File: dataarray.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (4256 lines) | stat: -rw-r--r-- 154,732 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
import datetime
import functools
import warnings
from numbers import Number
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Hashable,
    Iterable,
    List,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    TypeVar,
    Union,
    cast,
)

import numpy as np
import pandas as pd

from ..plot.plot import _PlotMethods
from . import (
    computation,
    dtypes,
    groupby,
    indexing,
    ops,
    pdcompat,
    resample,
    rolling,
    utils,
    weighted,
)
from .accessor_dt import CombinedDatetimelikeAccessor
from .accessor_str import StringAccessor
from .alignment import (
    _broadcast_helper,
    _get_broadcast_dims_map_common_coords,
    align,
    reindex_like_indexers,
)
from .common import AbstractArray, DataWithCoords
from .coordinates import (
    DataArrayCoordinates,
    LevelCoordinatesSource,
    assert_coordinate_consistent,
    remap_label_indexers,
)
from .dataset import Dataset, split_indexes
from .formatting import format_item
from .indexes import Indexes, default_indexes, propagate_indexes
from .indexing import is_fancy_indexer
from .merge import PANDAS_TYPES, MergeError, _extract_indexes_from_coords
from .options import OPTIONS, _get_keep_attrs
from .utils import Default, ReprObject, _check_inplace, _default, either_dict_or_kwargs
from .variable import (
    IndexVariable,
    Variable,
    as_compatible_data,
    as_variable,
    assert_unique_multiindex_level_names,
)

if TYPE_CHECKING:
    T_DSorDA = TypeVar("T_DSorDA", "DataArray", Dataset)

    try:
        from dask.delayed import Delayed
    except ImportError:
        Delayed = None
    try:
        from cdms2 import Variable as cdms2_Variable
    except ImportError:
        cdms2_Variable = None
    try:
        from iris.cube import Cube as iris_Cube
    except ImportError:
        iris_Cube = None


def _infer_coords_and_dims(
    shape, coords, dims
) -> "Tuple[Dict[Any, Variable], Tuple[Hashable, ...]]":
    """All the logic for creating a new DataArray"""

    if (
        coords is not None
        and not utils.is_dict_like(coords)
        and len(coords) != len(shape)
    ):
        raise ValueError(
            "coords is not dict-like, but it has %s items, "
            "which does not match the %s dimensions of the "
            "data" % (len(coords), len(shape))
        )

    if isinstance(dims, str):
        dims = (dims,)

    if dims is None:
        dims = ["dim_%s" % n for n in range(len(shape))]
        if coords is not None and len(coords) == len(shape):
            # try to infer dimensions from coords
            if utils.is_dict_like(coords):
                # deprecated in GH993, removed in GH1539
                raise ValueError(
                    "inferring DataArray dimensions from "
                    "dictionary like ``coords`` is no longer "
                    "supported. Use an explicit list of "
                    "``dims`` instead."
                )
            for n, (dim, coord) in enumerate(zip(dims, coords)):
                coord = as_variable(coord, name=dims[n]).to_index_variable()
                dims[n] = coord.name
        dims = tuple(dims)
    elif len(dims) != len(shape):
        raise ValueError(
            "different number of dimensions on data "
            "and dims: %s vs %s" % (len(shape), len(dims))
        )
    else:
        for d in dims:
            if not isinstance(d, str):
                raise TypeError("dimension %s is not a string" % d)

    new_coords: Dict[Any, Variable] = {}

    if utils.is_dict_like(coords):
        for k, v in coords.items():
            new_coords[k] = as_variable(v, name=k)
    elif coords is not None:
        for dim, coord in zip(dims, coords):
            var = as_variable(coord, name=dim)
            var.dims = (dim,)
            new_coords[dim] = var.to_index_variable()

    sizes = dict(zip(dims, shape))
    for k, v in new_coords.items():
        if any(d not in dims for d in v.dims):
            raise ValueError(
                "coordinate %s has dimensions %s, but these "
                "are not a subset of the DataArray "
                "dimensions %s" % (k, v.dims, dims)
            )

        for d, s in zip(v.dims, v.shape):
            if s != sizes[d]:
                raise ValueError(
                    "conflicting sizes for dimension %r: "
                    "length %s on the data but length %s on "
                    "coordinate %r" % (d, sizes[d], s, k)
                )

        if k in sizes and v.shape != (sizes[k],):
            raise ValueError(
                "coordinate %r is a DataArray dimension, but "
                "it has shape %r rather than expected shape %r "
                "matching the dimension size" % (k, v.shape, (sizes[k],))
            )

    assert_unique_multiindex_level_names(new_coords)

    return new_coords, dims


def _check_data_shape(data, coords, dims):
    if data is dtypes.NA:
        data = np.nan
    if coords is not None and utils.is_scalar(data, include_0d=False):
        if utils.is_dict_like(coords):
            if dims is None:
                return data
            else:
                data_shape = tuple(
                    as_variable(coords[k], k).size if k in coords.keys() else 1
                    for k in dims
                )
        else:
            data_shape = tuple(as_variable(coord, "foo").size for coord in coords)
        data = np.full(data_shape, data)
    return data


class _LocIndexer:
    __slots__ = ("data_array",)

    def __init__(self, data_array: "DataArray"):
        self.data_array = data_array

    def __getitem__(self, key) -> "DataArray":
        if not utils.is_dict_like(key):
            # expand the indexer so we can handle Ellipsis
            labels = indexing.expanded_indexer(key, self.data_array.ndim)
            key = dict(zip(self.data_array.dims, labels))
        return self.data_array.sel(**key)

    def __setitem__(self, key, value) -> None:
        if not utils.is_dict_like(key):
            # expand the indexer so we can handle Ellipsis
            labels = indexing.expanded_indexer(key, self.data_array.ndim)
            key = dict(zip(self.data_array.dims, labels))

        pos_indexers, _ = remap_label_indexers(self.data_array, key)
        self.data_array[pos_indexers] = value


# Used as the key corresponding to a DataArray's variable when converting
# arbitrary DataArray objects to datasets
_THIS_ARRAY = ReprObject("<this-array>")


class DataArray(AbstractArray, DataWithCoords):
    """N-dimensional array with labeled coordinates and dimensions.

    DataArray provides a wrapper around numpy ndarrays that uses
    labeled dimensions and coordinates to support metadata aware
    operations. The API is similar to that for the pandas Series or
    DataFrame, but DataArray objects can have any number of dimensions,
    and their contents have fixed data types.

    Additional features over raw numpy arrays:

    - Apply operations over dimensions by name: ``x.sum('time')``.
    - Select or assign values by integer location (like numpy):
      ``x[:10]`` or by label (like pandas): ``x.loc['2014-01-01']`` or
      ``x.sel(time='2014-01-01')``.
    - Mathematical operations (e.g., ``x - y``) vectorize across
      multiple dimensions (known in numpy as "broadcasting") based on
      dimension names, regardless of their original order.
    - Keep track of arbitrary metadata in the form of a Python
      dictionary: ``x.attrs``
    - Convert to a pandas Series: ``x.to_series()``.

    Getting items from or doing mathematical operations with a
    DataArray always returns another DataArray.

    Parameters
    ----------
    data : array_like
        Values for this array. Must be an ``numpy.ndarray``, ndarray
        like, or castable to an ``ndarray``. If a self-described xarray
        or pandas object, attempts are made to use this array's
        metadata to fill in other unspecified arguments. A view of the
        array's data is used instead of a copy if possible.
    coords : sequence or dict of array_like, optional
        Coordinates (tick labels) to use for indexing along each
        dimension. The following notations are accepted:

        - mapping {dimension name: array-like}
        - sequence of tuples that are valid arguments for
          ``xarray.Variable()``
          - (dims, data)
          - (dims, data, attrs)
          - (dims, data, attrs, encoding)

        Additionally, it is possible to define a coord whose name
        does not match the dimension name, or a coord based on multiple
        dimensions, with one of the following notations:

        - mapping {coord name: DataArray}
        - mapping {coord name: Variable}
        - mapping {coord name: (dimension name, array-like)}
        - mapping {coord name: (tuple of dimension names, array-like)}

    dims : hashable or sequence of hashable, optional
        Name(s) of the data dimension(s). Must be either a hashable
        (only for 1D data) or a sequence of hashables with length equal
        to the number of dimensions. If this argument is omitted,
        dimension names default to ``['dim_0', ... 'dim_n']``.
    name : str or None, optional
        Name of this array.
    attrs : dict_like or None, optional
        Attributes to assign to the new instance. By default, an empty
        attribute dictionary is initialized.

    Examples
    --------
    Create data:

    >>> np.random.seed(0)
    >>> temperature = 15 + 8 * np.random.randn(2, 2, 3)
    >>> precipitation = 10 * np.random.rand(2, 2, 3)
    >>> lon = [[-99.83, -99.32], [-99.79, -99.23]]
    >>> lat = [[42.25, 42.21], [42.63, 42.59]]
    >>> time = pd.date_range("2014-09-06", periods=3)
    >>> reference_time = pd.Timestamp("2014-09-05")

    Initialize a dataarray with multiple dimensions:

    >>> da = xr.DataArray(
    ...     data=temperature,
    ...     dims=["x", "y", "time"],
    ...     coords=dict(
    ...         lon=(["x", "y"], lon),
    ...         lat=(["x", "y"], lat),
    ...         time=time,
    ...         reference_time=reference_time,
    ...     ),
    ...     attrs=dict(
    ...         description="Ambient temperature.",
    ...         units="degC",
    ...     ),
    ... )
    >>> da
    <xarray.DataArray (x: 2, y: 2, time: 3)>
    array([[[29.11241877, 18.20125767, 22.82990387],
            [32.92714559, 29.94046392,  7.18177696]],
    <BLANKLINE>
           [[22.60070734, 13.78914233, 14.17424919],
            [18.28478802, 16.15234857, 26.63418806]]])
    Coordinates:
        lon             (x, y) float64 -99.83 -99.32 -99.79 -99.23
        lat             (x, y) float64 42.25 42.21 42.63 42.59
      * time            (time) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08
        reference_time  datetime64[ns] 2014-09-05
    Dimensions without coordinates: x, y
    Attributes:
        description:  Ambient temperature.
        units:        degC

    Find out where the coldest temperature was:

    >>> da.isel(da.argmin(...))
    <xarray.DataArray ()>
    array(7.18177696)
    Coordinates:
        lon             float64 -99.32
        lat             float64 42.21
        time            datetime64[ns] 2014-09-08
        reference_time  datetime64[ns] 2014-09-05
    Attributes:
        description:  Ambient temperature.
        units:        degC
    """

    _cache: Dict[str, Any]
    _coords: Dict[Any, Variable]
    _indexes: Optional[Dict[Hashable, pd.Index]]
    _name: Optional[Hashable]
    _variable: Variable

    __slots__ = (
        "_cache",
        "_coords",
        "_file_obj",
        "_indexes",
        "_name",
        "_variable",
        "__weakref__",
    )

    _groupby_cls = groupby.DataArrayGroupBy
    _rolling_cls = rolling.DataArrayRolling
    _coarsen_cls = rolling.DataArrayCoarsen
    _resample_cls = resample.DataArrayResample
    _weighted_cls = weighted.DataArrayWeighted

    dt = utils.UncachedAccessor(CombinedDatetimelikeAccessor)

    def __init__(
        self,
        data: Any = dtypes.NA,
        coords: Union[Sequence[Tuple], Mapping[Hashable, Any], None] = None,
        dims: Union[Hashable, Sequence[Hashable], None] = None,
        name: Hashable = None,
        attrs: Mapping = None,
        # internal parameters
        indexes: Dict[Hashable, pd.Index] = None,
        fastpath: bool = False,
    ):
        if fastpath:
            variable = data
            assert dims is None
            assert attrs is None
        else:
            # try to fill in arguments from data if they weren't supplied
            if coords is None:

                if isinstance(data, DataArray):
                    coords = data.coords
                elif isinstance(data, pd.Series):
                    coords = [data.index]
                elif isinstance(data, pd.DataFrame):
                    coords = [data.index, data.columns]
                elif isinstance(data, (pd.Index, IndexVariable)):
                    coords = [data]
                elif isinstance(data, pdcompat.Panel):
                    coords = [data.items, data.major_axis, data.minor_axis]

            if dims is None:
                dims = getattr(data, "dims", getattr(coords, "dims", None))
            if name is None:
                name = getattr(data, "name", None)
            if attrs is None and not isinstance(data, PANDAS_TYPES):
                attrs = getattr(data, "attrs", None)

            data = _check_data_shape(data, coords, dims)
            data = as_compatible_data(data)
            coords, dims = _infer_coords_and_dims(data.shape, coords, dims)
            variable = Variable(dims, data, attrs, fastpath=True)
            indexes = dict(
                _extract_indexes_from_coords(coords)
            )  # needed for to_dataset

        # These fully describe a DataArray
        self._variable = variable
        assert isinstance(coords, dict)
        self._coords = coords
        self._name = name

        # TODO(shoyer): document this argument, once it becomes part of the
        # public interface.
        self._indexes = indexes

        self._file_obj = None

    def _replace(
        self,
        variable: Variable = None,
        coords=None,
        name: Union[Hashable, None, Default] = _default,
        indexes=None,
    ) -> "DataArray":
        if variable is None:
            variable = self.variable
        if coords is None:
            coords = self._coords
        if name is _default:
            name = self.name
        return type(self)(variable, coords, name=name, fastpath=True, indexes=indexes)

    def _replace_maybe_drop_dims(
        self, variable: Variable, name: Union[Hashable, None, Default] = _default
    ) -> "DataArray":
        if variable.dims == self.dims and variable.shape == self.shape:
            coords = self._coords.copy()
            indexes = self._indexes
        elif variable.dims == self.dims:
            # Shape has changed (e.g. from reduce(..., keepdims=True)
            new_sizes = dict(zip(self.dims, variable.shape))
            coords = {
                k: v
                for k, v in self._coords.items()
                if v.shape == tuple(new_sizes[d] for d in v.dims)
            }
            changed_dims = [
                k for k in variable.dims if variable.sizes[k] != self.sizes[k]
            ]
            indexes = propagate_indexes(self._indexes, exclude=changed_dims)
        else:
            allowed_dims = set(variable.dims)
            coords = {
                k: v for k, v in self._coords.items() if set(v.dims) <= allowed_dims
            }
            indexes = propagate_indexes(
                self._indexes, exclude=(set(self.dims) - allowed_dims)
            )
        return self._replace(variable, coords, name, indexes=indexes)

    def _overwrite_indexes(self, indexes: Mapping[Hashable, Any]) -> "DataArray":
        if not len(indexes):
            return self
        coords = self._coords.copy()
        for name, idx in indexes.items():
            coords[name] = IndexVariable(name, idx)
        obj = self._replace(coords=coords)

        # switch from dimension to level names, if necessary
        dim_names: Dict[Any, str] = {}
        for dim, idx in indexes.items():
            if not isinstance(idx, pd.MultiIndex) and idx.name != dim:
                dim_names[dim] = idx.name
        if dim_names:
            obj = obj.rename(dim_names)
        return obj

    def _to_temp_dataset(self) -> Dataset:
        return self._to_dataset_whole(name=_THIS_ARRAY, shallow_copy=False)

    def _from_temp_dataset(
        self, dataset: Dataset, name: Union[Hashable, None, Default] = _default
    ) -> "DataArray":
        variable = dataset._variables.pop(_THIS_ARRAY)
        coords = dataset._variables
        indexes = dataset._indexes
        return self._replace(variable, coords, name, indexes=indexes)

    def _to_dataset_split(self, dim: Hashable) -> Dataset:
        """ splits dataarray along dimension 'dim' """

        def subset(dim, label):
            array = self.loc[{dim: label}]
            array.attrs = {}
            return as_variable(array)

        variables = {label: subset(dim, label) for label in self.get_index(dim)}
        variables.update({k: v for k, v in self._coords.items() if k != dim})
        indexes = propagate_indexes(self._indexes, exclude=dim)
        coord_names = set(self._coords) - {dim}
        dataset = Dataset._construct_direct(
            variables, coord_names, indexes=indexes, attrs=self.attrs
        )
        return dataset

    def _to_dataset_whole(
        self, name: Hashable = None, shallow_copy: bool = True
    ) -> Dataset:
        if name is None:
            name = self.name
        if name is None:
            raise ValueError(
                "unable to convert unnamed DataArray to a "
                "Dataset without providing an explicit name"
            )
        if name in self.coords:
            raise ValueError(
                "cannot create a Dataset from a DataArray with "
                "the same name as one of its coordinates"
            )
        # use private APIs for speed: this is called by _to_temp_dataset(),
        # which is used in the guts of a lot of operations (e.g., reindex)
        variables = self._coords.copy()
        variables[name] = self.variable
        if shallow_copy:
            for k in variables:
                variables[k] = variables[k].copy(deep=False)
        indexes = self._indexes

        coord_names = set(self._coords)
        dataset = Dataset._construct_direct(variables, coord_names, indexes=indexes)
        return dataset

    def to_dataset(
        self,
        dim: Hashable = None,
        *,
        name: Hashable = None,
        promote_attrs: bool = False,
    ) -> Dataset:
        """Convert a DataArray to a Dataset.

