File: indexing.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (1486 lines) | stat: -rw-r--r-- 52,727 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
import enum
import functools
import operator
from collections import defaultdict
from contextlib import suppress
from datetime import timedelta
from typing import Any, Callable, Iterable, Sequence, Tuple, Union

import numpy as np
import pandas as pd

from . import duck_array_ops, nputils, utils
from .npcompat import DTypeLike
from .pycompat import (
    dask_array_type,
    integer_types,
    is_duck_dask_array,
    sparse_array_type,
)
from .utils import is_dict_like, maybe_cast_to_coords_dtype


def expanded_indexer(key, ndim):
    """Given a key for indexing an ndarray, return an equivalent key which is a
    tuple with length equal to the number of dimensions.

    The expansion is done by replacing all `Ellipsis` items with the right
    number of full slices and then padding the key with full slices so that it
    reaches the appropriate dimensionality.
    """
    if not isinstance(key, tuple):
        # numpy treats non-tuple keys equivalent to tuples of length 1
        key = (key,)
    new_key = []
    # handling Ellipsis right is a little tricky, see:
    # http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing
    found_ellipsis = False
    for k in key:
        if k is Ellipsis:
            if not found_ellipsis:
                new_key.extend((ndim + 1 - len(key)) * [slice(None)])
                found_ellipsis = True
            else:
                new_key.append(slice(None))
        else:
            new_key.append(k)
    if len(new_key) > ndim:
        raise IndexError("too many indices")
    new_key.extend((ndim - len(new_key)) * [slice(None)])
    return tuple(new_key)


def _expand_slice(slice_, size):
    return np.arange(*slice_.indices(size))


def _sanitize_slice_element(x):
    from .dataarray import DataArray
    from .variable import Variable

    if isinstance(x, (Variable, DataArray)):
        x = x.values

    if isinstance(x, np.ndarray):
        if x.ndim != 0:
            raise ValueError(
                f"cannot use non-scalar arrays in a slice for xarray indexing: {x}"
            )
        x = x[()]

    return x


def _asarray_tuplesafe(values):
    """
    Convert values into a numpy array of at most 1-dimension, while preserving
    tuples.

    Adapted from pandas.core.common._asarray_tuplesafe
    """
    if isinstance(values, tuple):
        result = utils.to_0d_object_array(values)
    else:
        result = np.asarray(values)
        if result.ndim == 2:
            result = np.empty(len(values), dtype=object)
            result[:] = values

    return result


def _is_nested_tuple(possible_tuple):
    return isinstance(possible_tuple, tuple) and any(
        isinstance(value, (tuple, list, slice)) for value in possible_tuple
    )


def get_indexer_nd(index, labels, method=None, tolerance=None):
    """Wrapper around :meth:`pandas.Index.get_indexer` supporting n-dimensional
    labels
    """
    flat_labels = np.ravel(labels)
    flat_indexer = index.get_indexer(flat_labels, method=method, tolerance=tolerance)
    indexer = flat_indexer.reshape(labels.shape)
    return indexer


def convert_label_indexer(index, label, index_name="", method=None, tolerance=None):
    """Given a pandas.Index and labels (e.g., from __getitem__) for one
    dimension, return an indexer suitable for indexing an ndarray along that
    dimension. If `index` is a pandas.MultiIndex and depending on `label`,
    return a new pandas.Index or pandas.MultiIndex (otherwise return None).
    """
    new_index = None

    if isinstance(label, slice):
        if method is not None or tolerance is not None:
            raise NotImplementedError(
                "cannot use ``method`` argument if any indexers are slice objects"
            )
        indexer = index.slice_indexer(
            _sanitize_slice_element(label.start),
            _sanitize_slice_element(label.stop),
            _sanitize_slice_element(label.step),
        )
        if not isinstance(indexer, slice):
            # unlike pandas, in xarray we never want to silently convert a
            # slice indexer into an array indexer
            raise KeyError(
                "cannot represent labeled-based slice indexer for dimension "
                f"{index_name!r} with a slice over integer positions; the index is "
                "unsorted or non-unique"
            )

