_dims

    if new_dims == old_dims:
        # optimize for the typical case
        return data

    set_old_dims = set(old_dims)
    missing_core_dims = [d for d in core_dims if d not in set_old_dims]
    if missing_core_dims:
        raise ValueError(
            "operand to apply_ufunc has required core dimensions {}, but "
            "some of these dimensions are absent on an input variable: {}".format(
                list(core_dims), missing_core_dims
            )
        )

    set_new_dims = set(new_dims)
    unexpected_dims = [d for d in old_dims if d not in set_new_dims]
    if unexpected_dims:
        raise ValueError(
            "operand to apply_ufunc encountered unexpected "
            "dimensions %r on an input variable: these are core "
            "dimensions on other input or output variables" % unexpected_dims
        )

    # for consistency with numpy, keep broadcast dimensions to the left
    old_broadcast_dims = tuple(d for d in broadcast_dims if d in set_old_dims)
    reordered_dims = old_broadcast_dims + core_dims
    if reordered_dims != old_dims:
        order = tuple(old_dims.index(d) for d in reordered_dims)
        data = duck_array_ops.transpose(data, order)

    if new_dims != reordered_dims:
        key_parts = []
        for dim in new_dims:
            if dim in set_old_dims:
                key_parts.append(SLICE_NONE)
            elif key_parts:
                # no need to insert new axes at the beginning that are already
                # handled by broadcasting
                key_parts.append(np.newaxis)
        data = data[tuple(key_parts)]

    return data


def _vectorize(func, signature, output_dtypes, exclude_dims):
    if signature.all_core_dims:
        func = np.vectorize(
            func,
            otypes=output_dtypes,
            signature=signature.to_gufunc_string(exclude_dims),
        )
    else:
        func = np.vectorize(func, otypes=output_dtypes)

    return func


def apply_variable_ufunc(
    func,
    *args,
    signature,
    exclude_dims=frozenset(),
    dask="forbidden",
    output_dtypes=None,
    vectorize=False,
    keep_attrs=False,
    dask_gufunc_kwargs=None,
):
    """Apply a ndarray level function over Variable and/or ndarray objects."""
    from .variable import Variable, as_compatible_data

    first_obj = _first_of_type(args, Variable)

    dim_sizes = unified_dim_sizes(
        (a for a in args if hasattr(a, "dims")), exclude_dims=exclude_dims
    )
    broadcast_dims = tuple(
        dim for dim in dim_sizes if dim not in signature.all_core_dims
    )
    output_dims = [broadcast_dims + out for out in signature.output_core_dims]

    input_data = [
        broadcast_compat_data(arg, broadcast_dims, core_dims)
        if isinstance(arg, Variable)
        else arg
        for arg, core_dims in zip(args, signature.input_core_dims)
    ]

    if any(is_duck_dask_array(array) for array in input_data):
        if dask == "forbidden":
            raise ValueError(
                "apply_ufunc encountered a dask array on an "
                "argument, but handling for dask arrays has not "
                "been enabled. Either set the ``dask`` argument "
                "or load your data into memory first with "
                "``.load()`` or ``.compute()``"
            )
        elif dask == "parallelized":
            numpy_func = func

            if dask_gufunc_kwargs is None:
                dask_gufunc_kwargs = {}
            else:
                dask_gufunc_kwargs = dask_gufunc_kwargs.copy()

            allow_rechunk = dask_gufunc_kwargs.get("allow_rechunk", None)
            if allow_rechunk is None:
                for n, (data, core_dims) in enumerate(
                    zip(input_data, signature.input_core_dims)
                ):
                    if is_duck_dask_array(data):
                        # core dimensions cannot span multiple chunks
                        for axis, dim in enumerate(core_dims, start=-len(core_dims)):
                            if len(data.chunks[axis]) != 1:
                                raise ValueError(
                                    f"dimension {dim} on {n}th function argument to "
                                    "apply_ufunc with dask='parallelized' consists of "
                                    "multiple chunks, but is also a core dimension. To "
                                    "fix, either rechunk into a single dask array chunk along "
                                    f"this dimension, i.e., ``.chunk({dim}: -1)``, or "
                                    "pass ``allow_rechunk=True`` in ``dask_gufunc_kwargs`` "
                                    "but beware that this may significantly increase memory usage."
                                )
                dask_gufunc_kwargs["allow_rechunk"] = True

            output_sizes = dask_gufunc_kwargs.pop("output_sizes", {})
            if output_sizes:
                output_sizes_renamed = {}
                for key, value in output_sizes.items():
                    if key not in signature.all_output_core_dims:
                        raise ValueError(
                            f"dimension '{key}' in 'output_sizes' must correspond to output_core_dims"
                        )
                    output_sizes_renamed[signature.dims_map[key]] = value
                dask_gufunc_kwargs["output_sizes"] = output_sizes_renamed

            for key in signature.all_output_core_dims:
                if key not in signature.all_input_core_dims and key not in output_sizes:
                    raise ValueError(
                        f"dimension '{key}' in 'output_core_dims' needs corresponding (dim, size) in 'output_sizes'"
                    )

            def func(*arrays):
                import dask.array as da

                res = da.apply_gufunc(
                    numpy_func,
                    signature.to_gufunc_string(exclude_dims),
                    *arrays,
                    vectorize=vectorize,
                    output_dtypes=output_dtypes,
                    **dask_gufunc_kwargs,
                )