        Parameters
        ----------
        dim : hashable, optional
            Name of the dimension on this array along which to split this array
            into separate variables. If not provided, this array is converted
            into a Dataset of one variable.
        name : hashable, optional
            Name to substitute for this array's name. Only valid if ``dim`` is
            not provided.
        promote_attrs : bool, default: False
            Set to True to shallow copy attrs of DataArray to returned Dataset.

        Returns
        -------
        dataset : Dataset
        """
        if dim is not None and dim not in self.dims:
            raise TypeError(
                f"{dim} is not a dim. If supplying a ``name``, pass as a kwarg."
            )

        if dim is not None:
            if name is not None:
                raise TypeError("cannot supply both dim and name arguments")
            result = self._to_dataset_split(dim)
        else:
            result = self._to_dataset_whole(name)

        if promote_attrs:
            result.attrs = dict(self.attrs)

        return result

    @property
    def name(self) -> Optional[Hashable]:
        """The name of this array."""
        return self._name

    @name.setter
    def name(self, value: Optional[Hashable]) -> None:
        self._name = value

    @property
    def variable(self) -> Variable:
        """Low level interface to the Variable object for this DataArray."""
        return self._variable

    @property
    def dtype(self) -> np.dtype:
        return self.variable.dtype

    @property
    def shape(self) -> Tuple[int, ...]:
        return self.variable.shape

    @property
    def size(self) -> int:
        return self.variable.size

    @property
    def nbytes(self) -> int:
        return self.variable.nbytes

    @property
    def ndim(self) -> int:
        return self.variable.ndim

    def __len__(self) -> int:
        return len(self.variable)

    @property
    def data(self) -> Any:
        """The array's data as a dask or numpy array"""
        return self.variable.data

    @data.setter
    def data(self, value: Any) -> None:
        self.variable.data = value

    @property
    def values(self) -> np.ndarray:
        """The array's data as a numpy.ndarray"""
        return self.variable.values

    @values.setter
    def values(self, value: Any) -> None:
        self.variable.values = value

    @property
    def _in_memory(self) -> bool:
        return self.variable._in_memory

    def to_index(self) -> pd.Index:
        """Convert this variable to a pandas.Index. Only possible for 1D
        arrays.
        """
        return self.variable.to_index()

    @property
    def dims(self) -> Tuple[Hashable, ...]:
        """Tuple of dimension names associated with this array.

        Note that the type of this property is inconsistent with
        `Dataset.dims`.  See `Dataset.sizes` and `DataArray.sizes` for
        consistently named properties.
        """
        return self.variable.dims

    @dims.setter
    def dims(self, value):
        raise AttributeError(
            "you cannot assign dims on a DataArray. Use "
            ".rename() or .swap_dims() instead."
        )

    def _item_key_to_dict(self, key: Any) -> Mapping[Hashable, Any]:
        if utils.is_dict_like(key):
            return key
        else:
            key = indexing.expanded_indexer(key, self.ndim)
            return dict(zip(self.dims, key))

    @property
    def _level_coords(self) -> Dict[Hashable, Hashable]:
        """Return a mapping of all MultiIndex levels and their corresponding
        coordinate name.
        """
        level_coords: Dict[Hashable, Hashable] = {}

        for cname, var in self._coords.items():
            if var.ndim == 1 and isinstance(var, IndexVariable):
                level_names = var.level_names
                if level_names is not None:
                    (dim,) = var.dims
                    level_coords.update({lname: dim for lname in level_names})
        return level_coords

    def _getitem_coord(self, key):
        from .dataset import _get_virtual_variable

        try:
            var = self._coords[key]
        except KeyError:
            dim_sizes = dict(zip(self.dims, self.shape))
            _, key, var = _get_virtual_variable(
                self._coords, key, self._level_coords, dim_sizes
            )

        return self._replace_maybe_drop_dims(var, name=key)

    def __getitem__(self, key: Any) -> "DataArray":
        if isinstance(key, str):
            return self._getitem_coord(key)
        else:
            # xarray-style array indexing
            return self.isel(indexers=self._item_key_to_dict(key))

    def __setitem__(self, key: Any, value: Any) -> None:
        if isinstance(key, str):
            self.coords[key] = value
        else:
            # Coordinates in key, value and self[key] should be consistent.
            # TODO Coordinate consistency in key is checked here, but it
            # causes unnecessary indexing. It should be optimized.
            obj = self[key]
            if isinstance(value, DataArray):
                assert_coordinate_consistent(value, obj.coords.variables)
            # DataArray key -> Variable key
            key = {
                k: v.variable if isinstance(v, DataArray) else v
                for k, v in self._item_key_to_dict(key).items()
            }
            self.variable[key] = value

    def __delitem__(self, key: Any) -> None:
        del self.coords[key]

    @property
    def _attr_sources(self) -> List[Mapping[Hashable, Any]]:
        """List of places to look-up items for attribute-style access"""
        return self._item_sources + [self.attrs]

    @property
    def _item_sources(self) -> List[Mapping[Hashable, Any]]:
        """List of places to look-up items for key-completion"""
        return [
            self.coords,
            {d: self.coords[d] for d in self.dims},
            LevelCoordinatesSource(self),
        ]

    def __contains__(self, key: Any) -> bool:
        return key in self.data

    @property
    def loc(self) -> _LocIndexer:
        """Attribute for location based indexing like pandas."""
        return _LocIndexer(self)

    @property
    def attrs(self) -> Dict[Hashable, Any]:
        """Dictionary storing arbitrary metadata with this array."""
        return self.variable.attrs

    @attrs.setter
    def attrs(self, value: Mapping[Hashable, Any]) -> None:
        # Disable type checking to work around mypy bug - see mypy#4167
        self.variable.attrs = value  # type: ignore

    @property
    def encoding(self) -> Dict[Hashable, Any]:
        """Dictionary of format-specific settings for how this array should be
        serialized."""
        return self.variable.encoding

    @encoding.setter
    def encoding(self, value: Mapping[Hashable, Any]) -> None:
        self.variable.encoding = value

    @property
    def indexes(self) -> Indexes:
        """Mapping of pandas.Index objects used for label based indexing"""
        if self._indexes is None:
            self._indexes = default_indexes(self._coords, self.dims)
        return Indexes(self._indexes)

    @property
    def coords(self) -> DataArrayCoordinates:
        """Dictionary-like container of coordinate arrays."""
        return DataArrayCoordinates(self)

    def reset_coords(
        self,
        names: Union[Iterable[Hashable], Hashable, None] = None,
        drop: bool = False,
        inplace: bool = None,
    ) -> Union[None, "DataArray", Dataset]:
        """Given names of coordinates, reset them to become variables.

        Parameters
        ----------
        names : hashable or iterable of hashable, optional
            Name(s) of non-index coordinates in this dataset to reset into
            variables. By default, all non-index coordinates are reset.
        drop : bool, optional
            If True, remove coordinates instead of converting them into
            variables.

        Returns
        -------
        Dataset, or DataArray if ``drop == True``
        """
        _check_inplace(inplace)
        if names is None:
            names = set(self.coords) - set(self.dims)
        dataset = self.coords.to_dataset().reset_coords(names, drop)
        if drop:
            return self._replace(coords=dataset._variables)
        else:
            if self.name is None:
                raise ValueError(
                    "cannot reset_coords with drop=False on an unnamed DataArrray"
                )
            dataset[self.name] = self.variable
            return dataset

    def __dask_tokenize__(self):
        from dask.base import normalize_token

        return normalize_token((type(self), self._variable, self._coords, self._name))

    def __dask_graph__(self):
        return self._to_temp_dataset().__dask_graph__()

    def __dask_keys__(self):
        return self._to_temp_dataset().__dask_keys__()

    def __dask_layers__(self):
        return self._to_temp_dataset().__dask_layers__()

    @property
    def __dask_optimize__(self):
        return self._to_temp_dataset().__dask_optimize__

    @property
    def __dask_scheduler__(self):
        return self._to_temp_dataset().__dask_scheduler__

    def __dask_postcompute__(self):
        func, args = self._to_temp_dataset().__dask_postcompute__()
        return self._dask_finalize, (func, args, self.name)

    def __dask_postpersist__(self):
        func, args = self._to_temp_dataset().__dask_postpersist__()
        return self._dask_finalize, (func, args, self.name)

    @staticmethod
    def _dask_finalize(results, func, args, name):
        ds = func(results, *args)
        variable = ds._variables.pop(_THIS_ARRAY)
        coords = ds._variables
        return DataArray(variable, coords, name=name, fastpath=True)

    def load(self, **kwargs) -> "DataArray":
        """Manually trigger loading of this array's data from disk or a
        remote source into memory and return this array.

        Normally, it should not be necessary to call this method in user code,
        because all xarray functions should either work on deferred data or
        load data automatically. However, this method can be necessary when
        working with many file objects on disk.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.array.compute``.

        See Also
        --------
        dask.array.compute
        """
        ds = self._to_temp_dataset().load(**kwargs)
        new = self._from_temp_dataset(ds)
        self._variable = new._variable
        self._coords = new._coords
        return self

    def compute(self, **kwargs) -> "DataArray":
        """Manually trigger loading of this array's data from disk or a
        remote source into memory and return a new array. The original is
        left unaltered.

        Normally, it should not be necessary to call this method in user code,
        because all xarray functions should either work on deferred data or
        load data automatically. However, this method can be necessary when
        working with many file objects on disk.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.array.compute``.

        See Also
        --------
        dask.array.compute
        """
        new = self.copy(deep=False)
        return new.load(**kwargs)

    def persist(self, **kwargs) -> "DataArray":
        """Trigger computation in constituent dask arrays

        This keeps them as dask arrays but encourages them to keep data in
        memory.  This is particularly useful when on a distributed machine.
        When on a single machine consider using ``.compute()`` instead.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.persist``.

        See Also
        --------
        dask.persist
        """
        ds = self._to_temp_dataset().persist(**kwargs)
        return self._from_temp_dataset(ds)

    def copy(self, deep: bool = True, data: Any = None) -> "DataArray":
        """Returns a copy of this array.

        If `deep=True`, a deep copy is made of the data array.
        Otherwise, a shallow copy is made, and the returned data array's
        values are a new view of this data array's values.

        Use `data` to create a new object with the same structure as
        original but entirely new data.

        Parameters
        ----------
        deep : bool, optional
            Whether the data array and its coordinates are loaded into memory
            and copied onto the new object. Default is True.
        data : array_like, optional
            Data to use in the new object. Must have same shape as original.
            When `data` is used, `deep` is ignored for all data variables,
            and only used for coords.

        Returns
        -------
        object : DataArray
            New object with dimensions, attributes, coordinates, name,
            encoding, and optionally data copied from original.

        Examples
        --------

        Shallow versus deep copy

        >>> array = xr.DataArray([1, 2, 3], dims="x", coords={"x": ["a", "b", "c"]})
        >>> array.copy()
        <xarray.DataArray (x: 3)>
        array([1, 2, 3])
        Coordinates:
          * x        (x) <U1 'a' 'b' 'c'
        >>> array_0 = array.copy(deep=False)
        >>> array_0[0] = 7
        >>> array_0
        <xarray.DataArray (x: 3)>
        array([7, 2, 3])
        Coordinates:
          * x        (x) <U1 'a' 'b' 'c'
        >>> array
        <xarray.DataArray (x: 3)>
        array([7, 2, 3])
        Coordinates:
          * x        (x) <U1 'a' 'b' 'c'

        Changing the data using the ``data`` argument maintains the
        structure of the original object, but with the new data. Original
        object is unaffected.

        >>> array.copy(data=[0.1, 0.2, 0.3])
        <xarray.DataArray (x: 3)>
        array([0.1, 0.2, 0.3])
        Coordinates:
          * x        (x) <U1 'a' 'b' 'c'
        >>> array
        <xarray.DataArray (x: 3)>
        array([7, 2, 3])
        Coordinates:
          * x        (x) <U1 'a' 'b' 'c'

        See Also
        --------
        pandas.DataFrame.copy
        """
        variable = self.variable.copy(deep=deep, data=data)
        coords = {k: v.copy(deep=deep) for k, v in self._coords.items()}
        if self._indexes is None:
            indexes = self._indexes
        else:
            indexes = {k: v.copy(deep=deep) for k, v in self._indexes.items()}
        return self._replace(variable, coords, indexes=indexes)

    def __copy__(self) -> "DataArray":
        return self.copy(deep=False)

    def __deepcopy__(self, memo=None) -> "DataArray":
        # memo does nothing but is required for compatibility with
        # copy.deepcopy
        return self.copy(deep=True)

    # mutable objects should not be hashable
    # https://github.com/python/mypy/issues/4266
    __hash__ = None  # type: ignore

    @property
    def chunks(self) -> Optional[Tuple[Tuple[int, ...], ...]]:
        """Block dimensions for this array's data or None if it's not a dask
        array.
        """
        return self.variable.chunks

    def chunk(
        self,
        chunks: Union[
            None,
            Number,
            Tuple[Number, ...],
            Tuple[Tuple[Number, ...], ...],
            Mapping[Hashable, Union[None, Number, Tuple[Number, ...]]],
        ] = None,
        name_prefix: str = "xarray-",
        token: str = None,
        lock: bool = False,
    ) -> "DataArray":
        """Coerce this array's data into a dask arrays with the given chunks.

        If this variable is a non-dask array, it will be converted to dask
        array. If it's a dask array, it will be rechunked to the given chunk
        sizes.

        If neither chunks is not provided for one or more dimensions, chunk
        sizes along that dimension will not be updated; non-dask arrays will be
        converted into dask arrays with a single block.

        Parameters
        ----------
        chunks : int, tuple of int or mapping of hashable to int, optional
            Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or
            ``{'x': 5, 'y': 5}``.
        name_prefix : str, optional
            Prefix for the name of the new dask array.
        token : str, optional
            Token uniquely identifying this array.
        lock : optional
            Passed on to :py:func:`dask.array.from_array`, if the array is not
            already as dask array.

        Returns
        -------
        chunked : xarray.DataArray
        """
        if isinstance(chunks, (tuple, list)):
            chunks = dict(zip(self.dims, chunks))

        ds = self._to_temp_dataset().chunk(
            chunks, name_prefix=name_prefix, token=token, lock=lock
        )
        return self._from_temp_dataset(ds)

    def isel(
        self,
        indexers: Mapping[Hashable, Any] = None,
        drop: bool = False,
        missing_dims: str = "raise",
        **indexers_kwargs: Any,
    ) -> "DataArray":
        """Return a new DataArray whose data is given by integer indexing
        along the specified dimension(s).

        Parameters
        ----------
        indexers : dict, optional
            A dict with keys matching dimensions and values given
            by integers, slice objects or arrays.
            indexer can be a integer, slice, array-like or DataArray.
            If DataArrays are passed as indexers, xarray-style indexing will be
            carried out. See :ref:`indexing` for the details.
            One of indexers or indexers_kwargs must be provided.
        drop : bool, optional
            If ``drop=True``, drop coordinates variables indexed by integers
            instead of making them scalar.
        missing_dims : {"raise", "warn", "ignore"}, default: "raise"
            What to do if dimensions that should be selected from are not present in the
            DataArray:
            - "raise": raise an exception
            - "warning": raise a warning, and ignore the missing dimensions
            - "ignore": ignore the missing dimensions
        **indexers_kwargs : {dim: indexer, ...}, optional
            The keyword arguments form of ``indexers``.

        See Also
        --------
        Dataset.isel
        DataArray.sel
        """

        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel")

        if any(is_fancy_indexer(idx) for idx in indexers.values()):
            ds = self._to_temp_dataset()._isel_fancy(
                indexers, drop=drop, missing_dims=missing_dims
            )
            return self._from_temp_dataset(ds)

        # Much faster algorithm for when all indexers are ints, slices, one-dimensional
        # lists, or zero or one-dimensional np.ndarray's

        variable = self._variable.isel(indexers, missing_dims=missing_dims)

        coords = {}
        for coord_name, coord_value in self._coords.items():
            coord_indexers = {
                k: v for k, v in indexers.items() if k in coord_value.dims
            }
            if coord_indexers:
                coord_value = coord_value.isel(coord_indexers)
                if drop and coord_value.ndim == 0:
                    continue
            coords[coord_name] = coord_value

        return self._replace(variable=variable, coords=coords)

    def sel(
        self,
        indexers: Mapping[Hashable, Any] = None,
        method: str = None,
        tolerance=None,
        drop: bool = False,
        **indexers_kwargs: Any,
    ) -> "DataArray":
        """Return a new DataArray whose data is given by selecting index
        labels along the specified dimension(s).

