1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
import numpy as np
from . import dtypes, nputils
def dask_rolling_wrapper(moving_func, a, window, min_count=None, axis=-1):
"""Wrapper to apply bottleneck moving window funcs on dask arrays"""
import dask.array as da
dtype, fill_value = dtypes.maybe_promote(a.dtype)
a = a.astype(dtype)
# inputs for overlap
if axis < 0:
axis = a.ndim + axis
depth = {d: 0 for d in range(a.ndim)}
depth[axis] = (window + 1) // 2
boundary = {d: fill_value for d in range(a.ndim)}
# Create overlap array.
ag = da.overlap.overlap(a, depth=depth, boundary=boundary)
# apply rolling func
out = da.map_blocks(
moving_func, ag, window, min_count=min_count, axis=axis, dtype=a.dtype
)
# trim array
result = da.overlap.trim_internal(out, depth)
return result
def rolling_window(a, axis, window, center, fill_value):
"""Dask's equivalence to np.utils.rolling_window"""
import dask.array as da
if not hasattr(axis, "__len__"):
axis = [axis]
window = [window]
center = [center]
orig_shape = a.shape
depth = {d: 0 for d in range(a.ndim)}
offset = [0] * a.ndim
drop_size = [0] * a.ndim
pad_size = [0] * a.ndim
for ax, win, cent in zip(axis, window, center):
if ax < 0:
ax = a.ndim + ax
depth[ax] = int(win / 2)
# For evenly sized window, we need to crop the first point of each block.
offset[ax] = 1 if win % 2 == 0 else 0
if depth[ax] > min(a.chunks[ax]):
raise ValueError(
"For window size %d, every chunk should be larger than %d, "
"but the smallest chunk size is %d. Rechunk your array\n"
"with a larger chunk size or a chunk size that\n"
"more evenly divides the shape of your array."
% (win, depth[ax], min(a.chunks[ax]))
)
# Although da.overlap pads values to boundaries of the array,
# the size of the generated array is smaller than what we want
# if center == False.
if cent:
start = int(win / 2) # 10 -> 5, 9 -> 4
end = win - 1 - start
else:
start, end = win - 1, 0
pad_size[ax] = max(start, end) + offset[ax] - depth[ax]
drop_size[ax] = 0
# pad_size becomes more than 0 when the overlapped array is smaller than
# needed. In this case, we need to enlarge the original array by padding
# before overlapping.
if pad_size[ax] > 0:
if pad_size[ax] < depth[ax]:
# overlapping requires each chunk larger than depth. If pad_size is
# smaller than the depth, we enlarge this and truncate it later.
drop_size[ax] = depth[ax] - pad_size[ax]
pad_size[ax] = depth[ax]
# TODO maybe following two lines can be summarized.
a = da.pad(
a, [(p, 0) for p in pad_size], mode="constant", constant_values=fill_value
)
boundary = {d: fill_value for d in range(a.ndim)}
# create overlap arrays
ag = da.overlap.overlap(a, depth=depth, boundary=boundary)
def func(x, window, axis):
x = np.asarray(x)
index = [slice(None)] * x.ndim
for ax, win in zip(axis, window):
x = nputils._rolling_window(x, win, ax)
index[ax] = slice(offset[ax], None)
return x[tuple(index)]
chunks = list(a.chunks) + window
new_axis = [a.ndim + i for i in range(len(axis))]
out = da.map_blocks(
func,
ag,
dtype=a.dtype,
new_axis=new_axis,
chunks=chunks,
window=window,
axis=axis,
)
# crop boundary.
index = [slice(None)] * a.ndim
for ax in axis:
index[ax] = slice(drop_size[ax], drop_size[ax] + orig_shape[ax])
return out[tuple(index)]
def least_squares(lhs, rhs, rcond=None, skipna=False):
import dask.array as da
lhs_da = da.from_array(lhs, chunks=(rhs.chunks[0], lhs.shape[1]))
if skipna:
added_dim = rhs.ndim == 1
if added_dim:
rhs = rhs.reshape(rhs.shape[0], 1)
results = da.apply_along_axis(
nputils._nanpolyfit_1d,
0,
rhs,
lhs_da,
dtype=float,
shape=(lhs.shape[1] + 1,),
rcond=rcond,
)
coeffs = results[:-1, ...]
residuals = results[-1, ...]
if added_dim:
coeffs = coeffs.reshape(coeffs.shape[0])
residuals = residuals.reshape(residuals.shape[0])
else:
# Residuals here are (1, 1) but should be (K,) as rhs is (N, K)
# See issue dask/dask#6516
coeffs, residuals, _, _ = da.linalg.lstsq(lhs_da, rhs)
return coeffs, residuals
|