                # todo: covers for https://github.com/dask/dask/pull/6207
                #  remove when minimal dask version >= 2.17.0
                from dask import __version__ as dask_version

                if LooseVersion(dask_version) < LooseVersion("2.17.0"):
                    if signature.num_outputs > 1:
                        res = tuple(res)

                return res

        elif dask == "allowed":
            pass
        else:
            raise ValueError(
                "unknown setting for dask array handling in "
                "apply_ufunc: {}".format(dask)
            )
    else:
        if vectorize:
            func = _vectorize(
                func, signature, output_dtypes=output_dtypes, exclude_dims=exclude_dims
            )

    result_data = func(*input_data)

    if signature.num_outputs == 1:
        result_data = (result_data,)
    elif (
        not isinstance(result_data, tuple) or len(result_data) != signature.num_outputs
    ):
        raise ValueError(
            "applied function does not have the number of "
            "outputs specified in the ufunc signature. "
            "Result is not a tuple of {} elements: {!r}".format(
                signature.num_outputs, result_data
            )
        )

    output = []
    for dims, data in zip(output_dims, result_data):
        data = as_compatible_data(data)
        if data.ndim != len(dims):
            raise ValueError(
                "applied function returned data with unexpected "
                f"number of dimensions. Received {data.ndim} dimension(s) but "
                f"expected {len(dims)} dimensions with names: {dims!r}"
            )

        var = Variable(dims, data, fastpath=True)
        for dim, new_size in var.sizes.items():
            if dim in dim_sizes and new_size != dim_sizes[dim]:
                raise ValueError(
                    "size of dimension {!r} on inputs was unexpectedly "
                    "changed by applied function from {} to {}. Only "
                    "dimensions specified in ``exclude_dims`` with "
                    "xarray.apply_ufunc are allowed to change size.".format(
                        dim, dim_sizes[dim], new_size
                    )
                )

        if keep_attrs:
            var.attrs.update(first_obj.attrs)
        output.append(var)

    if signature.num_outputs == 1:
        return output[0]
    else:
        return tuple(output)


def apply_array_ufunc(func, *args, dask="forbidden"):
    """Apply a ndarray level function over ndarray objects."""
    if any(is_duck_dask_array(arg) for arg in args):
        if dask == "forbidden":
            raise ValueError(
                "apply_ufunc encountered a dask array on an "
                "argument, but handling for dask arrays has not "
                "been enabled. Either set the ``dask`` argument "
                "or load your data into memory first with "
                "``.load()`` or ``.compute()``"
            )
        elif dask == "parallelized":
            raise ValueError(
                "cannot use dask='parallelized' for apply_ufunc "
                "unless at least one input is an xarray object"
            )
        elif dask == "allowed":
            pass
        else:
            raise ValueError(f"unknown setting for dask array handling: {dask}")
    return func(*args)


def apply_ufunc(
    func: Callable,
    *args: Any,
    input_core_dims: Sequence[Sequence] = None,
    output_core_dims: Optional[Sequence[Sequence]] = ((),),
    exclude_dims: AbstractSet = frozenset(),
    vectorize: bool = False,
    join: str = "exact",
    dataset_join: str = "exact",
    dataset_fill_value: object = _NO_FILL_VALUE,
    keep_attrs: bool = False,
    kwargs: Mapping = None,
    dask: str = "forbidden",
    output_dtypes: Sequence = None,
    output_sizes: Mapping[Any, int] = None,
    meta: Any = None,
    dask_gufunc_kwargs: Dict[str, Any] = None,
) -> Any:
    """Apply a vectorized function for unlabeled arrays on xarray objects.

    The function will be mapped over the data variable(s) of the input
    arguments using xarray's standard rules for labeled computation, including
    alignment, broadcasting, looping over GroupBy/Dataset variables, and
    merging of coordinates.

    Parameters
    ----------
    func : callable
        Function to call like ``func(*args, **kwargs)`` on unlabeled arrays
        (``.data``) that returns an array or tuple of arrays. If multiple
        arguments with non-matching dimensions are supplied, this function is
        expected to vectorize (broadcast) over axes of positional arguments in
        the style of NumPy universal functions [1]_ (if this is not the case,
        set ``vectorize=True``). If this function returns multiple outputs, you
        must set ``output_core_dims`` as well.
    *args : Dataset, DataArray, GroupBy, Variable, numpy.ndarray, dask.array.Array or scalar
        Mix of labeled and/or unlabeled arrays to which to apply the function.
    input_core_dims : sequence of sequence, optional
        List of the same length as ``args`` giving the list of core dimensions
        on each input argument that should not be broadcast. By default, we
        assume there are no core dimensions on any input arguments.