        In contrast to `DataArray.isel`, indexers for this method should use
        labels instead of integers.

        Under the hood, this method is powered by using pandas's powerful Index
        objects. This makes label based indexing essentially just as fast as
        using integer indexing.

        It also means this method uses pandas's (well documented) logic for
        indexing. This means you can use string shortcuts for datetime indexes
        (e.g., '2000-01' to select all values in January 2000). It also means
        that slices are treated as inclusive of both the start and stop values,
        unlike normal Python indexing.

        .. warning::

          Do not try to assign values when using any of the indexing methods
          ``isel`` or ``sel``::

            da = xr.DataArray([0, 1, 2, 3], dims=['x'])
            # DO NOT do this
            da.isel(x=[0, 1, 2])[1] = -1

          Assigning values with the chained indexing using ``.sel`` or
          ``.isel`` fails silently.

        Parameters
        ----------
        indexers : dict, optional
            A dict with keys matching dimensions and values given
            by scalars, slices or arrays of tick labels. For dimensions with
            multi-index, the indexer may also be a dict-like object with keys
            matching index level names.
            If DataArrays are passed as indexers, xarray-style indexing will be
            carried out. See :ref:`indexing` for the details.
            One of indexers or indexers_kwargs must be provided.
        method : {None, "nearest", "pad", "ffill", "backfill", "bfill"}, optional
            Method to use for inexact matches:

            * None (default): only exact matches
            * pad / ffill: propagate last valid index value forward
            * backfill / bfill: propagate next valid index value backward
            * nearest: use nearest valid index value
        tolerance : optional
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations must
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
        drop : bool, optional
            If ``drop=True``, drop coordinates variables in `indexers` instead
            of making them scalar.
        **indexers_kwargs : {dim: indexer, ...}, optional
            The keyword arguments form of ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Returns
        -------
        obj : DataArray
            A new DataArray with the same contents as this DataArray, except the
            data and each dimension is indexed by the appropriate indexers.
            If indexer DataArrays have coordinates that do not conflict with
            this object, then these coordinates will be attached.
            In general, each array's data will be a view of the array's data
            in this DataArray, unless vectorized indexing was triggered by using
            an array indexer, in which case the data will be a copy.

        See Also
        --------
        Dataset.sel
        DataArray.isel

        """
        ds = self._to_temp_dataset().sel(
            indexers=indexers,
            drop=drop,
            method=method,
            tolerance=tolerance,
            **indexers_kwargs,
        )
        return self._from_temp_dataset(ds)

    def head(
        self,
        indexers: Union[Mapping[Hashable, int], int] = None,
        **indexers_kwargs: Any,
    ) -> "DataArray":
        """Return a new DataArray whose data is given by the the first `n`
        values along the specified dimension(s). Default `n` = 5

        See Also
        --------
        Dataset.head
        DataArray.tail
        DataArray.thin
        """
        ds = self._to_temp_dataset().head(indexers, **indexers_kwargs)
        return self._from_temp_dataset(ds)

    def tail(
        self,
        indexers: Union[Mapping[Hashable, int], int] = None,
        **indexers_kwargs: Any,
    ) -> "DataArray":
        """Return a new DataArray whose data is given by the the last `n`
        values along the specified dimension(s). Default `n` = 5

        See Also
        --------
        Dataset.tail
        DataArray.head
        DataArray.thin
        """
        ds = self._to_temp_dataset().tail(indexers, **indexers_kwargs)
        return self._from_temp_dataset(ds)

    def thin(
        self,
        indexers: Union[Mapping[Hashable, int], int] = None,
        **indexers_kwargs: Any,
    ) -> "DataArray":
        """Return a new DataArray whose data is given by each `n` value
        along the specified dimension(s).

        See Also
        --------
        Dataset.thin
        DataArray.head
        DataArray.tail
        """
        ds = self._to_temp_dataset().thin(indexers, **indexers_kwargs)
        return self._from_temp_dataset(ds)

    def broadcast_like(
        self, other: Union["DataArray", Dataset], exclude: Iterable[Hashable] = None
    ) -> "DataArray":
        """Broadcast this DataArray against another Dataset or DataArray.

        This is equivalent to xr.broadcast(other, self)[1]

        xarray objects are broadcast against each other in arithmetic
        operations, so this method is not be necessary for most uses.

        If no change is needed, the input data is returned to the output
        without being copied.

        If new coords are added by the broadcast, their values are
        NaN filled.

        Parameters
        ----------
        other : Dataset or DataArray
            Object against which to broadcast this array.
        exclude : iterable of hashable, optional
            Dimensions that must not be broadcasted

        Returns
        -------
        new_da : DataArray
            The caller broadcasted against ``other``.

        Examples
        --------

        >>> arr1 = xr.DataArray(
        ...     np.random.randn(2, 3),
        ...     dims=("x", "y"),
        ...     coords={"x": ["a", "b"], "y": ["a", "b", "c"]},
        ... )
        >>> arr2 = xr.DataArray(
        ...     np.random.randn(3, 2),
        ...     dims=("x", "y"),
        ...     coords={"x": ["a", "b", "c"], "y": ["a", "b"]},
        ... )
        >>> arr1
        <xarray.DataArray (x: 2, y: 3)>
        array([[ 1.76405235,  0.40015721,  0.97873798],
               [ 2.2408932 ,  1.86755799, -0.97727788]])
        Coordinates:
          * x        (x) <U1 'a' 'b'
          * y        (y) <U1 'a' 'b' 'c'
        >>> arr2
        <xarray.DataArray (x: 3, y: 2)>
        array([[ 0.95008842, -0.15135721],
               [-0.10321885,  0.4105985 ],
               [ 0.14404357,  1.45427351]])
        Coordinates:
          * x        (x) <U1 'a' 'b' 'c'
          * y        (y) <U1 'a' 'b'
        >>> arr1.broadcast_like(arr2)
        <xarray.DataArray (x: 3, y: 3)>
        array([[ 1.76405235,  0.40015721,  0.97873798],
               [ 2.2408932 ,  1.86755799, -0.97727788],
               [        nan,         nan,         nan]])
        Coordinates:
          * x        (x) object 'a' 'b' 'c'
          * y        (y) object 'a' 'b' 'c'
        """
        if exclude is None:
            exclude = set()
        else:
            exclude = set(exclude)
        args = align(other, self, join="outer", copy=False, exclude=exclude)

        dims_map, common_coords = _get_broadcast_dims_map_common_coords(args, exclude)

        return _broadcast_helper(args[1], exclude, dims_map, common_coords)

    def reindex_like(
        self,
        other: Union["DataArray", Dataset],
        method: str = None,
        tolerance=None,
        copy: bool = True,
        fill_value=dtypes.NA,
    ) -> "DataArray":
        """Conform this object onto the indexes of another object, filling in
        missing values with ``fill_value``. The default fill value is NaN.

        Parameters
        ----------
        other : Dataset or DataArray
            Object with an 'indexes' attribute giving a mapping from dimension
            names to pandas.Index objects, which provides coordinates upon
            which to index the variables in this dataset. The indexes on this
            other object need not be the same as the indexes on this
            dataset. Any mis-matched index values will be filled in with
            NaN, and any mis-matched dimension names will simply be ignored.
        method : {None, "nearest", "pad", "ffill", "backfill", "bfill"}, optional
            Method to use for filling index values from other not found on this
            data array:

            * None (default): don't fill gaps
            * pad / ffill: propagate last valid index value forward
            * backfill / bfill: propagate next valid index value backward
            * nearest: use nearest valid index value
        tolerance : optional
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations must
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
        copy : bool, optional
            If ``copy=True``, data in the return value is always copied. If
            ``copy=False`` and reindexing is unnecessary, or can be performed
            with only slice operations, then the output may share memory with
            the input. In either case, a new xarray object is always returned.
        fill_value : scalar or dict-like, optional
            Value to use for newly missing values. If a dict-like, maps
            variable names (including coordinates) to fill values. Use this
            data array's name to refer to the data array's values.

        Returns
        -------
        reindexed : DataArray
            Another dataset array, with this array's data but coordinates from
            the other object.

        See Also
        --------
        DataArray.reindex
        align
        """
        indexers = reindex_like_indexers(self, other)
        return self.reindex(
            indexers=indexers,
            method=method,
            tolerance=tolerance,
            copy=copy,
            fill_value=fill_value,
        )

    def reindex(
        self,
        indexers: Mapping[Hashable, Any] = None,
        method: str = None,
        tolerance=None,
        copy: bool = True,
        fill_value=dtypes.NA,
        **indexers_kwargs: Any,
    ) -> "DataArray":
        """Conform this object onto the indexes of another object, filling in
        missing values with ``fill_value``. The default fill value is NaN.

        Parameters
        ----------
        indexers : dict, optional
            Dictionary with keys given by dimension names and values given by
            arrays of coordinates tick labels. Any mis-matched coordinate
            values will be filled in with NaN, and any mis-matched dimension
            names will simply be ignored.
            One of indexers or indexers_kwargs must be provided.
        copy : bool, optional
            If ``copy=True``, data in the return value is always copied. If
            ``copy=False`` and reindexing is unnecessary, or can be performed
            with only slice operations, then the output may share memory with
            the input. In either case, a new xarray object is always returned.
        method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional
            Method to use for filling index values in ``indexers`` not found on
            this data array:

            * None (default): don't fill gaps
            * pad / ffill: propagate last valid index value forward
            * backfill / bfill: propagate next valid index value backward
            * nearest: use nearest valid index value
        tolerance : optional
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations must
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
        fill_value : scalar or dict-like, optional
            Value to use for newly missing values. If a dict-like, maps
            variable names (including coordinates) to fill values. Use this
            data array's name to refer to the data array's values.
        **indexers_kwargs : {dim: indexer, ...}, optional
            The keyword arguments form of ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Returns
        -------
        reindexed : DataArray
            Another dataset array, with this array's data but replaced
            coordinates.

        See Also
        --------
        DataArray.reindex_like
        align
        """
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "reindex")
        if isinstance(fill_value, dict):
            fill_value = fill_value.copy()
            sentinel = object()
            value = fill_value.pop(self.name, sentinel)
            if value is not sentinel:
                fill_value[_THIS_ARRAY] = value

        ds = self._to_temp_dataset().reindex(
            indexers=indexers,
            method=method,
            tolerance=tolerance,
            copy=copy,
            fill_value=fill_value,
        )
        return self._from_temp_dataset(ds)

    def interp(
        self,
        coords: Mapping[Hashable, Any] = None,
        method: str = "linear",
        assume_sorted: bool = False,
        kwargs: Mapping[str, Any] = None,
        **coords_kwargs: Any,
    ) -> "DataArray":
        """Multidimensional interpolation of variables.

        Parameters
        ----------
        coords : dict, optional
            Mapping from dimension names to the new coordinates.
            New coordinate can be an scalar, array-like or DataArray.
            If DataArrays are passed as new coordinates, their dimensions are
            used for the broadcasting. Missing values are skipped.
        method : str, default: "linear"
            The method used to interpolate. Choose from

            - {"linear", "nearest"} for multidimensional array,
            - {"linear", "nearest", "zero", "slinear", "quadratic", "cubic"} for 1-dimensional array.
        assume_sorted : bool, optional
            If False, values of x can be in any order and they are sorted
            first. If True, x has to be an array of monotonically increasing
            values.
        kwargs : dict
            Additional keyword arguments passed to scipy's interpolator. Valid
            options and their behavior depend on if 1-dimensional or
            multi-dimensional interpolation is used.
        **coords_kwargs : {dim: coordinate, ...}, optional
            The keyword arguments form of ``coords``.
            One of coords or coords_kwargs must be provided.

        Returns
        -------
        interpolated : DataArray
            New dataarray on the new coordinates.

        Notes
        -----
        scipy is required.

        See Also
        --------
        scipy.interpolate.interp1d
        scipy.interpolate.interpn

        Examples
        --------
        >>> da = xr.DataArray(
        ...     data=[[1, 4, 2, 9], [2, 7, 6, np.nan], [6, np.nan, 5, 8]],
        ...     dims=("x", "y"),
        ...     coords={"x": [0, 1, 2], "y": [10, 12, 14, 16]},
        ... )
        >>> da
        <xarray.DataArray (x: 3, y: 4)>
        array([[ 1.,  4.,  2.,  9.],
               [ 2.,  7.,  6., nan],
               [ 6., nan,  5.,  8.]])
        Coordinates:
          * x        (x) int64 0 1 2
          * y        (y) int64 10 12 14 16

        1D linear interpolation (the default):

        >>> da.interp(x=[0, 0.75, 1.25, 1.75])
        <xarray.DataArray (x: 4, y: 4)>
        array([[1.  , 4.  , 2.  ,  nan],
               [1.75, 6.25, 5.  ,  nan],
               [3.  ,  nan, 5.75,  nan],
               [5.  ,  nan, 5.25,  nan]])
        Coordinates:
          * y        (y) int64 10 12 14 16
          * x        (x) float64 0.0 0.75 1.25 1.75

        1D nearest interpolation:

        >>> da.interp(x=[0, 0.75, 1.25, 1.75], method="nearest")
        <xarray.DataArray (x: 4, y: 4)>
        array([[ 1.,  4.,  2.,  9.],
               [ 2.,  7.,  6., nan],
               [ 2.,  7.,  6., nan],
               [ 6., nan,  5.,  8.]])
        Coordinates:
          * y        (y) int64 10 12 14 16
          * x        (x) float64 0.0 0.75 1.25 1.75

        1D linear extrapolation:

        >>> da.interp(
        ...     x=[1, 1.5, 2.5, 3.5],
        ...     method="linear",
        ...     kwargs={"fill_value": "extrapolate"},
        ... )
        <xarray.DataArray (x: 4, y: 4)>
        array([[ 2. ,  7. ,  6. ,  nan],
               [ 4. ,  nan,  5.5,  nan],
               [ 8. ,  nan,  4.5,  nan],
               [12. ,  nan,  3.5,  nan]])
        Coordinates:
          * y        (y) int64 10 12 14 16
          * x        (x) float64 1.0 1.5 2.5 3.5

        2D linear interpolation:

        >>> da.interp(x=[0, 0.75, 1.25, 1.75], y=[11, 13, 15], method="linear")
        <xarray.DataArray (x: 4, y: 3)>
        array([[2.5  , 3.   ,   nan],
               [4.   , 5.625,   nan],
               [  nan,   nan,   nan],
               [  nan,   nan,   nan]])
        Coordinates:
          * x        (x) float64 0.0 0.75 1.25 1.75
          * y        (y) int64 11 13 15
        """
        if self.dtype.kind not in "uifc":
            raise TypeError(
                "interp only works for a numeric type array. "
                "Given {}.".format(self.dtype)
            )
        ds = self._to_temp_dataset().interp(
            coords,
            method=method,
            kwargs=kwargs,
            assume_sorted=assume_sorted,
            **coords_kwargs,
        )
        return self._from_temp_dataset(ds)

    def interp_like(
        self,
        other: Union["DataArray", Dataset],
        method: str = "linear",
        assume_sorted: bool = False,
        kwargs: Mapping[str, Any] = None,
    ) -> "DataArray":
        """Interpolate this object onto the coordinates of another object,
        filling out of range values with NaN.

        Parameters
        ----------
        other : Dataset or DataArray
            Object with an 'indexes' attribute giving a mapping from dimension
            names to an 1d array-like, which provides coordinates upon
            which to index the variables in this dataset. Missing values are skipped.
        method : str, default: "linear"
            The method used to interpolate. Choose from

            - {"linear", "nearest"} for multidimensional array,
            - {"linear", "nearest", "zero", "slinear", "quadratic", "cubic"} for 1-dimensional array.
        assume_sorted : bool, optional
            If False, values of coordinates that are interpolated over can be
            in any order and they are sorted first. If True, interpolated
            coordinates are assumed to be an array of monotonically increasing
            values.
        kwargs : dict, optional
            Additional keyword passed to scipy's interpolator.

        Returns
        -------
        interpolated : DataArray
            Another dataarray by interpolating this dataarray's data along the
            coordinates of the other object.

        Notes
        -----
        scipy is required.
        If the dataarray has object-type coordinates, reindex is used for these
        coordinates instead of the interpolation.