    elif is_dict_like(label):
        is_nested_vals = _is_nested_tuple(tuple(label.values()))
        if not isinstance(index, pd.MultiIndex):
            raise ValueError(
                "cannot use a dict-like object for selection on "
                "a dimension that does not have a MultiIndex"
            )
        elif len(label) == index.nlevels and not is_nested_vals:
            indexer = index.get_loc(tuple(label[k] for k in index.names))
        else:
            for k, v in label.items():
                # index should be an item (i.e. Hashable) not an array-like
                if isinstance(v, Sequence) and not isinstance(v, str):
                    raise ValueError(
                        "Vectorized selection is not "
                        "available along level variable: " + k
                    )
            indexer, new_index = index.get_loc_level(
                tuple(label.values()), level=tuple(label.keys())
            )

            # GH2619. Raise a KeyError if nothing is chosen
            if indexer.dtype.kind == "b" and indexer.sum() == 0:
                raise KeyError(f"{label} not found")

    elif isinstance(label, tuple) and isinstance(index, pd.MultiIndex):
        if _is_nested_tuple(label):
            indexer = index.get_locs(label)
        elif len(label) == index.nlevels:
            indexer = index.get_loc(label)
        else:
            indexer, new_index = index.get_loc_level(
                label, level=list(range(len(label)))
            )
    else:
        label = (
            label
            if getattr(label, "ndim", 1) > 1  # vectorized-indexing
            else _asarray_tuplesafe(label)
        )
        if label.ndim == 0:
            # see https://github.com/pydata/xarray/pull/4292 for details
            label_value = label[()] if label.dtype.kind in "mM" else label.item()
            if isinstance(index, pd.MultiIndex):
                indexer, new_index = index.get_loc_level(label_value, level=0)
            elif isinstance(index, pd.CategoricalIndex):
                if method is not None:
                    raise ValueError(
                        "'method' is not a valid kwarg when indexing using a CategoricalIndex."
                    )
                if tolerance is not None:
                    raise ValueError(
                        "'tolerance' is not a valid kwarg when indexing using a CategoricalIndex."
                    )
                indexer = index.get_loc(label_value)
            else:
                indexer = index.get_loc(label_value, method=method, tolerance=tolerance)
        elif label.dtype.kind == "b":
            indexer = label
        else:
            if isinstance(index, pd.MultiIndex) and label.ndim > 1:
                raise ValueError(
                    "Vectorized selection is not available along "
                    "MultiIndex variable: " + index_name
                )
            indexer = get_indexer_nd(index, label, method, tolerance)
            if np.any(indexer < 0):
                raise KeyError(f"not all values found in index {index_name!r}")
    return indexer, new_index


def get_dim_indexers(data_obj, indexers):
    """Given a xarray data object and label based indexers, return a mapping
    of label indexers with only dimension names as keys.

    It groups multiple level indexers given on a multi-index dimension
    into a single, dictionary indexer for that dimension (Raise a ValueError
    if it is not possible).
    """
    invalid = [
        k
        for k in indexers
        if k not in data_obj.dims and k not in data_obj._level_coords
    ]
    if invalid:
        raise ValueError(f"dimensions or multi-index levels {invalid!r} do not exist")

    level_indexers = defaultdict(dict)
    dim_indexers = {}
    for key, label in indexers.items():
        (dim,) = data_obj[key].dims
        if key != dim:
            # assume here multi-index level indexer
            level_indexers[dim][key] = label
        else:
            dim_indexers[key] = label

    for dim, level_labels in level_indexers.items():
        if dim_indexers.get(dim, False):
            raise ValueError(
                "cannot combine multi-index level indexers with an indexer for "
                f"dimension {dim}"
            )
        dim_indexers[dim] = level_labels