        For example, ``input_core_dims=[[], ['time']]`` indicates that all
        dimensions on the first argument and all dimensions other than 'time'
        on the second argument should be broadcast.

        Core dimensions are automatically moved to the last axes of input
        variables before applying ``func``, which facilitates using NumPy style
        generalized ufuncs [2]_.
    output_core_dims : list of tuple, optional
        List of the same length as the number of output arguments from
        ``func``, giving the list of core dimensions on each output that were
        not broadcast on the inputs. By default, we assume that ``func``
        outputs exactly one array, with axes corresponding to each broadcast
        dimension.

        Core dimensions are assumed to appear as the last dimensions of each
        output in the provided order.
    exclude_dims : set, optional
        Core dimensions on the inputs to exclude from alignment and
        broadcasting entirely. Any input coordinates along these dimensions
        will be dropped. Each excluded dimension must also appear in
        ``input_core_dims`` for at least one argument. Only dimensions listed
        here are allowed to change size between input and output objects.
    vectorize : bool, optional
        If True, then assume ``func`` only takes arrays defined over core
        dimensions as input and vectorize it automatically with
        :py:func:`numpy.vectorize`. This option exists for convenience, but is
        almost always slower than supplying a pre-vectorized function.
        Using this option requires NumPy version 1.12 or newer.
    join : {"outer", "inner", "left", "right", "exact"}, default: "exact"
        Method for joining the indexes of the passed objects along each
        dimension, and the variables of Dataset objects with mismatched
        data variables:

        - 'outer': use the union of object indexes
        - 'inner': use the intersection of object indexes
        - 'left': use indexes from the first object with each dimension
        - 'right': use indexes from the last object with each dimension
        - 'exact': raise `ValueError` instead of aligning when indexes to be
          aligned are not equal
    dataset_join : {"outer", "inner", "left", "right", "exact"}, default: "exact"
        Method for joining variables of Dataset objects with mismatched
        data variables.

        - 'outer': take variables from both Dataset objects
        - 'inner': take only overlapped variables
        - 'left': take only variables from the first object
        - 'right': take only variables from the last object
        - 'exact': data variables on all Dataset objects must match exactly
    dataset_fill_value : optional
        Value used in place of missing variables on Dataset inputs when the
        datasets do not share the exact same ``data_vars``. Required if
        ``dataset_join not in {'inner', 'exact'}``, otherwise ignored.
    keep_attrs: bool, optional
        Whether to copy attributes from the first argument to the output.
    kwargs: dict, optional
        Optional keyword arguments passed directly on to call ``func``.
    dask: {"forbidden", "allowed", "parallelized"}, default: "forbidden"
        How to handle applying to objects containing lazy data in the form of
        dask arrays:

        - 'forbidden' (default): raise an error if a dask array is encountered.
        - 'allowed': pass dask arrays directly on to ``func``. Prefer this option if
          ``func`` natively supports dask arrays.
        - 'parallelized': automatically parallelize ``func`` if any of the
          inputs are a dask array by using `dask.array.apply_gufunc`. Multiple output
          arguments are supported. Only use this option if ``func`` does not natively
          support dask arrays (e.g. converts them to numpy arrays).
    dask_gufunc_kwargs : dict, optional
        Optional keyword arguments passed to ``dask.array.apply_gufunc`` if
        dask='parallelized'. Possible keywords are ``output_sizes``, ``allow_rechunk``
        and ``meta``.
    output_dtypes : list of dtype, optional
        Optional list of output dtypes. Only used if ``dask='parallelized'`` or
        vectorize=True.
    output_sizes : dict, optional
        Optional mapping from dimension names to sizes for outputs. Only used
        if dask='parallelized' and new dimensions (not found on inputs) appear
        on outputs. ``output_sizes`` should be given in the ``dask_gufunc_kwargs``
        parameter. It will be removed as direct parameter in a future version.
    meta : optional
        Size-0 object representing the type of array wrapped by dask array. Passed on to
        ``dask.array.apply_gufunc``. ``meta`` should be given in the
        ``dask_gufunc_kwargs`` parameter . It will be removed as direct parameter
        a future version.

    Returns
    -------
    Single value or tuple of Dataset, DataArray, Variable, dask.array.Array or
    numpy.ndarray, the first type on that list to appear on an input.