        See Also
        --------
        DataArray.interp
        DataArray.reindex_like
        """
        if self.dtype.kind not in "uifc":
            raise TypeError(
                "interp only works for a numeric type array. "
                "Given {}.".format(self.dtype)
            )
        ds = self._to_temp_dataset().interp_like(
            other, method=method, kwargs=kwargs, assume_sorted=assume_sorted
        )
        return self._from_temp_dataset(ds)

    def rename(
        self,
        new_name_or_name_dict: Union[Hashable, Mapping[Hashable, Hashable]] = None,
        **names: Hashable,
    ) -> "DataArray":
        """Returns a new DataArray with renamed coordinates or a new name.

        Parameters
        ----------
        new_name_or_name_dict : str or dict-like, optional
            If the argument is dict-like, it used as a mapping from old
            names to new names for coordinates. Otherwise, use the argument
            as the new name for this array.
        **names : hashable, optional
            The keyword arguments form of a mapping from old names to
            new names for coordinates.
            One of new_name_or_name_dict or names must be provided.

        Returns
        -------
        renamed : DataArray
            Renamed array or array with renamed coordinates.

        See Also
        --------
        Dataset.rename
        DataArray.swap_dims
        """
        if names or utils.is_dict_like(new_name_or_name_dict):
            new_name_or_name_dict = cast(
                Mapping[Hashable, Hashable], new_name_or_name_dict
            )
            name_dict = either_dict_or_kwargs(new_name_or_name_dict, names, "rename")
            dataset = self._to_temp_dataset().rename(name_dict)
            return self._from_temp_dataset(dataset)
        else:
            new_name_or_name_dict = cast(Hashable, new_name_or_name_dict)
            return self._replace(name=new_name_or_name_dict)

    def swap_dims(self, dims_dict: Mapping[Hashable, Hashable]) -> "DataArray":
        """Returns a new DataArray with swapped dimensions.

        Parameters
        ----------
        dims_dict : dict-like
            Dictionary whose keys are current dimension names and whose values
            are new names.

        Returns
        -------
        swapped : DataArray
            DataArray with swapped dimensions.

        Examples
        --------

        >>> arr = xr.DataArray(
        ...     data=[0, 1],
        ...     dims="x",
        ...     coords={"x": ["a", "b"], "y": ("x", [0, 1])},
        ... )
        >>> arr
        <xarray.DataArray (x: 2)>
        array([0, 1])
        Coordinates:
          * x        (x) <U1 'a' 'b'
            y        (x) int64 0 1

        >>> arr.swap_dims({"x": "y"})
        <xarray.DataArray (y: 2)>
        array([0, 1])
        Coordinates:
            x        (y) <U1 'a' 'b'
          * y        (y) int64 0 1

        >>> arr.swap_dims({"x": "z"})
        <xarray.DataArray (z: 2)>
        array([0, 1])
        Coordinates:
            x        (z) <U1 'a' 'b'
            y        (z) int64 0 1
        Dimensions without coordinates: z

        See Also
        --------

        DataArray.rename
        Dataset.swap_dims
        """
        ds = self._to_temp_dataset().swap_dims(dims_dict)
        return self._from_temp_dataset(ds)

    def expand_dims(
        self,
        dim: Union[None, Hashable, Sequence[Hashable], Mapping[Hashable, Any]] = None,
        axis=None,
        **dim_kwargs: Any,
    ) -> "DataArray":
        """Return a new object with an additional axis (or axes) inserted at
        the corresponding position in the array shape. The new object is a
        view into the underlying array, not a copy.


        If dim is already a scalar coordinate, it will be promoted to a 1D
        coordinate consisting of a single value.

        Parameters
        ----------
        dim : hashable, sequence of hashable, dict, or None, optional
            Dimensions to include on the new variable.
            If provided as str or sequence of str, then dimensions are inserted
            with length 1. If provided as a dict, then the keys are the new
            dimensions and the values are either integers (giving the length of
            the new dimensions) or sequence/ndarray (giving the coordinates of
            the new dimensions).
        axis : int, list of int or tuple of int, or None, default: None
            Axis position(s) where new axis is to be inserted (position(s) on
            the result array). If a list (or tuple) of integers is passed,
            multiple axes are inserted. In this case, dim arguments should be
            same length list. If axis=None is passed, all the axes will be
            inserted to the start of the result array.
        **dim_kwargs : int or sequence or ndarray
            The keywords are arbitrary dimensions being inserted and the values
            are either the lengths of the new dims (if int is given), or their
            coordinates. Note, this is an alternative to passing a dict to the
            dim kwarg and will only be used if dim is None.

        Returns
        -------
        expanded : same type as caller
            This object, but with an additional dimension(s).
        """
        if isinstance(dim, int):
            raise TypeError("dim should be hashable or sequence/mapping of hashables")
        elif isinstance(dim, Sequence) and not isinstance(dim, str):
            if len(dim) != len(set(dim)):
                raise ValueError("dims should not contain duplicate values.")
            dim = dict.fromkeys(dim, 1)
        elif dim is not None and not isinstance(dim, Mapping):
            dim = {cast(Hashable, dim): 1}

        dim = either_dict_or_kwargs(dim, dim_kwargs, "expand_dims")
        ds = self._to_temp_dataset().expand_dims(dim, axis)
        return self._from_temp_dataset(ds)

    def set_index(
        self,
        indexes: Mapping[Hashable, Union[Hashable, Sequence[Hashable]]] = None,
        append: bool = False,
        inplace: bool = None,
        **indexes_kwargs: Union[Hashable, Sequence[Hashable]],
    ) -> Optional["DataArray"]:
        """Set DataArray (multi-)indexes using one or more existing
        coordinates.

        Parameters
        ----------
        indexes : {dim: index, ...}
            Mapping from names matching dimensions and values given
            by (lists of) the names of existing coordinates or variables to set
            as new (multi-)index.
        append : bool, optional
            If True, append the supplied index(es) to the existing index(es).
            Otherwise replace the existing index(es) (default).
        **indexes_kwargs : optional
            The keyword arguments form of ``indexes``.
            One of indexes or indexes_kwargs must be provided.

        Returns
        -------
        obj : DataArray
            Another DataArray, with this data but replaced coordinates.

        Examples
        --------
        >>> arr = xr.DataArray(
        ...     data=np.ones((2, 3)),
        ...     dims=["x", "y"],
        ...     coords={"x": range(2), "y": range(3), "a": ("x", [3, 4])},
        ... )
        >>> arr
        <xarray.DataArray (x: 2, y: 3)>
        array([[1., 1., 1.],
               [1., 1., 1.]])
        Coordinates:
          * x        (x) int64 0 1
          * y        (y) int64 0 1 2
            a        (x) int64 3 4
        >>> arr.set_index(x="a")
        <xarray.DataArray (x: 2, y: 3)>
        array([[1., 1., 1.],
               [1., 1., 1.]])
        Coordinates:
          * x        (x) int64 3 4
          * y        (y) int64 0 1 2

        See Also
        --------
        DataArray.reset_index
        """
        ds = self._to_temp_dataset().set_index(
            indexes, append=append, inplace=inplace, **indexes_kwargs
        )
        return self._from_temp_dataset(ds)

    def reset_index(
        self,
        dims_or_levels: Union[Hashable, Sequence[Hashable]],
        drop: bool = False,
        inplace: bool = None,
    ) -> Optional["DataArray"]:
        """Reset the specified index(es) or multi-index level(s).

        Parameters
        ----------
        dims_or_levels : hashable or sequence of hashable
            Name(s) of the dimension(s) and/or multi-index level(s) that will
            be reset.
        drop : bool, optional
            If True, remove the specified indexes and/or multi-index levels
            instead of extracting them as new coordinates (default: False).

        Returns
        -------
        obj : DataArray
            Another dataarray, with this dataarray's data but replaced
            coordinates.

        See Also
        --------
        DataArray.set_index
        """
        _check_inplace(inplace)
        coords, _ = split_indexes(
            dims_or_levels, self._coords, set(), self._level_coords, drop=drop
        )
        return self._replace(coords=coords)

    def reorder_levels(
        self,
        dim_order: Mapping[Hashable, Sequence[int]] = None,
        inplace: bool = None,
        **dim_order_kwargs: Sequence[int],
    ) -> "DataArray":
        """Rearrange index levels using input order.

        Parameters
        ----------
        dim_order : optional
            Mapping from names matching dimensions and values given
            by lists representing new level orders. Every given dimension
            must have a multi-index.
        **dim_order_kwargs : optional
            The keyword arguments form of ``dim_order``.
            One of dim_order or dim_order_kwargs must be provided.

        Returns
        -------
        obj : DataArray
            Another dataarray, with this dataarray's data but replaced
            coordinates.
        """
        _check_inplace(inplace)
        dim_order = either_dict_or_kwargs(dim_order, dim_order_kwargs, "reorder_levels")
        replace_coords = {}
        for dim, order in dim_order.items():
            coord = self._coords[dim]
            index = coord.to_index()
            if not isinstance(index, pd.MultiIndex):
                raise ValueError("coordinate %r has no MultiIndex" % dim)
            replace_coords[dim] = IndexVariable(coord.dims, index.reorder_levels(order))
        coords = self._coords.copy()
        coords.update(replace_coords)
        return self._replace(coords=coords)

    def stack(
        self,
        dimensions: Mapping[Hashable, Sequence[Hashable]] = None,
        **dimensions_kwargs: Sequence[Hashable],
    ) -> "DataArray":
        """
        Stack any number of existing dimensions into a single new dimension.

        New dimensions will be added at the end, and the corresponding
        coordinate variables will be combined into a MultiIndex.

        Parameters
        ----------
        dimensions : mapping of hashable to sequence of hashable
            Mapping of the form `new_name=(dim1, dim2, ...)`.
            Names of new dimensions, and the existing dimensions that they
            replace. An ellipsis (`...`) will be replaced by all unlisted dimensions.
            Passing a list containing an ellipsis (`stacked_dim=[...]`) will stack over
            all dimensions.
        **dimensions_kwargs
            The keyword arguments form of ``dimensions``.
            One of dimensions or dimensions_kwargs must be provided.

        Returns
        -------
        stacked : DataArray
            DataArray with stacked data.

        Examples
        --------

        >>> arr = xr.DataArray(
        ...     np.arange(6).reshape(2, 3),
        ...     coords=[("x", ["a", "b"]), ("y", [0, 1, 2])],
        ... )
        >>> arr
        <xarray.DataArray (x: 2, y: 3)>
        array([[0, 1, 2],
               [3, 4, 5]])
        Coordinates:
          * x        (x) <U1 'a' 'b'
          * y        (y) int64 0 1 2
        >>> stacked = arr.stack(z=("x", "y"))
        >>> stacked.indexes["z"]
        MultiIndex([('a', 0),
                    ('a', 1),
                    ('a', 2),
                    ('b', 0),
                    ('b', 1),
                    ('b', 2)],
                   names=['x', 'y'])

        See Also
        --------
        DataArray.unstack
        """
        ds = self._to_temp_dataset().stack(dimensions, **dimensions_kwargs)
        return self._from_temp_dataset(ds)

    def unstack(
        self,
        dim: Union[Hashable, Sequence[Hashable], None] = None,
        fill_value: Any = dtypes.NA,
        sparse: bool = False,
    ) -> "DataArray":
        """
        Unstack existing dimensions corresponding to MultiIndexes into
        multiple new dimensions.

        New dimensions will be added at the end.

        Parameters
        ----------
        dim : hashable or sequence of hashable, optional
            Dimension(s) over which to unstack. By default unstacks all
            MultiIndexes.
        fill_value : scalar or dict-like, default: nan
            value to be filled. If a dict-like, maps variable names to
            fill values. Use the data array's name to refer to its
            name. If not provided or if the dict-like does not contain
            all variables, the dtype's NA value will be used.
        sparse : bool, default: False
            use sparse-array if True

        Returns
        -------
        unstacked : DataArray
            Array with unstacked data.

        Examples
        --------

        >>> arr = xr.DataArray(
        ...     np.arange(6).reshape(2, 3),
        ...     coords=[("x", ["a", "b"]), ("y", [0, 1, 2])],
        ... )
        >>> arr
        <xarray.DataArray (x: 2, y: 3)>
        array([[0, 1, 2],
               [3, 4, 5]])
        Coordinates:
          * x        (x) <U1 'a' 'b'
          * y        (y) int64 0 1 2
        >>> stacked = arr.stack(z=("x", "y"))
        >>> stacked.indexes["z"]
        MultiIndex([('a', 0),
                    ('a', 1),
                    ('a', 2),
                    ('b', 0),
                    ('b', 1),
                    ('b', 2)],
                   names=['x', 'y'])
        >>> roundtripped = stacked.unstack()
        >>> arr.identical(roundtripped)
        True

        See Also
        --------
        DataArray.stack
        """
        ds = self._to_temp_dataset().unstack(dim, fill_value, sparse)
        return self._from_temp_dataset(ds)

    def to_unstacked_dataset(self, dim, level=0):
        """Unstack DataArray expanding to Dataset along a given level of a
        stacked coordinate.

        This is the inverse operation of Dataset.to_stacked_array.

        Parameters
        ----------
        dim : str
            Name of existing dimension to unstack
        level : int or str
            The MultiIndex level to expand to a dataset along. Can either be
            the integer index of the level or its name.
        label : int, default: 0
            Label of the level to expand dataset along. Overrides the label
            argument if given.

        Returns
        -------
        unstacked: Dataset

        Examples
        --------
        >>> import xarray as xr
        >>> arr = xr.DataArray(
        ...     np.arange(6).reshape(2, 3),
        ...     coords=[("x", ["a", "b"]), ("y", [0, 1, 2])],
        ... )
        >>> data = xr.Dataset({"a": arr, "b": arr.isel(y=0)})
        >>> data
        <xarray.Dataset>
        Dimensions:  (x: 2, y: 3)
        Coordinates:
          * x        (x) <U1 'a' 'b'
          * y        (y) int64 0 1 2
        Data variables:
            a        (x, y) int64 0 1 2 3 4 5
            b        (x) int64 0 3
        >>> stacked = data.to_stacked_array("z", ["x"])
        >>> stacked.indexes["z"]
        MultiIndex([('a', 0.0),
                    ('a', 1.0),
                    ('a', 2.0),
                    ('b', nan)],
                   names=['variable', 'y'])
        >>> roundtripped = stacked.to_unstacked_dataset(dim="z")
        >>> data.identical(roundtripped)
        True

        See Also
        --------
        Dataset.to_stacked_array
        """

        idx = self.indexes[dim]
        if not isinstance(idx, pd.MultiIndex):
            raise ValueError(f"'{dim}' is not a stacked coordinate")

        level_number = idx._get_level_number(level)
        variables = idx.levels[level_number]
        variable_dim = idx.names[level_number]

        # pull variables out of datarray
        data_dict = {}
        for k in variables:
            data_dict[k] = self.sel({variable_dim: k}, drop=True).squeeze(drop=True)

        # unstacked dataset
        return Dataset(data_dict)

    def transpose(self, *dims: Hashable, transpose_coords: bool = True) -> "DataArray":
        """Return a new DataArray object with transposed dimensions.

        Parameters
        ----------
        *dims : hashable, optional
            By default, reverse the dimensions. Otherwise, reorder the
            dimensions to this order.
        transpose_coords : bool, default: True
            If True, also transpose the coordinates of this DataArray.

        Returns
        -------
        transposed : DataArray
            The returned DataArray's array is transposed.

        Notes
        -----
        This operation returns a view of this array's data. It is
        lazy for dask-backed DataArrays but not for numpy-backed DataArrays
        -- the data will be fully loaded.

        See Also
        --------
        numpy.transpose
        Dataset.transpose
        """
        if dims:
            dims = tuple(utils.infix_dims(dims, self.dims))
        variable = self.variable.transpose(*dims)
        if transpose_coords:
            coords: Dict[Hashable, Variable] = {}
            for name, coord in self.coords.items():
                coord_dims = tuple(dim for dim in dims if dim in coord.dims)
                coords[name] = coord.variable.transpose(*coord_dims)
            return self._replace(variable, coords)
        else:
            return self._replace(variable)

    @property
    def T(self) -> "DataArray":
        return self.transpose()

    def drop_vars(
        self, names: Union[Hashable, Iterable[Hashable]], *, errors: str = "raise"
    ) -> "DataArray":
        """Returns an array with dropped variables.

        Parameters
        ----------
        names : hashable or iterable of hashable
            Name(s) of variables to drop.
        errors: {"raise", "ignore"}, optional
            If 'raise' (default), raises a ValueError error if any of the variable
            passed are not in the dataset. If 'ignore', any given names that are in the
            DataArray are dropped and no error is raised.