    return dim_indexers


def remap_label_indexers(data_obj, indexers, method=None, tolerance=None):
    """Given an xarray data object and label based indexers, return a mapping
    of equivalent location based indexers. Also return a mapping of updated
    pandas index objects (in case of multi-index level drop).
    """
    if method is not None and not isinstance(method, str):
        raise TypeError("``method`` must be a string")

    pos_indexers = {}
    new_indexes = {}

    dim_indexers = get_dim_indexers(data_obj, indexers)
    for dim, label in dim_indexers.items():
        try:
            index = data_obj.indexes[dim]
        except KeyError:
            # no index for this dimension: reuse the provided labels
            if method is not None or tolerance is not None:
                raise ValueError(
                    "cannot supply ``method`` or ``tolerance`` "
                    "when the indexed dimension does not have "
                    "an associated coordinate."
                )
            pos_indexers[dim] = label
        else:
            coords_dtype = data_obj.coords[dim].dtype
            label = maybe_cast_to_coords_dtype(label, coords_dtype)
            idxr, new_idx = convert_label_indexer(index, label, dim, method, tolerance)
            pos_indexers[dim] = idxr
            if new_idx is not None:
                new_indexes[dim] = new_idx

    return pos_indexers, new_indexes


def _normalize_slice(sl, size):
    """Ensure that given slice only contains positive start and stop values
    (stop can be -1 for full-size slices with negative steps, e.g. [-10::-1])"""
    return slice(*sl.indices(size))


def slice_slice(old_slice, applied_slice, size):
    """Given a slice and the size of the dimension to which it will be applied,
    index it with another slice to return a new slice equivalent to applying
    the slices sequentially
    """
    old_slice = _normalize_slice(old_slice, size)

    size_after_old_slice = len(range(old_slice.start, old_slice.stop, old_slice.step))
    if size_after_old_slice == 0:
        # nothing left after applying first slice
        return slice(0)

    applied_slice = _normalize_slice(applied_slice, size_after_old_slice)

    start = old_slice.start + applied_slice.start * old_slice.step
    if start < 0:
        # nothing left after applying second slice
        # (can only happen for old_slice.step < 0, e.g. [10::-1], [20:])
        return slice(0)

    stop = old_slice.start + applied_slice.stop * old_slice.step
    if stop < 0:
        stop = None

    step = old_slice.step * applied_slice.step

    return slice(start, stop, step)


def _index_indexer_1d(old_indexer, applied_indexer, size):
    assert isinstance(applied_indexer, integer_types + (slice, np.ndarray))
    if isinstance(applied_indexer, slice) and applied_indexer == slice(None):
        # shortcut for the usual case
        return old_indexer
    if isinstance(old_indexer, slice):
        if isinstance(applied_indexer, slice):
            indexer = slice_slice(old_indexer, applied_indexer, size)
        else:
            indexer = _expand_slice(old_indexer, size)[applied_indexer]
    else:
        indexer = old_indexer[applied_indexer]
    return indexer


class ExplicitIndexer:
    """Base class for explicit indexer objects.

    ExplicitIndexer objects wrap a tuple of values given by their ``tuple``
    property. These tuples should always have length equal to the number of
    dimensions on the indexed array.

    Do not instantiate BaseIndexer objects directly: instead, use one of the
    sub-classes BasicIndexer, OuterIndexer or VectorizedIndexer.
    """

    __slots__ = ("_key",)

    def __init__(self, key):
        if type(self) is ExplicitIndexer:
            raise TypeError("cannot instantiate base ExplicitIndexer objects")
        self._key = tuple(key)

    @property
    def tuple(self):
        return self._key

    def __repr__(self):
        return f"{type(self).__name__}({self.tuple})"


def as_integer_or_none(value):
    return None if value is None else operator.index(value)


def as_integer_slice(value):
    start = as_integer_or_none(value.start)
    stop = as_integer_or_none(value.stop)
    step = as_integer_or_none(value.step)
    return slice(start, stop, step)


class BasicIndexer(ExplicitIndexer):
    """Tuple for basic indexing.