    Examples
    --------

    Calculate the vector magnitude of two arguments:

    >>> def magnitude(a, b):
    ...     func = lambda x, y: np.sqrt(x ** 2 + y ** 2)
    ...     return xr.apply_ufunc(func, a, b)

    You can now apply ``magnitude()`` to ``xr.DataArray`` and ``xr.Dataset``
    objects, with automatically preserved dimensions and coordinates, e.g.,

    >>> array = xr.DataArray([1, 2, 3], coords=[("x", [0.1, 0.2, 0.3])])
    >>> magnitude(array, -array)
    <xarray.DataArray (x: 3)>
    array([1.41421356, 2.82842712, 4.24264069])
    Coordinates:
      * x        (x) float64 0.1 0.2 0.3

    Plain scalars, numpy arrays and a mix of these with xarray objects is also
    supported:

    >>> magnitude(3, 4)
    5.0
    >>> magnitude(3, np.array([0, 4]))
    array([3., 5.])
    >>> magnitude(array, 0)
    <xarray.DataArray (x: 3)>
    array([1., 2., 3.])
    Coordinates:
      * x        (x) float64 0.1 0.2 0.3

    Other examples of how you could use ``apply_ufunc`` to write functions to
    (very nearly) replicate existing xarray functionality:

    Compute the mean (``.mean``) over one dimension::

        def mean(obj, dim):
            # note: apply always moves core dimensions to the end
            return apply_ufunc(np.mean, obj,
                               input_core_dims=[[dim]],
                               kwargs={'axis': -1})

    Inner product over a specific dimension (like ``xr.dot``)::

        def _inner(x, y):
            result = np.matmul(x[..., np.newaxis, :], y[..., :, np.newaxis])
            return result[..., 0, 0]

        def inner_product(a, b, dim):
            return apply_ufunc(_inner, a, b, input_core_dims=[[dim], [dim]])

    Stack objects along a new dimension (like ``xr.concat``)::

        def stack(objects, dim, new_coord):
            # note: this version does not stack coordinates
            func = lambda *x: np.stack(x, axis=-1)
            result = apply_ufunc(func, *objects,
                                 output_core_dims=[[dim]],
                                 join='outer',
                                 dataset_fill_value=np.nan)
            result[dim] = new_coord
            return result

    If your function is not vectorized but can be applied only to core
    dimensions, you can use ``vectorize=True`` to turn into a vectorized
    function. This wraps :py:func:`numpy.vectorize`, so the operation isn't
    terribly fast. Here we'll use it to calculate the distance between
    empirical samples from two probability distributions, using a scipy
    function that needs to be applied to vectors::

        import scipy.stats

        def earth_mover_distance(first_samples,
                                 second_samples,
                                 dim='ensemble'):
            return apply_ufunc(scipy.stats.wasserstein_distance,
                               first_samples, second_samples,
                               input_core_dims=[[dim], [dim]],
                               vectorize=True)

    Most of NumPy's builtin functions already broadcast their inputs
    appropriately for use in `apply`. You may find helper functions such as
    numpy.broadcast_arrays helpful in writing your function. `apply_ufunc` also
    works well with numba's vectorize and guvectorize. Further explanation with
    examples are provided in the xarray documentation [3]_.

    See also
    --------
    numpy.broadcast_arrays
    numba.vectorize
    numba.guvectorize

    References
    ----------
    .. [1] http://docs.scipy.org/doc/numpy/reference/ufuncs.html
    .. [2] http://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html
    .. [3] http://xarray.pydata.org/en/stable/computation.html#wrapping-custom-computation
    """
    from .dataarray import DataArray
    from .groupby import GroupBy
    from .variable import Variable

    if input_core_dims is None:
        input_core_dims = ((),) * (len(args))
    elif len(input_core_dims) != len(args):
        raise ValueError(
            f"input_core_dims must be None or a tuple with the length same to "
            f"the number of arguments. "
            f"Given {len(input_core_dims)} input_core_dims: {input_core_dims}, "
            f" but number of args is {len(args)}."
        )

    if kwargs is None:
        kwargs = {}

    signature = _UFuncSignature(input_core_dims, output_core_dims)

    if exclude_dims:
        if not isinstance(exclude_dims, set):
            raise TypeError(
                f"Expected exclude_dims to be a 'set'. Received '{type(exclude_dims).__name__}' instead."
            )
        if not exclude_dims <= signature.all_core_dims:
            raise ValueError(
                f"each dimension in `exclude_dims` must also be a "
                f"core dimension in the function signature. "
                f"Please make {(exclude_dims - signature.all_core_dims)} a core dimension"
            )

    # handle dask_gufunc_kwargs
    if dask == "parallelized":
        if dask_gufunc_kwargs is None:
            dask_gufunc_kwargs = {}
        else:
            dask_gufunc_kwargs = dask_gufunc_kwargs.copy()
        # todo: remove warnings after deprecation cycle
        if meta is not None:
            warnings.warn(
                "``meta`` should be given in the ``dask_gufunc_kwargs`` parameter."
                " It will be removed as direct parameter in a future version.",
                FutureWarning,
                stacklevel=2,
            )
            dask_gufunc_kwargs.setdefault("meta", meta)
        if output_sizes is not None:
            warnings.warn(
                "``output_sizes`` should be given in the ``dask_gufunc_kwargs`` "
                "parameter. It will be removed as direct parameter in a future "
                "version.",
                FutureWarning,
                stacklevel=2,
            )
            dask_gufunc_kwargs.setdefault("output_sizes", output_sizes)

    if kwargs:
        func = functools.partial(func, **kwargs)

    variables_vfunc = functools.partial(
        apply_variable_ufunc,
        func,
        signature=signature,
        exclude_dims=exclude_dims,
        keep_attrs=keep_attrs,
        dask=dask,
        vectorize=vectorize,
        output_dtypes=output_dtypes,
        dask_gufunc_kwargs=dask_gufunc_kwargs,
    )