        Returns
        -------
        dropped : Dataset
            New Dataset copied from `self` with variables removed.
        """
        ds = self._to_temp_dataset().drop_vars(names, errors=errors)
        return self._from_temp_dataset(ds)

    def drop(
        self,
        labels: Mapping = None,
        dim: Hashable = None,
        *,
        errors: str = "raise",
        **labels_kwargs,
    ) -> "DataArray":
        """Backward compatible method based on `drop_vars` and `drop_sel`

        Using either `drop_vars` or `drop_sel` is encouraged

        See Also
        --------
        DataArray.drop_vars
        DataArray.drop_sel
        """
        ds = self._to_temp_dataset().drop(labels, dim, errors=errors)
        return self._from_temp_dataset(ds)

    def drop_sel(
        self,
        labels: Mapping[Hashable, Any] = None,
        *,
        errors: str = "raise",
        **labels_kwargs,
    ) -> "DataArray":
        """Drop index labels from this DataArray.

        Parameters
        ----------
        labels : mapping of hashable to Any
            Index labels to drop
        errors : {"raise", "ignore"}, optional
            If 'raise' (default), raises a ValueError error if
            any of the index labels passed are not
            in the dataset. If 'ignore', any given labels that are in the
            dataset are dropped and no error is raised.
        **labels_kwargs : {dim: label, ...}, optional
            The keyword arguments form of ``dim`` and ``labels``

        Returns
        -------
        dropped : DataArray
        """
        if labels_kwargs or isinstance(labels, dict):
            labels = either_dict_or_kwargs(labels, labels_kwargs, "drop")

        ds = self._to_temp_dataset().drop_sel(labels, errors=errors)
        return self._from_temp_dataset(ds)

    def dropna(
        self, dim: Hashable, how: str = "any", thresh: int = None
    ) -> "DataArray":
        """Returns a new array with dropped labels for missing values along
        the provided dimension.

        Parameters
        ----------
        dim : hashable
            Dimension along which to drop missing values. Dropping along
            multiple dimensions simultaneously is not yet supported.
        how : {"any", "all"}, optional
            * any : if any NA values are present, drop that label
            * all : if all values are NA, drop that label
        thresh : int, default: None
            If supplied, require this many non-NA values.

        Returns
        -------
        DataArray
        """
        ds = self._to_temp_dataset().dropna(dim, how=how, thresh=thresh)
        return self._from_temp_dataset(ds)

    def fillna(self, value: Any) -> "DataArray":
        """Fill missing values in this object.

        This operation follows the normal broadcasting and alignment rules that
        xarray uses for binary arithmetic, except the result is aligned to this
        object (``join='left'``) instead of aligned to the intersection of
        index coordinates (``join='inner'``).

        Parameters
        ----------
        value : scalar, ndarray or DataArray
            Used to fill all matching missing values in this array. If the
            argument is a DataArray, it is first aligned with (reindexed to)
            this array.

        Returns
        -------
        DataArray
        """
        if utils.is_dict_like(value):
            raise TypeError(
                "cannot provide fill value as a dictionary with "
                "fillna on a DataArray"
            )
        out = ops.fillna(self, value)
        return out

    def interpolate_na(
        self,
        dim: Hashable = None,
        method: str = "linear",
        limit: int = None,
        use_coordinate: Union[bool, str] = True,
        max_gap: Union[
            int, float, str, pd.Timedelta, np.timedelta64, datetime.timedelta
        ] = None,
        keep_attrs: bool = None,
        **kwargs: Any,
    ) -> "DataArray":
        """Fill in NaNs by interpolating according to different methods.

        Parameters
        ----------
        dim : str
            Specifies the dimension along which to interpolate.
        method : str, optional
            String indicating which method to use for interpolation:

            - 'linear': linear interpolation (Default). Additional keyword
              arguments are passed to :py:func:`numpy.interp`
            - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial':
              are passed to :py:func:`scipy.interpolate.interp1d`. If
              ``method='polynomial'``, the ``order`` keyword argument must also be
              provided.
            - 'barycentric', 'krog', 'pchip', 'spline', 'akima': use their
              respective :py:class:`scipy.interpolate` classes.

        use_coordinate : bool or str, default: True
            Specifies which index to use as the x values in the interpolation
            formulated as `y = f(x)`. If False, values are treated as if
            eqaully-spaced along ``dim``. If True, the IndexVariable `dim` is
            used. If ``use_coordinate`` is a string, it specifies the name of a
            coordinate variariable to use as the index.
        limit : int, default: None
            Maximum number of consecutive NaNs to fill. Must be greater than 0
            or None for no limit. This filling is done regardless of the size of
            the gap in the data. To only interpolate over gaps less than a given length,
            see ``max_gap``.
        max_gap: int, float, str, pandas.Timedelta, numpy.timedelta64, datetime.timedelta, default: None
            Maximum size of gap, a continuous sequence of NaNs, that will be filled.
            Use None for no limit. When interpolating along a datetime64 dimension
            and ``use_coordinate=True``, ``max_gap`` can be one of the following:

            - a string that is valid input for pandas.to_timedelta
            - a :py:class:`numpy.timedelta64` object
            - a :py:class:`pandas.Timedelta` object
            - a :py:class:`datetime.timedelta` object

            Otherwise, ``max_gap`` must be an int or a float. Use of ``max_gap`` with unlabeled
            dimensions has not been implemented yet. Gap length is defined as the difference
            between coordinate values at the first data point after a gap and the last value
            before a gap. For gaps at the beginning (end), gap length is defined as the difference
            between coordinate values at the first (last) valid data point and the first (last) NaN.
            For example, consider::

                <xarray.DataArray (x: 9)>
                array([nan, nan, nan,  1., nan, nan,  4., nan, nan])
                Coordinates:
                  * x        (x) int64 0 1 2 3 4 5 6 7 8

            The gap lengths are 3-0 = 3; 6-3 = 3; and 8-6 = 2 respectively
        keep_attrs : bool, default: True
            If True, the dataarray's attributes (`attrs`) will be copied from
            the original object to the new one.  If False, the new
            object will be returned without attributes.
        kwargs : dict, optional
            parameters passed verbatim to the underlying interpolation function

        Returns
        -------
        interpolated: DataArray
            Filled in DataArray.

        See also
        --------
        numpy.interp
        scipy.interpolate

        Examples
        --------
        >>> da = xr.DataArray(
        ...     [np.nan, 2, 3, np.nan, 0], dims="x", coords={"x": [0, 1, 2, 3, 4]}
        ... )
        >>> da
        <xarray.DataArray (x: 5)>
        array([nan,  2.,  3., nan,  0.])
        Coordinates:
          * x        (x) int64 0 1 2 3 4

        >>> da.interpolate_na(dim="x", method="linear")
        <xarray.DataArray (x: 5)>
        array([nan, 2. , 3. , 1.5, 0. ])
        Coordinates:
          * x        (x) int64 0 1 2 3 4

        >>> da.interpolate_na(dim="x", method="linear", fill_value="extrapolate")
        <xarray.DataArray (x: 5)>
        array([1. , 2. , 3. , 1.5, 0. ])
        Coordinates:
          * x        (x) int64 0 1 2 3 4
        """
        from .missing import interp_na

        return interp_na(
            self,
            dim=dim,
            method=method,
            limit=limit,
            use_coordinate=use_coordinate,
            max_gap=max_gap,
            keep_attrs=keep_attrs,
            **kwargs,
        )

    def ffill(self, dim: Hashable, limit: int = None) -> "DataArray":
        """Fill NaN values by propogating values forward

        *Requires bottleneck.*

        Parameters
        ----------
        dim : hashable
            Specifies the dimension along which to propagate values when
            filling.
        limit : int, default: None
            The maximum number of consecutive NaN values to forward fill. In
            other words, if there is a gap with more than this number of
            consecutive NaNs, it will only be partially filled. Must be greater
            than 0 or None for no limit.

        Returns
        -------
        DataArray
        """
        from .missing import ffill

        return ffill(self, dim, limit=limit)

    def bfill(self, dim: Hashable, limit: int = None) -> "DataArray":
        """Fill NaN values by propogating values backward

        *Requires bottleneck.*

        Parameters
        ----------
        dim : str
            Specifies the dimension along which to propagate values when
            filling.
        limit : int, default: None
            The maximum number of consecutive NaN values to backward fill. In
            other words, if there is a gap with more than this number of
            consecutive NaNs, it will only be partially filled. Must be greater
            than 0 or None for no limit.

        Returns
        -------
        DataArray
        """
        from .missing import bfill

        return bfill(self, dim, limit=limit)

    def combine_first(self, other: "DataArray") -> "DataArray":
        """Combine two DataArray objects, with union of coordinates.

        This operation follows the normal broadcasting and alignment rules of
        ``join='outer'``.  Default to non-null values of array calling the
        method.  Use np.nan to fill in vacant cells after alignment.

        Parameters
        ----------
        other : DataArray
            Used to fill all matching missing values in this array.

        Returns
        -------
        DataArray
        """
        return ops.fillna(self, other, join="outer")

    def reduce(
        self,
        func: Callable[..., Any],
        dim: Union[None, Hashable, Sequence[Hashable]] = None,
        axis: Union[None, int, Sequence[int]] = None,
        keep_attrs: bool = None,
        keepdims: bool = False,
        **kwargs: Any,
    ) -> "DataArray":
        """Reduce this array by applying `func` along some dimension(s).

        Parameters
        ----------
        func : callable
            Function which can be called in the form
            `f(x, axis=axis, **kwargs)` to return the result of reducing an
            np.ndarray over an integer valued axis.
        dim : hashable or sequence of hashable, optional
            Dimension(s) over which to apply `func`.
        axis : int or sequence of int, optional
            Axis(es) over which to repeatedly apply `func`. Only one of the
            'dim' and 'axis' arguments can be supplied. If neither are
            supplied, then the reduction is calculated over the flattened array
            (by calling `f(x)` without an axis argument).
        keep_attrs : bool, optional
            If True, the variable's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.
        keepdims : bool, default: False
            If True, the dimensions which are reduced are left in the result
            as dimensions of size one. Coordinates that use these dimensions
            are removed.
        **kwargs : dict
            Additional keyword arguments passed on to `func`.

        Returns
        -------
        reduced : DataArray
            DataArray with this object's array replaced with an array with
            summarized data and the indicated dimension(s) removed.
        """

        var = self.variable.reduce(func, dim, axis, keep_attrs, keepdims, **kwargs)
        return self._replace_maybe_drop_dims(var)

    def to_pandas(self) -> Union["DataArray", pd.Series, pd.DataFrame]:
        """Convert this array into a pandas object with the same shape.

        The type of the returned object depends on the number of DataArray
        dimensions:

        * 0D -> `xarray.DataArray`
        * 1D -> `pandas.Series`
        * 2D -> `pandas.DataFrame`

        Only works for arrays with 2 or fewer dimensions.

        The DataArray constructor performs the inverse transformation.
        """
        # TODO: consolidate the info about pandas constructors and the
        # attributes that correspond to their indexes into a separate module?
        constructors = {0: lambda x: x, 1: pd.Series, 2: pd.DataFrame}
        try:
            constructor = constructors[self.ndim]
        except KeyError:
            raise ValueError(
                "cannot convert arrays with %s dimensions into "
                "pandas objects" % self.ndim
            )
        indexes = [self.get_index(dim) for dim in self.dims]
        return constructor(self.values, *indexes)

    def to_dataframe(
        self, name: Hashable = None, dim_order: List[Hashable] = None
    ) -> pd.DataFrame:
        """Convert this array and its coordinates into a tidy pandas.DataFrame.

        The DataFrame is indexed by the Cartesian product of index coordinates
        (in the form of a :py:class:`pandas.MultiIndex`).

        Other coordinates are included as columns in the DataFrame.

        Parameters
        ----------
        name
            Name to give to this array (required if unnamed).
        dim_order
            Hierarchical dimension order for the resulting dataframe.
            Array content is transposed to this order and then written out as flat
            vectors in contiguous order, so the last dimension in this list
            will be contiguous in the resulting DataFrame. This has a major
            influence on which operations are efficient on the resulting
            dataframe.

            If provided, must include all dimensions of this DataArray. By default,
            dimensions are sorted according to the DataArray dimensions order.

        Returns
        -------
        result
            DataArray as a pandas DataFrame.

        """
        if name is None:
            name = self.name
        if name is None:
            raise ValueError(
                "cannot convert an unnamed DataArray to a "
                "DataFrame: use the ``name`` parameter"
            )
        if self.ndim == 0:
            raise ValueError("cannot convert a scalar to a DataFrame")

        # By using a unique name, we can convert a DataArray into a DataFrame
        # even if it shares a name with one of its coordinates.
        # I would normally use unique_name = object() but that results in a
        # dataframe with columns in the wrong order, for reasons I have not
        # been able to debug (possibly a pandas bug?).
        unique_name = "__unique_name_identifier_z98xfz98xugfg73ho__"
        ds = self._to_dataset_whole(name=unique_name)

        if dim_order is None:
            ordered_dims = dict(zip(self.dims, self.shape))
        else:
            ordered_dims = ds._normalize_dim_order(dim_order=dim_order)

        df = ds._to_dataframe(ordered_dims)
        df.columns = [name if c == unique_name else c for c in df.columns]
        return df

    def to_series(self) -> pd.Series:
        """Convert this array into a pandas.Series.

        The Series is indexed by the Cartesian product of index coordinates
        (in the form of a :py:class:`pandas.MultiIndex`).
        """
        index = self.coords.to_index()
        return pd.Series(self.values.reshape(-1), index=index, name=self.name)

    def to_masked_array(self, copy: bool = True) -> np.ma.MaskedArray:
        """Convert this array into a numpy.ma.MaskedArray

        Parameters
        ----------
        copy : bool, default: True
            If True make a copy of the array in the result. If False,
            a MaskedArray view of DataArray.values is returned.

        Returns
        -------
        result : MaskedArray
            Masked where invalid values (nan or inf) occur.
        """
        values = self.values  # only compute lazy arrays once
        isnull = pd.isnull(values)
        return np.ma.MaskedArray(data=values, mask=isnull, copy=copy)

    def to_netcdf(self, *args, **kwargs) -> Union[bytes, "Delayed", None]:
        """Write DataArray contents to a netCDF file.

        All parameters are passed directly to :py:meth:`xarray.Dataset.to_netcdf`.

        Notes
        -----
        Only xarray.Dataset objects can be written to netCDF files, so
        the xarray.DataArray is converted to a xarray.Dataset object
        containing a single variable. If the DataArray has no name, or if the
        name is the same as a coordinate name, then it is given the name
        ``"__xarray_dataarray_variable__"``.

        See Also
        --------
        Dataset.to_netcdf
        """
        from ..backends.api import DATAARRAY_NAME, DATAARRAY_VARIABLE

        if self.name is None:
            # If no name is set then use a generic xarray name
            dataset = self.to_dataset(name=DATAARRAY_VARIABLE)
        elif self.name in self.coords or self.name in self.dims:
            # The name is the same as one of the coords names, which netCDF
            # doesn't support, so rename it but keep track of the old name
            dataset = self.to_dataset(name=DATAARRAY_VARIABLE)
            dataset.attrs[DATAARRAY_NAME] = self.name
        else:
            # No problems with the name - so we're fine!
            dataset = self.to_dataset()

        return dataset.to_netcdf(*args, **kwargs)

    def to_dict(self, data: bool = True) -> dict:
        """
        Convert this xarray.DataArray into a dictionary following xarray
        naming conventions.

        Converts all variables and attributes to native Python objects.
        Useful for converting to json. To avoid datetime incompatibility
        use decode_times=False kwarg in xarrray.open_dataset.

        Parameters
        ----------
        data : bool, optional
            Whether to include the actual data in the dictionary. When set to
            False, returns just the schema.

        See also
        --------
        DataArray.from_dict
        """
        d = self.variable.to_dict(data=data)
        d.update({"coords": {}, "name": self.name})
        for k in self.coords:
            d["coords"][k] = self.coords[k].variable.to_dict(data=data)
        return d

    @classmethod
    def from_dict(cls, d: dict) -> "DataArray":
        """
        Convert a dictionary into an xarray.DataArray

        Input dict can take several forms:

        .. code:: python

            d = {"dims": ("t"), "data": x}

            d = {
                "coords": {"t": {"dims": "t", "data": t, "attrs": {"units": "s"}}},
                "attrs": {"title": "air temperature"},
                "dims": "t",
                "data": x,
                "name": "a",
            }

        where "t" is the name of the dimesion, "a" is the name of the array,
        and x and t are lists, numpy.arrays, or pandas objects.