    All elements should be int or slice objects. Indexing follows NumPy's
    rules for basic indexing: each axis is independently sliced and axes
    indexed with an integer are dropped from the result.
    """

    __slots__ = ()

    def __init__(self, key):
        if not isinstance(key, tuple):
            raise TypeError(f"key must be a tuple: {key!r}")

        new_key = []
        for k in key:
            if isinstance(k, integer_types):
                k = int(k)
            elif isinstance(k, slice):
                k = as_integer_slice(k)
            else:
                raise TypeError(
                    f"unexpected indexer type for {type(self).__name__}: {k!r}"
                )
            new_key.append(k)

        super().__init__(new_key)


class OuterIndexer(ExplicitIndexer):
    """Tuple for outer/orthogonal indexing.

    All elements should be int, slice or 1-dimensional np.ndarray objects with
    an integer dtype. Indexing is applied independently along each axis, and
    axes indexed with an integer are dropped from the result. This type of
    indexing works like MATLAB/Fortran.
    """

    __slots__ = ()

    def __init__(self, key):
        if not isinstance(key, tuple):
            raise TypeError(f"key must be a tuple: {key!r}")

        new_key = []
        for k in key:
            if isinstance(k, integer_types):
                k = int(k)
            elif isinstance(k, slice):
                k = as_integer_slice(k)
            elif isinstance(k, np.ndarray):
                if not np.issubdtype(k.dtype, np.integer):
                    raise TypeError(
                        f"invalid indexer array, does not have integer dtype: {k!r}"
                    )
                if k.ndim != 1:
                    raise TypeError(
                        f"invalid indexer array for {type(self).__name__}; must have "
                        f"exactly 1 dimension: {k!r}"
                    )
                k = np.asarray(k, dtype=np.int64)
            else:
                raise TypeError(
                    f"unexpected indexer type for {type(self).__name__}: {k!r}"
                )
            new_key.append(k)

        super().__init__(new_key)


class VectorizedIndexer(ExplicitIndexer):
    """Tuple for vectorized indexing.

    All elements should be slice or N-dimensional np.ndarray objects with an
    integer dtype and the same number of dimensions. Indexing follows proposed
    rules for np.ndarray.vindex, which matches NumPy's advanced indexing rules
    (including broadcasting) except sliced axes are always moved to the end:
    https://github.com/numpy/numpy/pull/6256
    """

    __slots__ = ()

    def __init__(self, key):
        if not isinstance(key, tuple):
            raise TypeError(f"key must be a tuple: {key!r}")

        new_key = []
        ndim = None
        for k in key:
            if isinstance(k, slice):
                k = as_integer_slice(k)
            elif isinstance(k, np.ndarray):
                if not np.issubdtype(k.dtype, np.integer):
                    raise TypeError(
                        f"invalid indexer array, does not have integer dtype: {k!r}"
                    )
                if ndim is None:
                    ndim = k.ndim
                elif ndim != k.ndim:
                    ndims = [k.ndim for k in key if isinstance(k, np.ndarray)]
                    raise ValueError(
                        "invalid indexer key: ndarray arguments "
                        f"have different numbers of dimensions: {ndims}"
                    )
                k = np.asarray(k, dtype=np.int64)
            else:
                raise TypeError(
                    f"unexpected indexer type for {type(self).__name__}: {k!r}"
                )
            new_key.append(k)

        super().__init__(new_key)


class ExplicitlyIndexed:
    """Mixin to mark support for Indexer subclasses in indexing."""

    __slots__ = ()


class ExplicitlyIndexedNDArrayMixin(utils.NDArrayMixin, ExplicitlyIndexed):
    __slots__ = ()

    def __array__(self, dtype=None):
        key = BasicIndexer((slice(None),) * self.ndim)
        return np.asarray(self[key], dtype=dtype)


class ImplicitToExplicitIndexingAdapter(utils.NDArrayMixin):
    """Wrap an array, converting tuples into the indicated explicit indexer."""