    # feed groupby-apply_ufunc through apply_groupby_func
    if any(isinstance(a, GroupBy) for a in args):
        this_apply = functools.partial(
            apply_ufunc,
            func,
            input_core_dims=input_core_dims,
            output_core_dims=output_core_dims,
            exclude_dims=exclude_dims,
            join=join,
            dataset_join=dataset_join,
            dataset_fill_value=dataset_fill_value,
            keep_attrs=keep_attrs,
            dask=dask,
            vectorize=vectorize,
            output_dtypes=output_dtypes,
            dask_gufunc_kwargs=dask_gufunc_kwargs,
        )
        return apply_groupby_func(this_apply, *args)
    # feed datasets apply_variable_ufunc through apply_dataset_vfunc
    elif any(is_dict_like(a) for a in args):
        return apply_dataset_vfunc(
            variables_vfunc,
            *args,
            signature=signature,
            join=join,
            exclude_dims=exclude_dims,
            dataset_join=dataset_join,
            fill_value=dataset_fill_value,
            keep_attrs=keep_attrs,
        )
    # feed DataArray apply_variable_ufunc through apply_dataarray_vfunc
    elif any(isinstance(a, DataArray) for a in args):
        return apply_dataarray_vfunc(
            variables_vfunc,
            *args,
            signature=signature,
            join=join,
            exclude_dims=exclude_dims,
            keep_attrs=keep_attrs,
        )
    # feed Variables directly through apply_variable_ufunc
    elif any(isinstance(a, Variable) for a in args):
        return variables_vfunc(*args)
    else:
        # feed anything else through apply_array_ufunc
        return apply_array_ufunc(func, *args, dask=dask)


def cov(da_a, da_b, dim=None, ddof=1):
    """
    Compute covariance between two DataArray objects along a shared dimension.

    Parameters
    ----------
    da_a: DataArray
        Array to compute.
    da_b: DataArray
        Array to compute.
    dim : str, optional
        The dimension along which the covariance will be computed
    ddof: int, optional
        If ddof=1, covariance is normalized by N-1, giving an unbiased estimate,
        else normalization is by N.

    Returns
    -------
    covariance: DataArray

    See also
    --------
    pandas.Series.cov: corresponding pandas function
    xr.corr: respective function to calculate correlation

    Examples
    --------
    >>> from xarray import DataArray
    >>> da_a = DataArray(
    ...     np.array([[1, 2, 3], [0.1, 0.2, 0.3], [3.2, 0.6, 1.8]]),
    ...     dims=("space", "time"),
    ...     coords=[
    ...         ("space", ["IA", "IL", "IN"]),
    ...         ("time", pd.date_range("2000-01-01", freq="1D", periods=3)),
    ...     ],
    ... )
    >>> da_a
    <xarray.DataArray (space: 3, time: 3)>
    array([[1. , 2. , 3. ],
           [0.1, 0.2, 0.3],
           [3.2, 0.6, 1.8]])
    Coordinates:
      * space    (space) <U2 'IA' 'IL' 'IN'
      * time     (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03
    >>> da_b = DataArray(
    ...     np.array([[0.2, 0.4, 0.6], [15, 10, 5], [3.2, 0.6, 1.8]]),
    ...     dims=("space", "time"),
    ...     coords=[
    ...         ("space", ["IA", "IL", "IN"]),
    ...         ("time", pd.date_range("2000-01-01", freq="1D", periods=3)),
    ...     ],
    ... )
    >>> da_b
    <xarray.DataArray (space: 3, time: 3)>
    array([[ 0.2,  0.4,  0.6],
           [15. , 10. ,  5. ],
           [ 3.2,  0.6,  1.8]])
    Coordinates:
      * space    (space) <U2 'IA' 'IL' 'IN'
      * time     (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03
    >>> xr.cov(da_a, da_b)
    <xarray.DataArray ()>
    array(-3.53055556)
    >>> xr.cov(da_a, da_b, dim="time")
    <xarray.DataArray (space: 3)>
    array([ 0.2       , -0.5       ,  1.69333333])
    Coordinates:
      * space    (space) <U2 'IA' 'IL' 'IN'
    """
    from .dataarray import DataArray

    if any(not isinstance(arr, DataArray) for arr in [da_a, da_b]):
        raise TypeError(
            "Only xr.DataArray is supported."
            "Given {}.".format([type(arr) for arr in [da_a, da_b]])
        )

    return _cov_corr(da_a, da_b, dim=dim, ddof=ddof, method="cov")


def corr(da_a, da_b, dim=None):
    """
    Compute the Pearson correlation coefficient between
    two DataArray objects along a shared dimension.