        Parameters
        ----------
        d : dict
            Mapping with a minimum structure of {"dims": [...], "data": [...]}

        Returns
        -------
        obj : xarray.DataArray

        See also
        --------
        DataArray.to_dict
        Dataset.from_dict
        """
        coords = None
        if "coords" in d:
            try:
                coords = {
                    k: (v["dims"], v["data"], v.get("attrs"))
                    for k, v in d["coords"].items()
                }
            except KeyError as e:
                raise ValueError(
                    "cannot convert dict when coords are missing the key "
                    "'{dims_data}'".format(dims_data=str(e.args[0]))
                )
        try:
            data = d["data"]
        except KeyError:
            raise ValueError("cannot convert dict without the key 'data''")
        else:
            obj = cls(data, coords, d.get("dims"), d.get("name"), d.get("attrs"))
        return obj

    @classmethod
    def from_series(cls, series: pd.Series, sparse: bool = False) -> "DataArray":
        """Convert a pandas.Series into an xarray.DataArray.

        If the series's index is a MultiIndex, it will be expanded into a
        tensor product of one-dimensional coordinates (filling in missing
        values with NaN). Thus this operation should be the inverse of the
        `to_series` method.

        If sparse=True, creates a sparse array instead of a dense NumPy array.
        Requires the pydata/sparse package.

        See also
        --------
        xarray.Dataset.from_dataframe
        """
        temp_name = "__temporary_name"
        df = pd.DataFrame({temp_name: series})
        ds = Dataset.from_dataframe(df, sparse=sparse)
        result = cast(DataArray, ds[temp_name])
        result.name = series.name
        return result

    def to_cdms2(self) -> "cdms2_Variable":
        """Convert this array into a cdms2.Variable"""
        from ..convert import to_cdms2

        return to_cdms2(self)

    @classmethod
    def from_cdms2(cls, variable: "cdms2_Variable") -> "DataArray":
        """Convert a cdms2.Variable into an xarray.DataArray"""
        from ..convert import from_cdms2

        return from_cdms2(variable)

    def to_iris(self) -> "iris_Cube":
        """Convert this array into a iris.cube.Cube"""
        from ..convert import to_iris

        return to_iris(self)

    @classmethod
    def from_iris(cls, cube: "iris_Cube") -> "DataArray":
        """Convert a iris.cube.Cube into an xarray.DataArray"""
        from ..convert import from_iris

        return from_iris(cube)

    def _all_compat(self, other: "DataArray", compat_str: str) -> bool:
        """Helper function for equals, broadcast_equals, and identical"""

        def compat(x, y):
            return getattr(x.variable, compat_str)(y.variable)

        return utils.dict_equiv(self.coords, other.coords, compat=compat) and compat(
            self, other
        )

    def broadcast_equals(self, other: "DataArray") -> bool:
        """Two DataArrays are broadcast equal if they are equal after
        broadcasting them against each other such that they have the same
        dimensions.

        See Also
        --------
        DataArray.equals
        DataArray.identical
        """
        try:
            return self._all_compat(other, "broadcast_equals")
        except (TypeError, AttributeError):
            return False

    def equals(self, other: "DataArray") -> bool:
        """True if two DataArrays have the same dimensions, coordinates and
        values; otherwise False.

        DataArrays can still be equal (like pandas objects) if they have NaN
        values in the same locations.

        This method is necessary because `v1 == v2` for ``DataArray``
        does element-wise comparisons (like numpy.ndarrays).

        See Also
        --------
        DataArray.broadcast_equals
        DataArray.identical
        """
        try:
            return self._all_compat(other, "equals")
        except (TypeError, AttributeError):
            return False

    def identical(self, other: "DataArray") -> bool:
        """Like equals, but also checks the array name and attributes, and
        attributes on all coordinates.

        See Also
        --------
        DataArray.broadcast_equals
        DataArray.equals
        """
        try:
            return self.name == other.name and self._all_compat(other, "identical")
        except (TypeError, AttributeError):
            return False

    def _result_name(self, other: Any = None) -> Optional[Hashable]:
        # use the same naming heuristics as pandas:
        # https://github.com/ContinuumIO/blaze/issues/458#issuecomment-51936356
        other_name = getattr(other, "name", _default)
        if other_name is _default or other_name == self.name:
            return self.name
        else:
            return None

    def __array_wrap__(self, obj, context=None) -> "DataArray":
        new_var = self.variable.__array_wrap__(obj, context)
        return self._replace(new_var)

    def __matmul__(self, obj):
        return self.dot(obj)

    def __rmatmul__(self, other):
        # currently somewhat duplicative, as only other DataArrays are
        # compatible with matmul
        return computation.dot(other, self)

    @staticmethod
    def _unary_op(f: Callable[..., Any]) -> Callable[..., "DataArray"]:
        @functools.wraps(f)
        def func(self, *args, **kwargs):
            keep_attrs = kwargs.pop("keep_attrs", None)
            if keep_attrs is None:
                keep_attrs = _get_keep_attrs(default=True)
            with warnings.catch_warnings():
                warnings.filterwarnings("ignore", r"All-NaN (slice|axis) encountered")
                warnings.filterwarnings(
                    "ignore", r"Mean of empty slice", category=RuntimeWarning
                )
                with np.errstate(all="ignore"):
                    da = self.__array_wrap__(f(self.variable.data, *args, **kwargs))
                if keep_attrs:
                    da.attrs = self.attrs
                return da

        return func

    @staticmethod
    def _binary_op(
        f: Callable[..., Any],
        reflexive: bool = False,
        join: str = None,  # see xarray.align
        **ignored_kwargs,
    ) -> Callable[..., "DataArray"]:
        @functools.wraps(f)
        def func(self, other):
            if isinstance(other, (Dataset, groupby.GroupBy)):
                return NotImplemented
            if isinstance(other, DataArray):
                align_type = OPTIONS["arithmetic_join"] if join is None else join
                self, other = align(self, other, join=align_type, copy=False)
            other_variable = getattr(other, "variable", other)
            other_coords = getattr(other, "coords", None)

            variable = (
                f(self.variable, other_variable)
                if not reflexive
                else f(other_variable, self.variable)
            )
            coords, indexes = self.coords._merge_raw(other_coords)
            name = self._result_name(other)

            return self._replace(variable, coords, name, indexes=indexes)

        return func

    @staticmethod
    def _inplace_binary_op(f: Callable) -> Callable[..., "DataArray"]:
        @functools.wraps(f)
        def func(self, other):
            if isinstance(other, groupby.GroupBy):
                raise TypeError(
                    "in-place operations between a DataArray and "
                    "a grouped object are not permitted"
                )
            # n.b. we can't align other to self (with other.reindex_like(self))
            # because `other` may be converted into floats, which would cause
            # in-place arithmetic to fail unpredictably. Instead, we simply
            # don't support automatic alignment with in-place arithmetic.
            other_coords = getattr(other, "coords", None)
            other_variable = getattr(other, "variable", other)
            try:
                with self.coords._merge_inplace(other_coords):
                    f(self.variable, other_variable)
            except MergeError as exc:
                raise MergeError(
                    "Automatic alignment is not supported for in-place operations.\n"
                    "Consider aligning the indices manually or using a not-in-place operation.\n"
                    "See https://github.com/pydata/xarray/issues/3910 for more explanations."
                ) from exc
            return self

        return func

    def _copy_attrs_from(self, other: Union["DataArray", Dataset, Variable]) -> None:
        self.attrs = other.attrs

    plot = utils.UncachedAccessor(_PlotMethods)

    def _title_for_slice(self, truncate: int = 50) -> str:
        """
        If the dataarray has 1 dimensional coordinates or comes from a slice
        we can show that info in the title

        Parameters
        ----------
        truncate : int, default: 50
            maximum number of characters for title

        Returns
        -------
        title : string
            Can be used for plot titles

        """
        one_dims = []
        for dim, coord in self.coords.items():
            if coord.size == 1:
                one_dims.append(
                    "{dim} = {v}".format(dim=dim, v=format_item(coord.values))
                )

        title = ", ".join(one_dims)
        if len(title) > truncate:
            title = title[: (truncate - 3)] + "..."

        return title

    def diff(self, dim: Hashable, n: int = 1, label: Hashable = "upper") -> "DataArray":
        """Calculate the n-th order discrete difference along given axis.

        Parameters
        ----------
        dim : hashable
            Dimension over which to calculate the finite difference.
        n : int, optional
            The number of times values are differenced.
        label : hashable, optional
            The new coordinate in dimension ``dim`` will have the
            values of either the minuend's or subtrahend's coordinate
            for values 'upper' and 'lower', respectively.  Other
            values are not supported.

        Returns
        -------
        difference : same type as caller
            The n-th order finite difference of this object.

        .. note::

            `n` matches numpy's behavior and is different from pandas' first
            argument named `periods`.


        Examples
        --------
        >>> arr = xr.DataArray([5, 5, 6, 6], [[1, 2, 3, 4]], ["x"])
        >>> arr.diff("x")
        <xarray.DataArray (x: 3)>
        array([0, 1, 0])
        Coordinates:
          * x        (x) int64 2 3 4
        >>> arr.diff("x", 2)
        <xarray.DataArray (x: 2)>
        array([ 1, -1])
        Coordinates:
          * x        (x) int64 3 4

        See Also
        --------
        DataArray.differentiate
        """
        ds = self._to_temp_dataset().diff(n=n, dim=dim, label=label)
        return self._from_temp_dataset(ds)

    def shift(
        self,
        shifts: Mapping[Hashable, int] = None,
        fill_value: Any = dtypes.NA,
        **shifts_kwargs: int,
    ) -> "DataArray":
        """Shift this array by an offset along one or more dimensions.

        Only the data is moved; coordinates stay in place. Values shifted from
        beyond array bounds are replaced by NaN. This is consistent with the
        behavior of ``shift`` in pandas.

        Parameters
        ----------
        shifts : mapping of hashable to int, optional
            Integer offset to shift along each of the given dimensions.
            Positive offsets shift to the right; negative offsets shift to the
            left.
        fill_value: scalar, optional
            Value to use for newly missing values
        **shifts_kwargs
            The keyword arguments form of ``shifts``.
            One of shifts or shifts_kwargs must be provided.

        Returns
        -------
        shifted : DataArray
            DataArray with the same coordinates and attributes but shifted
            data.

        See also
        --------
        roll

        Examples
        --------

        >>> arr = xr.DataArray([5, 6, 7], dims="x")
        >>> arr.shift(x=1)
        <xarray.DataArray (x: 3)>
        array([nan,  5.,  6.])
        Dimensions without coordinates: x
        """
        variable = self.variable.shift(
            shifts=shifts, fill_value=fill_value, **shifts_kwargs
        )
        return self._replace(variable=variable)

    def roll(
        self,
        shifts: Mapping[Hashable, int] = None,
        roll_coords: bool = None,
        **shifts_kwargs: int,
    ) -> "DataArray":
        """Roll this array by an offset along one or more dimensions.

        Unlike shift, roll may rotate all variables, including coordinates
        if specified. The direction of rotation is consistent with
        :py:func:`numpy.roll`.

        Parameters
        ----------
        shifts : mapping of hashable to int, optional
            Integer offset to rotate each of the given dimensions.
            Positive offsets roll to the right; negative offsets roll to the
            left.
        roll_coords : bool
            Indicates whether to roll the coordinates by the offset
            The current default of roll_coords (None, equivalent to True) is
            deprecated and will change to False in a future version.
            Explicitly pass roll_coords to silence the warning.
        **shifts_kwargs
            The keyword arguments form of ``shifts``.
            One of shifts or shifts_kwargs must be provided.

        Returns
        -------
        rolled : DataArray
            DataArray with the same attributes but rolled data and coordinates.

        See also
        --------
        shift

        Examples
        --------

        >>> arr = xr.DataArray([5, 6, 7], dims="x")
        >>> arr.roll(x=1)
        <xarray.DataArray (x: 3)>
        array([7, 5, 6])
        Dimensions without coordinates: x
        """
        ds = self._to_temp_dataset().roll(
            shifts=shifts, roll_coords=roll_coords, **shifts_kwargs
        )
        return self._from_temp_dataset(ds)

    @property
    def real(self) -> "DataArray":
        return self._replace(self.variable.real)

    @property
    def imag(self) -> "DataArray":
        return self._replace(self.variable.imag)

    def dot(
        self, other: "DataArray", dims: Union[Hashable, Sequence[Hashable], None] = None
    ) -> "DataArray":
        """Perform dot product of two DataArrays along their shared dims.

        Equivalent to taking taking tensordot over all shared dims.

        Parameters
        ----------
        other : DataArray
            The other array with which the dot product is performed.
        dims : ..., hashable or sequence of hashable, optional
            Which dimensions to sum over. Ellipsis (`...`) sums over all dimensions.
            If not specified, then all the common dimensions are summed over.

        Returns
        -------
        result : DataArray
            Array resulting from the dot product over all shared dimensions.

        See also
        --------
        dot
        numpy.tensordot

        Examples
        --------

        >>> da_vals = np.arange(6 * 5 * 4).reshape((6, 5, 4))
        >>> da = xr.DataArray(da_vals, dims=["x", "y", "z"])
        >>> dm_vals = np.arange(4)
        >>> dm = xr.DataArray(dm_vals, dims=["z"])

        >>> dm.dims
        ('z',)

        >>> da.dims
        ('x', 'y', 'z')

        >>> dot_result = da.dot(dm)
        >>> dot_result.dims
        ('x', 'y')

        """
        if isinstance(other, Dataset):
            raise NotImplementedError(
                "dot products are not yet supported with Dataset objects."
            )
        if not isinstance(other, DataArray):
            raise TypeError("dot only operates on DataArrays.")

        return computation.dot(self, other, dims=dims)

    def sortby(
        self,
        variables: Union[Hashable, "DataArray", Sequence[Union[Hashable, "DataArray"]]],
        ascending: bool = True,
    ) -> "DataArray":
        """Sort object by labels or values (along an axis).

        Sorts the dataarray, either along specified dimensions,
        or according to values of 1-D dataarrays that share dimension
        with calling object.

        If the input variables are dataarrays, then the dataarrays are aligned
        (via left-join) to the calling object prior to sorting by cell values.
        NaNs are sorted to the end, following Numpy convention.

        If multiple sorts along the same dimension is
        given, numpy's lexsort is performed along that dimension:
        https://docs.scipy.org/doc/numpy/reference/generated/numpy.lexsort.html
        and the FIRST key in the sequence is used as the primary sort key,
        followed by the 2nd key, etc.

        Parameters
        ----------
        variables : hashable, DataArray, or sequence of hashable or DataArray
            1D DataArray objects or name(s) of 1D variable(s) in
            coords whose values are used to sort this array.
        ascending : bool, optional
            Whether to sort by ascending or descending order.

        Returns
        -------
        sorted : DataArray
            A new dataarray where all the specified dims are sorted by dim
            labels.

        Examples
        --------

        >>> da = xr.DataArray(
        ...     np.random.rand(5),
        ...     coords=[pd.date_range("1/1/2000", periods=5)],
        ...     dims="time",
        ... )
        >>> da
        <xarray.DataArray (time: 5)>
        array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 ])
        Coordinates:
          * time     (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2000-01-05

        >>> da.sortby(da)
        <xarray.DataArray (time: 5)>
        array([0.4236548 , 0.54488318, 0.5488135 , 0.60276338, 0.71518937])
        Coordinates:
          * time     (time) datetime64[ns] 2000-01-05 2000-01-04 ... 2000-01-02
        """
        ds = self._to_temp_dataset().sortby(variables, ascending=ascending)
        return self._from_temp_dataset(ds)

    def quantile(
        self,
        q: Any,
        dim: Union[Hashable, Sequence[Hashable], None] = None,
        interpolation: str = "linear",
        keep_attrs: bool = None,
        skipna: bool = True,
    ) -> "DataArray":
        """Compute the qth quantile of the data along the specified dimension.

        Returns the qth quantiles(s) of the array elements.

        Parameters
        ----------
        q : float or array-like of float
            Quantile to compute, which must be between 0 and 1 inclusive.
        dim : hashable or sequence of hashable, optional
            Dimension(s) over which to apply quantile.
        interpolation : {"linear", "lower", "higher", "midpoint", "nearest"}, default: "linear"
            This optional parameter specifies the interpolation method to
            use when the desired quantile lies between two data points
            ``i < j``:

                - linear: ``i + (j - i) * fraction``, where ``fraction`` is
                  the fractional part of the index surrounded by ``i`` and
                  ``j``.
                - lower: ``i``.
                - higher: ``j``.
                - nearest: ``i`` or ``j``, whichever is nearest.
                - midpoint: ``(i + j) / 2``.
        keep_attrs : bool, optional
            If True, the dataset's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.
        skipna : bool, optional
            Whether to skip missing values when aggregating.