    __slots__ = ("array", "indexer_cls")

    def __init__(self, array, indexer_cls=BasicIndexer):
        self.array = as_indexable(array)
        self.indexer_cls = indexer_cls

    def __array__(self, dtype=None):
        return np.asarray(self.array, dtype=dtype)

    def __getitem__(self, key):
        key = expanded_indexer(key, self.ndim)
        result = self.array[self.indexer_cls(key)]
        if isinstance(result, ExplicitlyIndexed):
            return type(self)(result, self.indexer_cls)
        else:
            # Sometimes explicitly indexed arrays return NumPy arrays or
            # scalars.
            return result


class LazilyOuterIndexedArray(ExplicitlyIndexedNDArrayMixin):
    """Wrap an array to make basic and outer indexing lazy."""

    __slots__ = ("array", "key")

    def __init__(self, array, key=None):
        """
        Parameters
        ----------
        array : array_like
            Array like object to index.
        key : ExplicitIndexer, optional
            Array indexer. If provided, it is assumed to already be in
            canonical expanded form.
        """
        if isinstance(array, type(self)) and key is None:
            # unwrap
            key = array.key
            array = array.array

        if key is None:
            key = BasicIndexer((slice(None),) * array.ndim)

        self.array = as_indexable(array)
        self.key = key

    def _updated_key(self, new_key):
        iter_new_key = iter(expanded_indexer(new_key.tuple, self.ndim))
        full_key = []
        for size, k in zip(self.array.shape, self.key.tuple):
            if isinstance(k, integer_types):
                full_key.append(k)
            else:
                full_key.append(_index_indexer_1d(k, next(iter_new_key), size))
        full_key = tuple(full_key)

        if all(isinstance(k, integer_types + (slice,)) for k in full_key):
            return BasicIndexer(full_key)
        return OuterIndexer(full_key)

    @property
    def shape(self):
        shape = []
        for size, k in zip(self.array.shape, self.key.tuple):
            if isinstance(k, slice):
                shape.append(len(range(*k.indices(size))))
            elif isinstance(k, np.ndarray):
                shape.append(k.size)
        return tuple(shape)

    def __array__(self, dtype=None):
        array = as_indexable(self.array)
        return np.asarray(array[self.key], dtype=None)

    def transpose(self, order):
        return LazilyVectorizedIndexedArray(self.array, self.key).transpose(order)

    def __getitem__(self, indexer):
        if isinstance(indexer, VectorizedIndexer):
            array = LazilyVectorizedIndexedArray(self.array, self.key)
            return array[indexer]
        return type(self)(self.array, self._updated_key(indexer))

    def __setitem__(self, key, value):
        if isinstance(key, VectorizedIndexer):
            raise NotImplementedError(
                "Lazy item assignment with the vectorized indexer is not yet "
                "implemented. Load your data first by .load() or compute()."
            )
        full_key = self._updated_key(key)
        self.array[full_key] = value

    def __repr__(self):
        return f"{type(self).__name__}(array={self.array!r}, key={self.key!r})"


class LazilyVectorizedIndexedArray(ExplicitlyIndexedNDArrayMixin):
    """Wrap an array to make vectorized indexing lazy."""

    __slots__ = ("array", "key")

    def __init__(self, array, key):
        """
        Parameters
        ----------
        array : array_like
            Array like object to index.
        key : VectorizedIndexer
        """
        if isinstance(key, (BasicIndexer, OuterIndexer)):
            self.key = _outer_to_vectorized_indexer(key, array.shape)
        else:
            self.key = _arrayize_vectorized_indexer(key, array.shape)
        self.array = as_indexable(array)