    Parameters
    ----------
    da_a: DataArray
        Array to compute.
    da_b: DataArray
        Array to compute.
    dim: str, optional
        The dimension along which the correlation will be computed

    Returns
    -------
    correlation: DataArray

    See also
    --------
    pandas.Series.corr: corresponding pandas function
    xr.cov: underlying covariance function

    Examples
    --------
    >>> from xarray import DataArray
    >>> da_a = DataArray(
    ...     np.array([[1, 2, 3], [0.1, 0.2, 0.3], [3.2, 0.6, 1.8]]),
    ...     dims=("space", "time"),
    ...     coords=[
    ...         ("space", ["IA", "IL", "IN"]),
    ...         ("time", pd.date_range("2000-01-01", freq="1D", periods=3)),
    ...     ],
    ... )
    >>> da_a
    <xarray.DataArray (space: 3, time: 3)>
    array([[1. , 2. , 3. ],
           [0.1, 0.2, 0.3],
           [3.2, 0.6, 1.8]])
    Coordinates:
      * space    (space) <U2 'IA' 'IL' 'IN'
      * time     (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03
    >>> da_b = DataArray(
    ...     np.array([[0.2, 0.4, 0.6], [15, 10, 5], [3.2, 0.6, 1.8]]),
    ...     dims=("space", "time"),
    ...     coords=[
    ...         ("space", ["IA", "IL", "IN"]),
    ...         ("time", pd.date_range("2000-01-01", freq="1D", periods=3)),
    ...     ],
    ... )
    >>> da_b
    <xarray.DataArray (space: 3, time: 3)>
    array([[ 0.2,  0.4,  0.6],
           [15. , 10. ,  5. ],
           [ 3.2,  0.6,  1.8]])
    Coordinates:
      * space    (space) <U2 'IA' 'IL' 'IN'
      * time     (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03
    >>> xr.corr(da_a, da_b)
    <xarray.DataArray ()>
    array(-0.57087777)
    >>> xr.corr(da_a, da_b, dim="time")
    <xarray.DataArray (space: 3)>
    array([ 1., -1.,  1.])
    Coordinates:
      * space    (space) <U2 'IA' 'IL' 'IN'
    """
    from .dataarray import DataArray

    if any(not isinstance(arr, DataArray) for arr in [da_a, da_b]):
        raise TypeError(
            "Only xr.DataArray is supported."
            "Given {}.".format([type(arr) for arr in [da_a, da_b]])
        )

    return _cov_corr(da_a, da_b, dim=dim, method="corr")


def _cov_corr(da_a, da_b, dim=None, ddof=0, method=None):
    """
    Internal method for xr.cov() and xr.corr() so only have to
    sanitize the input arrays once and we don't repeat code.
    """
    # 1. Broadcast the two arrays
    da_a, da_b = align(da_a, da_b, join="inner", copy=False)

    # 2. Ignore the nans
    valid_values = da_a.notnull() & da_b.notnull()

    if not valid_values.all():
        da_a = da_a.where(valid_values)
        da_b = da_b.where(valid_values)

    valid_count = valid_values.sum(dim) - ddof

    # 3. Detrend along the given dim
    demeaned_da_a = da_a - da_a.mean(dim=dim)
    demeaned_da_b = da_b - da_b.mean(dim=dim)

    # 4. Compute covariance along the given dim
    # N.B. `skipna=False` is required or there is a bug when computing
    # auto-covariance. E.g. Try xr.cov(da,da) for
    # da = xr.DataArray([[1, 2], [1, np.nan]], dims=["x", "time"])
    cov = (demeaned_da_a * demeaned_da_b).sum(dim=dim, skipna=True, min_count=1) / (
        valid_count
    )

    if method == "cov":
        return cov

    else:
        # compute std + corr
        da_a_std = da_a.std(dim=dim)
        da_b_std = da_b.std(dim=dim)
        corr = cov / (da_a_std * da_b_std)
        return corr


def dot(*arrays, dims=None, **kwargs):
    """Generalized dot product for xarray objects. Like np.einsum, but
    provides a simpler interface based on array dimensions.

    Parameters
    ----------
    arrays : DataArray or Variable
        Arrays to compute.
    dims : ..., str or tuple of str, optional
        Which dimensions to sum over. Ellipsis ('...') sums over all dimensions.
        If not specified, then all the common dimensions are summed over.
    **kwargs : dict
        Additional keyword arguments passed to numpy.einsum or
        dask.array.einsum

    Returns
    -------
    DataArray

    Examples
    --------

    >>> import numpy as np
    >>> import xarray as xr
    >>> da_a = xr.DataArray(np.arange(3 * 2).reshape(3, 2), dims=["a", "b"])
    >>> da_b = xr.DataArray(np.arange(3 * 2 * 2).reshape(3, 2, 2), dims=["a", "b", "c"])
    >>> da_c = xr.DataArray(np.arange(2 * 3).reshape(2, 3), dims=["c", "d"])

    >>> da_a
    <xarray.DataArray (a: 3, b: 2)>
    array([[0, 1],
           [2, 3],
           [4, 5]])
    Dimensions without coordinates: a, b