        Returns
        -------
        quantiles : DataArray
            If `q` is a single quantile, then the result
            is a scalar. If multiple percentiles are given, first axis of
            the result corresponds to the quantile and a quantile dimension
            is added to the return array. The other dimensions are the
            dimensions that remain after the reduction of the array.

        See Also
        --------
        numpy.nanquantile, numpy.quantile, pandas.Series.quantile, Dataset.quantile

        Examples
        --------

        >>> da = xr.DataArray(
        ...     data=[[0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]],
        ...     coords={"x": [7, 9], "y": [1, 1.5, 2, 2.5]},
        ...     dims=("x", "y"),
        ... )
        >>> da.quantile(0)  # or da.quantile(0, dim=...)
        <xarray.DataArray ()>
        array(0.7)
        Coordinates:
            quantile  float64 0.0
        >>> da.quantile(0, dim="x")
        <xarray.DataArray (y: 4)>
        array([0.7, 4.2, 2.6, 1.5])
        Coordinates:
          * y         (y) float64 1.0 1.5 2.0 2.5
            quantile  float64 0.0
        >>> da.quantile([0, 0.5, 1])
        <xarray.DataArray (quantile: 3)>
        array([0.7, 3.4, 9.4])
        Coordinates:
          * quantile  (quantile) float64 0.0 0.5 1.0
        >>> da.quantile([0, 0.5, 1], dim="x")
        <xarray.DataArray (quantile: 3, y: 4)>
        array([[0.7 , 4.2 , 2.6 , 1.5 ],
               [3.6 , 5.75, 6.  , 1.7 ],
               [6.5 , 7.3 , 9.4 , 1.9 ]])
        Coordinates:
          * y         (y) float64 1.0 1.5 2.0 2.5
          * quantile  (quantile) float64 0.0 0.5 1.0
        """

        ds = self._to_temp_dataset().quantile(
            q,
            dim=dim,
            keep_attrs=keep_attrs,
            interpolation=interpolation,
            skipna=skipna,
        )
        return self._from_temp_dataset(ds)

    def rank(
        self, dim: Hashable, pct: bool = False, keep_attrs: bool = None
    ) -> "DataArray":
        """Ranks the data.

        Equal values are assigned a rank that is the average of the ranks that
        would have been otherwise assigned to all of the values within that
        set.  Ranks begin at 1, not 0. If pct, computes percentage ranks.

        NaNs in the input array are returned as NaNs.

        The `bottleneck` library is required.

        Parameters
        ----------
        dim : hashable
            Dimension over which to compute rank.
        pct : bool, optional
            If True, compute percentage ranks, otherwise compute integer ranks.
        keep_attrs : bool, optional
            If True, the dataset's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.

        Returns
        -------
        ranked : DataArray
            DataArray with the same coordinates and dtype 'float64'.

        Examples
        --------

        >>> arr = xr.DataArray([5, 6, 7], dims="x")
        >>> arr.rank("x")
        <xarray.DataArray (x: 3)>
        array([1., 2., 3.])
        Dimensions without coordinates: x
        """

        ds = self._to_temp_dataset().rank(dim, pct=pct, keep_attrs=keep_attrs)
        return self._from_temp_dataset(ds)

    def differentiate(
        self, coord: Hashable, edge_order: int = 1, datetime_unit: str = None
    ) -> "DataArray":
        """ Differentiate the array with the second order accurate central
        differences.

        .. note::
            This feature is limited to simple cartesian geometry, i.e. coord
            must be one dimensional.

        Parameters
        ----------
        coord : hashable
            The coordinate to be used to compute the gradient.
        edge_order : {1, 2}, default: 1
            N-th order accurate differences at the boundaries.
        datetime_unit : {"Y", "M", "W", "D", "h", "m", "s", "ms", \
                         "us", "ns", "ps", "fs", "as"} or None, optional
            Unit to compute gradient. Only valid for datetime coordinate.

        Returns
        -------
        differentiated: DataArray

        See also
        --------
        numpy.gradient: corresponding numpy function

        Examples
        --------

        >>> da = xr.DataArray(
        ...     np.arange(12).reshape(4, 3),
        ...     dims=["x", "y"],
        ...     coords={"x": [0, 0.1, 1.1, 1.2]},
        ... )
        >>> da
        <xarray.DataArray (x: 4, y: 3)>
        array([[ 0,  1,  2],
               [ 3,  4,  5],
               [ 6,  7,  8],
               [ 9, 10, 11]])
        Coordinates:
          * x        (x) float64 0.0 0.1 1.1 1.2
        Dimensions without coordinates: y
        >>>
        >>> da.differentiate("x")
        <xarray.DataArray (x: 4, y: 3)>
        array([[30.        , 30.        , 30.        ],
               [27.54545455, 27.54545455, 27.54545455],
               [27.54545455, 27.54545455, 27.54545455],
               [30.        , 30.        , 30.        ]])
        Coordinates:
          * x        (x) float64 0.0 0.1 1.1 1.2
        Dimensions without coordinates: y
        """
        ds = self._to_temp_dataset().differentiate(coord, edge_order, datetime_unit)
        return self._from_temp_dataset(ds)

    def integrate(
        self, dim: Union[Hashable, Sequence[Hashable]], datetime_unit: str = None
    ) -> "DataArray":
        """ integrate the array with the trapezoidal rule.

        .. note::
            This feature is limited to simple cartesian geometry, i.e. dim
            must be one dimensional.

        Parameters
        ----------
        dim : hashable, or sequence of hashable
            Coordinate(s) used for the integration.
        datetime_unit : {"Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", \
                         "ps", "fs", "as"}, optional
            Can be used to specify the unit if datetime coordinate is used.

        Returns
        -------
        integrated: DataArray

        See also
        --------
        numpy.trapz: corresponding numpy function

        Examples
        --------

        >>> da = xr.DataArray(
        ...     np.arange(12).reshape(4, 3),
        ...     dims=["x", "y"],
        ...     coords={"x": [0, 0.1, 1.1, 1.2]},
        ... )
        >>> da
        <xarray.DataArray (x: 4, y: 3)>
        array([[ 0,  1,  2],
               [ 3,  4,  5],
               [ 6,  7,  8],
               [ 9, 10, 11]])
        Coordinates:
          * x        (x) float64 0.0 0.1 1.1 1.2
        Dimensions without coordinates: y
        >>>
        >>> da.integrate("x")
        <xarray.DataArray (y: 3)>
        array([5.4, 6.6, 7.8])
        Dimensions without coordinates: y
        """
        ds = self._to_temp_dataset().integrate(dim, datetime_unit)
        return self._from_temp_dataset(ds)

    def unify_chunks(self) -> "DataArray":
        """Unify chunk size along all chunked dimensions of this DataArray.

        Returns
        -------

        DataArray with consistent chunk sizes for all dask-array variables

        See Also
        --------

        dask.array.core.unify_chunks
        """
        ds = self._to_temp_dataset().unify_chunks()
        return self._from_temp_dataset(ds)

    def map_blocks(
        self,
        func: "Callable[..., T_DSorDA]",
        args: Sequence[Any] = (),
        kwargs: Mapping[str, Any] = None,
        template: Union["DataArray", "Dataset"] = None,
    ) -> "T_DSorDA":
        """
        Apply a function to each block of this DataArray.

        .. warning::
            This method is experimental and its signature may change.

        Parameters
        ----------
        func : callable
            User-provided function that accepts a DataArray as its first
            parameter. The function will receive a subset or 'block' of this DataArray (see below),
            corresponding to one chunk along each chunked dimension. ``func`` will be
            executed as ``func(subset_dataarray, *subset_args, **kwargs)``.

            This function must return either a single DataArray or a single Dataset.

            This function cannot add a new chunked dimension.
        args : sequence
            Passed to func after unpacking and subsetting any xarray objects by blocks.
            xarray objects in args must be aligned with this object, otherwise an error is raised.
        kwargs : mapping
            Passed verbatim to func after unpacking. xarray objects, if any, will not be
            subset to blocks. Passing dask collections in kwargs is not allowed.
        template : DataArray or Dataset, optional
            xarray object representing the final result after compute is called. If not provided,
            the function will be first run on mocked-up data, that looks like this object but
            has sizes 0, to determine properties of the returned object such as dtype,
            variable names, attributes, new dimensions and new indexes (if any).
            ``template`` must be provided if the function changes the size of existing dimensions.
            When provided, ``attrs`` on variables in `template` are copied over to the result. Any
            ``attrs`` set by ``func`` will be ignored.

        Returns
        -------
        A single DataArray or Dataset with dask backend, reassembled from the outputs of the
        function.

        Notes
        -----
        This function is designed for when ``func`` needs to manipulate a whole xarray object
        subset to each block. In the more common case where ``func`` can work on numpy arrays, it is
        recommended to use ``apply_ufunc``.

        If none of the variables in this object is backed by dask arrays, calling this function is
        equivalent to calling ``func(obj, *args, **kwargs)``.

        See Also
        --------
        dask.array.map_blocks, xarray.apply_ufunc, xarray.Dataset.map_blocks,
        xarray.DataArray.map_blocks

        Examples
        --------

        Calculate an anomaly from climatology using ``.groupby()``. Using
        ``xr.map_blocks()`` allows for parallel operations with knowledge of ``xarray``,
        its indices, and its methods like ``.groupby()``.

        >>> def calculate_anomaly(da, groupby_type="time.month"):
        ...     gb = da.groupby(groupby_type)
        ...     clim = gb.mean(dim="time")
        ...     return gb - clim
        ...
        >>> time = xr.cftime_range("1990-01", "1992-01", freq="M")
        >>> month = xr.DataArray(time.month, coords={"time": time}, dims=["time"])
        >>> np.random.seed(123)
        >>> array = xr.DataArray(
        ...     np.random.rand(len(time)),
        ...     dims=["time"],
        ...     coords={"time": time, "month": month},
        ... ).chunk()
        >>> array.map_blocks(calculate_anomaly, template=array).compute()
        <xarray.DataArray (time: 24)>
        array([ 0.12894847,  0.11323072, -0.0855964 , -0.09334032,  0.26848862,
                0.12382735,  0.22460641,  0.07650108, -0.07673453, -0.22865714,
               -0.19063865,  0.0590131 , -0.12894847, -0.11323072,  0.0855964 ,
                0.09334032, -0.26848862, -0.12382735, -0.22460641, -0.07650108,
                0.07673453,  0.22865714,  0.19063865, -0.0590131 ])
        Coordinates:
          * time     (time) object 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
            month    (time) int64 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

        Note that one must explicitly use ``args=[]`` and ``kwargs={}`` to pass arguments
        to the function being applied in ``xr.map_blocks()``:

        >>> array.map_blocks(
        ...     calculate_anomaly, kwargs={"groupby_type": "time.year"}, template=array
        ... )  # doctest: +ELLIPSIS
        <xarray.DataArray (time: 24)>
        dask.array<calculate_anomaly-...-<this, shape=(24,), dtype=float64, chunksize=(24,), chunktype=numpy.ndarray>
        Coordinates:
          * time     (time) object 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
            month    (time) int64 dask.array<chunksize=(24,), meta=np.ndarray>
        """
        from .parallel import map_blocks

        return map_blocks(func, self, args, kwargs, template)

    def polyfit(
        self,
        dim: Hashable,
        deg: int,
        skipna: bool = None,
        rcond: float = None,
        w: Union[Hashable, Any] = None,
        full: bool = False,
        cov: bool = False,
    ):
        """
        Least squares polynomial fit.

        This replicates the behaviour of `numpy.polyfit` but differs by skipping
        invalid values when `skipna = True`.

        Parameters
        ----------
        dim : hashable
            Coordinate along which to fit the polynomials.
        deg : int
            Degree of the fitting polynomial.
        skipna : bool, optional
            If True, removes all invalid values before fitting each 1D slices of the array.
            Default is True if data is stored in a dask.array or if there is any
            invalid values, False otherwise.
        rcond : float, optional
            Relative condition number to the fit.
        w : hashable or array-like, optional
            Weights to apply to the y-coordinate of the sample points.
            Can be an array-like object or the name of a coordinate in the dataset.
        full : bool, optional
            Whether to return the residuals, matrix rank and singular values in addition
            to the coefficients.
        cov : bool or str, optional
            Whether to return to the covariance matrix in addition to the coefficients.
            The matrix is not scaled if `cov='unscaled'`.

        Returns
        -------
        polyfit_results : Dataset
            A single dataset which contains:

            polyfit_coefficients
                The coefficients of the best fit.
            polyfit_residuals
                The residuals of the least-square computation (only included if `full=True`).
                When the matrix rank is deficient, np.nan is returned.
            [dim]_matrix_rank
                The effective rank of the scaled Vandermonde coefficient matrix (only included if `full=True`)
            [dim]_singular_value
                The singular values of the scaled Vandermonde coefficient matrix (only included if `full=True`)
            polyfit_covariance
                The covariance matrix of the polynomial coefficient estimates (only included if `full=False` and `cov=True`)

        See also
        --------
        numpy.polyfit
        """
        return self._to_temp_dataset().polyfit(
            dim, deg, skipna=skipna, rcond=rcond, w=w, full=full, cov=cov
        )

    def pad(
        self,
        pad_width: Mapping[Hashable, Union[int, Tuple[int, int]]] = None,
        mode: str = "constant",
        stat_length: Union[
            int, Tuple[int, int], Mapping[Hashable, Tuple[int, int]]
        ] = None,
        constant_values: Union[
            int, Tuple[int, int], Mapping[Hashable, Tuple[int, int]]
        ] = None,
        end_values: Union[
            int, Tuple[int, int], Mapping[Hashable, Tuple[int, int]]
        ] = None,
        reflect_type: str = None,
        **pad_width_kwargs: Any,
    ) -> "DataArray":
        """Pad this array along one or more dimensions.

        .. warning::
            This function is experimental and its behaviour is likely to change
            especially regarding padding of dimension coordinates (or IndexVariables).

        When using one of the modes ("edge", "reflect", "symmetric", "wrap"),
        coordinates will be padded with the same mode, otherwise coordinates
        are padded using the "constant" mode with fill_value dtypes.NA.

        Parameters
        ----------
        pad_width : mapping of hashable to tuple of int
            Mapping with the form of {dim: (pad_before, pad_after)}
            describing the number of values padded along each dimension.
            {dim: pad} is a shortcut for pad_before = pad_after = pad
        mode : str, default: "constant"
            One of the following string values (taken from numpy docs)

            'constant' (default)
                Pads with a constant value.
            'edge'
                Pads with the edge values of array.
            'linear_ramp'
                Pads with the linear ramp between end_value and the
                array edge value.
            'maximum'
                Pads with the maximum value of all or part of the
                vector along each axis.
            'mean'
                Pads with the mean value of all or part of the
                vector along each axis.
            'median'
                Pads with the median value of all or part of the
                vector along each axis.
            'minimum'
                Pads with the minimum value of all or part of the
                vector along each axis.
            'reflect'
                Pads with the reflection of the vector mirrored on
                the first and last values of the vector along each
                axis.
            'symmetric'
                Pads with the reflection of the vector mirrored
                along the edge of the array.
            'wrap'
                Pads with the wrap of the vector along the axis.
                The first values are used to pad the end and the
                end values are used to pad the beginning.
        stat_length : int, tuple or mapping of hashable to tuple, default: None
            Used in 'maximum', 'mean', 'median', and 'minimum'.  Number of
            values at edge of each axis used to calculate the statistic value.
            {dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)} unique
            statistic lengths along each dimension.
            ((before, after),) yields same before and after statistic lengths
            for each dimension.
            (stat_length,) or int is a shortcut for before = after = statistic
            length for all axes.
            Default is ``None``, to use the entire axis.
        constant_values : scalar, tuple or mapping of hashable to tuple, default: 0
            Used in 'constant'.  The values to set the padded values for each
            axis.
            ``{dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}`` unique
            pad constants along each dimension.
            ``((before, after),)`` yields same before and after constants for each
            dimension.
            ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
            all dimensions.
            Default is 0.
        end_values : scalar, tuple or mapping of hashable to tuple, default: 0
            Used in 'linear_ramp'.  The values used for the ending value of the
            linear_ramp and that will form the edge of the padded array.
            ``{dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}`` unique
            end values along each dimension.
            ``((before, after),)`` yields same before and after end values for each
            axis.
            ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
            all axes.
            Default is 0.
        reflect_type : {"even", "odd"}, optional
            Used in "reflect", and "symmetric".  The "even" style is the
            default with an unaltered reflection around the edge value.  For
            the "odd" style, the extended part of the array is created by
            subtracting the reflected values from two times the edge value.
        **pad_width_kwargs
            The keyword arguments form of ``pad_width``.
            One of ``pad_width`` or ``pad_width_kwargs`` must be provided.