    >>> da_b
    <xarray.DataArray (a: 3, b: 2, c: 2)>
    array([[[ 0,  1],
            [ 2,  3]],
    <BLANKLINE>
           [[ 4,  5],
            [ 6,  7]],
    <BLANKLINE>
           [[ 8,  9],
            [10, 11]]])
    Dimensions without coordinates: a, b, c

    >>> da_c
    <xarray.DataArray (c: 2, d: 3)>
    array([[0, 1, 2],
           [3, 4, 5]])
    Dimensions without coordinates: c, d

    >>> xr.dot(da_a, da_b, dims=["a", "b"])
    <xarray.DataArray (c: 2)>
    array([110, 125])
    Dimensions without coordinates: c

    >>> xr.dot(da_a, da_b, dims=["a"])
    <xarray.DataArray (b: 2, c: 2)>
    array([[40, 46],
           [70, 79]])
    Dimensions without coordinates: b, c

    >>> xr.dot(da_a, da_b, da_c, dims=["b", "c"])
    <xarray.DataArray (a: 3, d: 3)>
    array([[  9,  14,  19],
           [ 93, 150, 207],
           [273, 446, 619]])
    Dimensions without coordinates: a, d

    >>> xr.dot(da_a, da_b)
    <xarray.DataArray (c: 2)>
    array([110, 125])
    Dimensions without coordinates: c

    >>> xr.dot(da_a, da_b, dims=...)
    <xarray.DataArray ()>
    array(235)
    """
    from .dataarray import DataArray
    from .variable import Variable

    if any(not isinstance(arr, (Variable, DataArray)) for arr in arrays):
        raise TypeError(
            "Only xr.DataArray and xr.Variable are supported."
            "Given {}.".format([type(arr) for arr in arrays])
        )

    if len(arrays) == 0:
        raise TypeError("At least one array should be given.")

    if isinstance(dims, str):
        dims = (dims,)

    common_dims = set.intersection(*[set(arr.dims) for arr in arrays])
    all_dims = []
    for arr in arrays:
        all_dims += [d for d in arr.dims if d not in all_dims]

    einsum_axes = "abcdefghijklmnopqrstuvwxyz"
    dim_map = {d: einsum_axes[i] for i, d in enumerate(all_dims)}

    if dims is ...:
        dims = all_dims
    elif dims is None:
        # find dimensions that occur more than one times
        dim_counts = Counter()
        for arr in arrays:
            dim_counts.update(arr.dims)
        dims = tuple(d for d, c in dim_counts.items() if c > 1)

    dims = tuple(dims)  # make dims a tuple

    # dimensions to be parallelized
    broadcast_dims = tuple(d for d in all_dims if d in common_dims and d not in dims)
    input_core_dims = [
        [d for d in arr.dims if d not in broadcast_dims] for arr in arrays
    ]
    output_core_dims = [tuple(d for d in all_dims if d not in dims + broadcast_dims)]

    # construct einsum subscripts, such as '...abc,...ab->...c'
    # Note: input_core_dims are always moved to the last position
    subscripts_list = [
        "..." + "".join(dim_map[d] for d in ds) for ds in input_core_dims
    ]
    subscripts = ",".join(subscripts_list)
    subscripts += "->..." + "".join(dim_map[d] for d in output_core_dims[0])

    join = OPTIONS["arithmetic_join"]
    # using "inner" emulates `(a * b).sum()` for all joins (except "exact")
    if join != "exact":
        join = "inner"

    # subscripts should be passed to np.einsum as arg, not as kwargs. We need
    # to construct a partial function for apply_ufunc to work.
    func = functools.partial(duck_array_ops.einsum, subscripts, **kwargs)
    result = apply_ufunc(
        func,
        *arrays,
        input_core_dims=input_core_dims,
        output_core_dims=output_core_dims,
        join=join,
        dask="allowed",
    )
    return result.transpose(*[d for d in all_dims if d in result.dims])


def where(cond, x, y):
    """Return elements from `x` or `y` depending on `cond`.

    Performs xarray-like broadcasting across input arguments.

    All dimension coordinates on `x` and `y`  must be aligned with each
    other and with `cond`.


    Parameters
    ----------
    cond : scalar, array, Variable, DataArray or Dataset
        When True, return values from `x`, otherwise returns values from `y`.
    x : scalar, array, Variable, DataArray or Dataset
        values to choose from where `cond` is True
    y : scalar, array, Variable, DataArray or Dataset
        values to choose from where `cond` is False

    Returns
    -------
    Dataset, DataArray, Variable or array
        In priority order: Dataset, DataArray, Variable or array, whichever
        type appears as an input argument.