        Returns
        -------
        padded : DataArray
            DataArray with the padded coordinates and data.

        See also
        --------
        DataArray.shift, DataArray.roll, DataArray.bfill, DataArray.ffill, numpy.pad, dask.array.pad

        Notes
        -----
        By default when ``mode="constant"`` and ``constant_values=None``, integer types will be
        promoted to ``float`` and padded with ``np.nan``. To avoid type promotion
        specify ``constant_values=np.nan``

        Examples
        --------

        >>> arr = xr.DataArray([5, 6, 7], coords=[("x", [0, 1, 2])])
        >>> arr.pad(x=(1, 2), constant_values=0)
        <xarray.DataArray (x: 6)>
        array([0, 5, 6, 7, 0, 0])
        Coordinates:
          * x        (x) float64 nan 0.0 1.0 2.0 nan nan

        >>> da = xr.DataArray(
        ...     [[0, 1, 2, 3], [10, 11, 12, 13]],
        ...     dims=["x", "y"],
        ...     coords={"x": [0, 1], "y": [10, 20, 30, 40], "z": ("x", [100, 200])},
        ... )
        >>> da.pad(x=1)
        <xarray.DataArray (x: 4, y: 4)>
        array([[nan, nan, nan, nan],
               [ 0.,  1.,  2.,  3.],
               [10., 11., 12., 13.],
               [nan, nan, nan, nan]])
        Coordinates:
          * x        (x) float64 nan 0.0 1.0 nan
          * y        (y) int64 10 20 30 40
            z        (x) float64 nan 100.0 200.0 nan
        >>> da.pad(x=1, constant_values=np.nan)
        <xarray.DataArray (x: 4, y: 4)>
        array([[-9223372036854775808, -9223372036854775808, -9223372036854775808,
                -9223372036854775808],
               [                   0,                    1,                    2,
                                   3],
               [                  10,                   11,                   12,
                                  13],
               [-9223372036854775808, -9223372036854775808, -9223372036854775808,
                -9223372036854775808]])
        Coordinates:
          * x        (x) float64 nan 0.0 1.0 nan
          * y        (y) int64 10 20 30 40
            z        (x) float64 nan 100.0 200.0 nan
        """
        ds = self._to_temp_dataset().pad(
            pad_width=pad_width,
            mode=mode,
            stat_length=stat_length,
            constant_values=constant_values,
            end_values=end_values,
            reflect_type=reflect_type,
            **pad_width_kwargs,
        )
        return self._from_temp_dataset(ds)

    def idxmin(
        self,
        dim: Hashable = None,
        skipna: bool = None,
        fill_value: Any = dtypes.NA,
        keep_attrs: bool = None,
    ) -> "DataArray":
        """Return the coordinate label of the minimum value along a dimension.

        Returns a new `DataArray` named after the dimension with the values of
        the coordinate labels along that dimension corresponding to minimum
        values along that dimension.

        In comparison to :py:meth:`~DataArray.argmin`, this returns the
        coordinate label while :py:meth:`~DataArray.argmin` returns the index.

        Parameters
        ----------
        dim : str, optional
            Dimension over which to apply `idxmin`.  This is optional for 1D
            arrays, but required for arrays with 2 or more dimensions.
        skipna : bool or None, default: None
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for ``float``, ``complex``, and ``object``
            dtypes; other dtypes either do not have a sentinel missing value
            (``int``) or ``skipna=True`` has not been implemented
            (``datetime64`` or ``timedelta64``).
        fill_value : Any, default: NaN
            Value to be filled in case all of the values along a dimension are
            null.  By default this is NaN.  The fill value and result are
            automatically converted to a compatible dtype if possible.
            Ignored if ``skipna`` is False.
        keep_attrs : bool, default: False
            If True, the attributes (``attrs``) will be copied from the
            original object to the new one.  If False (default), the new object
            will be returned without attributes.

        Returns
        -------
        reduced : DataArray
            New `DataArray` object with `idxmin` applied to its data and the
            indicated dimension removed.

        See also
        --------
        Dataset.idxmin, DataArray.idxmax, DataArray.min, DataArray.argmin

        Examples
        --------

        >>> array = xr.DataArray(
        ...     [0, 2, 1, 0, -2], dims="x", coords={"x": ["a", "b", "c", "d", "e"]}
        ... )
        >>> array.min()
        <xarray.DataArray ()>
        array(-2)
        >>> array.argmin()
        <xarray.DataArray ()>
        array(4)
        >>> array.idxmin()
        <xarray.DataArray 'x' ()>
        array('e', dtype='<U1')

        >>> array = xr.DataArray(
        ...     [
        ...         [2.0, 1.0, 2.0, 0.0, -2.0],
        ...         [-4.0, np.NaN, 2.0, np.NaN, -2.0],
        ...         [np.NaN, np.NaN, 1.0, np.NaN, np.NaN],
        ...     ],
        ...     dims=["y", "x"],
        ...     coords={"y": [-1, 0, 1], "x": np.arange(5.0) ** 2},
        ... )
        >>> array.min(dim="x")
        <xarray.DataArray (y: 3)>
        array([-2., -4.,  1.])
        Coordinates:
          * y        (y) int64 -1 0 1
        >>> array.argmin(dim="x")
        <xarray.DataArray (y: 3)>
        array([4, 0, 2])
        Coordinates:
          * y        (y) int64 -1 0 1
        >>> array.idxmin(dim="x")
        <xarray.DataArray 'x' (y: 3)>
        array([16.,  0.,  4.])
        Coordinates:
          * y        (y) int64 -1 0 1
        """
        return computation._calc_idxminmax(
            array=self,
            func=lambda x, *args, **kwargs: x.argmin(*args, **kwargs),
            dim=dim,
            skipna=skipna,
            fill_value=fill_value,
            keep_attrs=keep_attrs,
        )

    def idxmax(
        self,
        dim: Hashable = None,
        skipna: bool = None,
        fill_value: Any = dtypes.NA,
        keep_attrs: bool = None,
    ) -> "DataArray":
        """Return the coordinate label of the maximum value along a dimension.

        Returns a new `DataArray` named after the dimension with the values of
        the coordinate labels along that dimension corresponding to maximum
        values along that dimension.

        In comparison to :py:meth:`~DataArray.argmax`, this returns the
        coordinate label while :py:meth:`~DataArray.argmax` returns the index.

        Parameters
        ----------
        dim : hashable, optional
            Dimension over which to apply `idxmax`.  This is optional for 1D
            arrays, but required for arrays with 2 or more dimensions.
        skipna : bool or None, default: None
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for ``float``, ``complex``, and ``object``
            dtypes; other dtypes either do not have a sentinel missing value
            (``int``) or ``skipna=True`` has not been implemented
            (``datetime64`` or ``timedelta64``).
        fill_value : Any, default: NaN
            Value to be filled in case all of the values along a dimension are
            null.  By default this is NaN.  The fill value and result are
            automatically converted to a compatible dtype if possible.
            Ignored if ``skipna`` is False.
        keep_attrs : bool, default: False
            If True, the attributes (``attrs``) will be copied from the
            original object to the new one.  If False (default), the new object
            will be returned without attributes.

        Returns
        -------
        reduced : DataArray
            New `DataArray` object with `idxmax` applied to its data and the
            indicated dimension removed.

        See also
        --------
        Dataset.idxmax, DataArray.idxmin, DataArray.max, DataArray.argmax

        Examples
        --------

        >>> array = xr.DataArray(
        ...     [0, 2, 1, 0, -2], dims="x", coords={"x": ["a", "b", "c", "d", "e"]}
        ... )
        >>> array.max()
        <xarray.DataArray ()>
        array(2)
        >>> array.argmax()
        <xarray.DataArray ()>
        array(1)
        >>> array.idxmax()
        <xarray.DataArray 'x' ()>
        array('b', dtype='<U1')

        >>> array = xr.DataArray(
        ...     [
        ...         [2.0, 1.0, 2.0, 0.0, -2.0],
        ...         [-4.0, np.NaN, 2.0, np.NaN, -2.0],
        ...         [np.NaN, np.NaN, 1.0, np.NaN, np.NaN],
        ...     ],
        ...     dims=["y", "x"],
        ...     coords={"y": [-1, 0, 1], "x": np.arange(5.0) ** 2},
        ... )
        >>> array.max(dim="x")
        <xarray.DataArray (y: 3)>
        array([2., 2., 1.])
        Coordinates:
          * y        (y) int64 -1 0 1
        >>> array.argmax(dim="x")
        <xarray.DataArray (y: 3)>
        array([0, 2, 2])
        Coordinates:
          * y        (y) int64 -1 0 1
        >>> array.idxmax(dim="x")
        <xarray.DataArray 'x' (y: 3)>
        array([0., 4., 4.])
        Coordinates:
          * y        (y) int64 -1 0 1
        """
        return computation._calc_idxminmax(
            array=self,
            func=lambda x, *args, **kwargs: x.argmax(*args, **kwargs),
            dim=dim,
            skipna=skipna,
            fill_value=fill_value,
            keep_attrs=keep_attrs,
        )

    def argmin(
        self,
        dim: Union[Hashable, Sequence[Hashable]] = None,
        axis: int = None,
        keep_attrs: bool = None,
        skipna: bool = None,
    ) -> Union["DataArray", Dict[Hashable, "DataArray"]]:
        """Index or indices of the minimum of the DataArray over one or more dimensions.

        If a sequence is passed to 'dim', then result returned as dict of DataArrays,
        which can be passed directly to isel(). If a single str is passed to 'dim' then
        returns a DataArray with dtype int.

        If there are multiple minima, the indices of the first one found will be
        returned.

        Parameters
        ----------
        dim : hashable, sequence of hashable or ..., optional
            The dimensions over which to find the minimum. By default, finds minimum over
            all dimensions - for now returning an int for backward compatibility, but
            this is deprecated, in future will return a dict with indices for all
            dimensions; to return a dict with all dimensions now, pass '...'.
        axis : int, optional
            Axis over which to apply `argmin`. Only one of the 'dim' and 'axis' arguments
            can be supplied.
        keep_attrs : bool, optional
            If True, the attributes (`attrs`) will be copied from the original
            object to the new one.  If False (default), the new object will be
            returned without attributes.
        skipna : bool, optional
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for float dtypes; other dtypes either do not
            have a sentinel missing value (int) or skipna=True has not been
            implemented (object, datetime64 or timedelta64).

        Returns
        -------
        result : DataArray or dict of DataArray

        See also
        --------
        Variable.argmin, DataArray.idxmin

        Examples
        --------
        >>> array = xr.DataArray([0, 2, -1, 3], dims="x")
        >>> array.min()
        <xarray.DataArray ()>
        array(-1)
        >>> array.argmin()
        <xarray.DataArray ()>
        array(2)
        >>> array.argmin(...)
        {'x': <xarray.DataArray ()>
        array(2)}
        >>> array.isel(array.argmin(...))
        <xarray.DataArray ()>
        array(-1)

        >>> array = xr.DataArray(
        ...     [[[3, 2, 1], [3, 1, 2], [2, 1, 3]], [[1, 3, 2], [2, -5, 1], [2, 3, 1]]],
        ...     dims=("x", "y", "z"),
        ... )
        >>> array.min(dim="x")
        <xarray.DataArray (y: 3, z: 3)>
        array([[ 1,  2,  1],
               [ 2, -5,  1],
               [ 2,  1,  1]])
        Dimensions without coordinates: y, z
        >>> array.argmin(dim="x")
        <xarray.DataArray (y: 3, z: 3)>
        array([[1, 0, 0],
               [1, 1, 1],
               [0, 0, 1]])
        Dimensions without coordinates: y, z
        >>> array.argmin(dim=["x"])
        {'x': <xarray.DataArray (y: 3, z: 3)>
        array([[1, 0, 0],
               [1, 1, 1],
               [0, 0, 1]])
        Dimensions without coordinates: y, z}
        >>> array.min(dim=("x", "z"))
        <xarray.DataArray (y: 3)>
        array([ 1, -5,  1])
        Dimensions without coordinates: y
        >>> array.argmin(dim=["x", "z"])
        {'x': <xarray.DataArray (y: 3)>
        array([0, 1, 0])
        Dimensions without coordinates: y, 'z': <xarray.DataArray (y: 3)>
        array([2, 1, 1])
        Dimensions without coordinates: y}
        >>> array.isel(array.argmin(dim=["x", "z"]))
        <xarray.DataArray (y: 3)>
        array([ 1, -5,  1])
        Dimensions without coordinates: y
        """
        result = self.variable.argmin(dim, axis, keep_attrs, skipna)
        if isinstance(result, dict):
            return {k: self._replace_maybe_drop_dims(v) for k, v in result.items()}
        else:
            return self._replace_maybe_drop_dims(result)

    def argmax(
        self,
        dim: Union[Hashable, Sequence[Hashable]] = None,
        axis: int = None,
        keep_attrs: bool = None,
        skipna: bool = None,
    ) -> Union["DataArray", Dict[Hashable, "DataArray"]]:
        """Index or indices of the maximum of the DataArray over one or more dimensions.

        If a sequence is passed to 'dim', then result returned as dict of DataArrays,
        which can be passed directly to isel(). If a single str is passed to 'dim' then
        returns a DataArray with dtype int.

        If there are multiple maxima, the indices of the first one found will be
        returned.

        Parameters
        ----------
        dim : hashable, sequence of hashable or ..., optional
            The dimensions over which to find the maximum. By default, finds maximum over
            all dimensions - for now returning an int for backward compatibility, but
            this is deprecated, in future will return a dict with indices for all
            dimensions; to return a dict with all dimensions now, pass '...'.
        axis : int, optional
            Axis over which to apply `argmax`. Only one of the 'dim' and 'axis' arguments
            can be supplied.
        keep_attrs : bool, optional
            If True, the attributes (`attrs`) will be copied from the original
            object to the new one.  If False (default), the new object will be
            returned without attributes.
        skipna : bool, optional
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for float dtypes; other dtypes either do not
            have a sentinel missing value (int) or skipna=True has not been
            implemented (object, datetime64 or timedelta64).

        Returns
        -------
        result : DataArray or dict of DataArray

        See also
        --------
        Variable.argmax, DataArray.idxmax

        Examples
        --------
        >>> array = xr.DataArray([0, 2, -1, 3], dims="x")
        >>> array.max()
        <xarray.DataArray ()>
        array(3)
        >>> array.argmax()
        <xarray.DataArray ()>
        array(3)
        >>> array.argmax(...)
        {'x': <xarray.DataArray ()>
        array(3)}
        >>> array.isel(array.argmax(...))
        <xarray.DataArray ()>
        array(3)

        >>> array = xr.DataArray(
        ...     [[[3, 2, 1], [3, 1, 2], [2, 1, 3]], [[1, 3, 2], [2, 5, 1], [2, 3, 1]]],
        ...     dims=("x", "y", "z"),
        ... )
        >>> array.max(dim="x")
        <xarray.DataArray (y: 3, z: 3)>
        array([[3, 3, 2],
               [3, 5, 2],
               [2, 3, 3]])
        Dimensions without coordinates: y, z
        >>> array.argmax(dim="x")
        <xarray.DataArray (y: 3, z: 3)>
        array([[0, 1, 1],
               [0, 1, 0],
               [0, 1, 0]])
        Dimensions without coordinates: y, z
        >>> array.argmax(dim=["x"])
        {'x': <xarray.DataArray (y: 3, z: 3)>
        array([[0, 1, 1],
               [0, 1, 0],
               [0, 1, 0]])
        Dimensions without coordinates: y, z}
        >>> array.max(dim=("x", "z"))
        <xarray.DataArray (y: 3)>
        array([3, 5, 3])
        Dimensions without coordinates: y
        >>> array.argmax(dim=["x", "z"])
        {'x': <xarray.DataArray (y: 3)>
        array([0, 1, 0])
        Dimensions without coordinates: y, 'z': <xarray.DataArray (y: 3)>
        array([0, 1, 2])
        Dimensions without coordinates: y}
        >>> array.isel(array.argmax(dim=["x", "z"]))
        <xarray.DataArray (y: 3)>
        array([3, 5, 3])
        Dimensions without coordinates: y
        """
        result = self.variable.argmax(dim, axis, keep_attrs, skipna)
        if isinstance(result, dict):
            return {k: self._replace_maybe_drop_dims(v) for k, v in result.items()}
        else:
            return self._replace_maybe_drop_dims(result)

    # this needs to be at the end, or mypy will confuse with `str`
    # https://mypy.readthedocs.io/en/latest/common_issues.html#dealing-with-conflicting-names
    str = utils.UncachedAccessor(StringAccessor)


# priority most be higher than Variable to properly work with binary ufuncs
ops.inject_all_ops_and_reduce_methods(DataArray, priority=60)