    Examples
    --------
    >>> import xarray as xr
    >>> import numpy as np
    >>> x = xr.DataArray(
    ...     0.1 * np.arange(10),
    ...     dims=["lat"],
    ...     coords={"lat": np.arange(10)},
    ...     name="sst",
    ... )
    >>> x
    <xarray.DataArray 'sst' (lat: 10)>
    array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
    Coordinates:
      * lat      (lat) int64 0 1 2 3 4 5 6 7 8 9

    >>> xr.where(x < 0.5, x, x * 100)
    <xarray.DataArray 'sst' (lat: 10)>
    array([ 0. ,  0.1,  0.2,  0.3,  0.4, 50. , 60. , 70. , 80. , 90. ])
    Coordinates:
      * lat      (lat) int64 0 1 2 3 4 5 6 7 8 9

    >>> y = xr.DataArray(
    ...     0.1 * np.arange(9).reshape(3, 3),
    ...     dims=["lat", "lon"],
    ...     coords={"lat": np.arange(3), "lon": 10 + np.arange(3)},
    ...     name="sst",
    ... )
    >>> y
    <xarray.DataArray 'sst' (lat: 3, lon: 3)>
    array([[0. , 0.1, 0.2],
           [0.3, 0.4, 0.5],
           [0.6, 0.7, 0.8]])
    Coordinates:
      * lat      (lat) int64 0 1 2
      * lon      (lon) int64 10 11 12

    >>> xr.where(y.lat < 1, y, -1)
    <xarray.DataArray (lat: 3, lon: 3)>
    array([[ 0. ,  0.1,  0.2],
           [-1. , -1. , -1. ],
           [-1. , -1. , -1. ]])
    Coordinates:
      * lat      (lat) int64 0 1 2
      * lon      (lon) int64 10 11 12

    >>> cond = xr.DataArray([True, False], dims=["x"])
    >>> x = xr.DataArray([1, 2], dims=["y"])
    >>> xr.where(cond, x, 0)
    <xarray.DataArray (x: 2, y: 2)>
    array([[1, 2],
           [0, 0]])
    Dimensions without coordinates: x, y

    See also
    --------
    numpy.where : corresponding numpy function
    Dataset.where, DataArray.where : equivalent methods
    """
    # alignment for three arguments is complicated, so don't support it yet
    return apply_ufunc(
        duck_array_ops.where,
        cond,
        x,
        y,
        join="exact",
        dataset_join="exact",
        dask="allowed",
    )


def polyval(coord, coeffs, degree_dim="degree"):
    """Evaluate a polynomial at specific values

    Parameters
    ----------
    coord : DataArray
        The 1D coordinate along which to evaluate the polynomial.
    coeffs : DataArray
        Coefficients of the polynomials.
    degree_dim : str, default: "degree"
        Name of the polynomial degree dimension in `coeffs`.

    See also
    --------
    xarray.DataArray.polyfit
    numpy.polyval
    """
    from .dataarray import DataArray
    from .missing import get_clean_interp_index

    x = get_clean_interp_index(coord, coord.name, strict=False)

    deg_coord = coeffs[degree_dim]

    lhs = DataArray(
        np.vander(x, int(deg_coord.max()) + 1),
        dims=(coord.name, degree_dim),
        coords={coord.name: coord, degree_dim: np.arange(deg_coord.max() + 1)[::-1]},
    )
    return (lhs * coeffs).sum(degree_dim)


def _calc_idxminmax(
    *,
    array,
    func: Callable,
    dim: Hashable = None,
    skipna: bool = None,
    fill_value: Any = dtypes.NA,
    keep_attrs: bool = None,
):
    """Apply common operations for idxmin and idxmax."""
    # This function doesn't make sense for scalars so don't try
    if not array.ndim:
        raise ValueError("This function does not apply for scalars")

    if dim is not None:
        pass  # Use the dim if available
    elif array.ndim == 1:
        # it is okay to guess the dim if there is only 1
        dim = array.dims[0]
    else:
        # The dim is not specified and ambiguous.  Don't guess.
        raise ValueError("Must supply 'dim' argument for multidimensional arrays")

    if dim not in array.dims:
        raise KeyError(f'Dimension "{dim}" not in dimension')
    if dim not in array.coords:
        raise KeyError(f'Dimension "{dim}" does not have coordinates')

    # These are dtypes with NaN values argmin and argmax can handle
    na_dtypes = "cfO"

    if skipna or (skipna is None and array.dtype.kind in na_dtypes):
        # Need to skip NaN values since argmin and argmax can't handle them
        allna = array.isnull().all(dim)
        array = array.where(~allna, 0)

    # This will run argmin or argmax.
    indx = func(array, dim=dim, axis=None, keep_attrs=keep_attrs, skipna=skipna)

    # Handle dask arrays.
    if is_duck_dask_array(array.data):
        import dask.array

        chunks = dict(zip(array.dims, array.chunks))
        dask_coord = dask.array.from_array(array[dim].data, chunks=chunks[dim])
        res = indx.copy(data=dask_coord[indx.data.ravel()].reshape(indx.shape))
        # we need to attach back the dim name
        res.name = dim
    else:
        res = array[dim][(indx,)]
        # The dim is gone but we need to remove the corresponding coordinate.
        del res.coords[dim]

    if skipna or (skipna is None and array.dtype.kind in na_dtypes):
        # Put the NaN values back in after removing them
        res = res.where(~allna, fill_value)

    # Copy attributes from argmin/argmax, if any
    res.attrs = indx.attrs

    return res