    @property
    def shape(self):
        return np.broadcast(*self.key.tuple).shape

    def __array__(self, dtype=None):
        return np.asarray(self.array[self.key], dtype=None)

    def _updated_key(self, new_key):
        return _combine_indexers(self.key, self.shape, new_key)

    def __getitem__(self, indexer):
        # If the indexed array becomes a scalar, return LazilyOuterIndexedArray
        if all(isinstance(ind, integer_types) for ind in indexer.tuple):
            key = BasicIndexer(tuple(k[indexer.tuple] for k in self.key.tuple))
            return LazilyOuterIndexedArray(self.array, key)
        return type(self)(self.array, self._updated_key(indexer))

    def transpose(self, order):
        key = VectorizedIndexer(tuple(k.transpose(order) for k in self.key.tuple))
        return type(self)(self.array, key)

    def __setitem__(self, key, value):
        raise NotImplementedError(
            "Lazy item assignment with the vectorized indexer is not yet "
            "implemented. Load your data first by .load() or compute()."
        )

    def __repr__(self):
        return f"{type(self).__name__}(array={self.array!r}, key={self.key!r})"


def _wrap_numpy_scalars(array):
    """Wrap NumPy scalars in 0d arrays."""
    if np.isscalar(array):
        return np.array(array)
    else:
        return array


class CopyOnWriteArray(ExplicitlyIndexedNDArrayMixin):
    __slots__ = ("array", "_copied")

    def __init__(self, array):
        self.array = as_indexable(array)
        self._copied = False

    def _ensure_copied(self):
        if not self._copied:
            self.array = as_indexable(np.array(self.array))
            self._copied = True

    def __array__(self, dtype=None):
        return np.asarray(self.array, dtype=dtype)

    def __getitem__(self, key):
        return type(self)(_wrap_numpy_scalars(self.array[key]))

    def transpose(self, order):
        return self.array.transpose(order)

    def __setitem__(self, key, value):
        self._ensure_copied()
        self.array[key] = value

    def __deepcopy__(self, memo):
        # CopyOnWriteArray is used to wrap backend array objects, which might
        # point to files on disk, so we can't rely on the default deepcopy
        # implementation.
        return type(self)(self.array)


class MemoryCachedArray(ExplicitlyIndexedNDArrayMixin):
    __slots__ = ("array",)

    def __init__(self, array):
        self.array = _wrap_numpy_scalars(as_indexable(array))

    def _ensure_cached(self):
        if not isinstance(self.array, NumpyIndexingAdapter):
            self.array = NumpyIndexingAdapter(np.asarray(self.array))

    def __array__(self, dtype=None):
        self._ensure_cached()
        return np.asarray(self.array, dtype=dtype)

    def __getitem__(self, key):
        return type(self)(_wrap_numpy_scalars(self.array[key]))

    def transpose(self, order):
        return self.array.transpose(order)

    def __setitem__(self, key, value):
        self.array[key] = value


def as_indexable(array):
    """
    This function always returns a ExplicitlyIndexed subclass,
    so that the vectorized indexing is always possible with the returned
    object.
    """
    if isinstance(array, ExplicitlyIndexed):
        return array
    if isinstance(array, np.ndarray):
        return NumpyIndexingAdapter(array)
    if isinstance(array, pd.Index):
        return PandasIndexAdapter(array)
    if isinstance(array, dask_array_type):
        return DaskIndexingAdapter(array)
    if hasattr(array, "__array_function__"):
        return NdArrayLikeIndexingAdapter(array)

    raise TypeError("Invalid array type: {}".format(type(array)))


def _outer_to_vectorized_indexer(key, shape):
    """Convert an OuterIndexer into an vectorized indexer.

    Parameters
    ----------
    key : Outer/Basic Indexer
        An indexer to convert.
    shape : tuple
        Shape of the array subject to the indexing.

    Returns
    -------
    VectorizedIndexer
        Tuple suitable for use to index a NumPy array with vectorized indexing.
        Each element is an array: broadcasting them together gives the shape
        of the result.
    """
    key = key.tuple

    n_dim = len([k for k in key if not isinstance(k, integer_types)])
    i_dim = 0
    new_key = []
    for k, size in zip(key, shape):
        if isinstance(k, integer_types):
            new_key.append(np.array(k).reshape((1,) * n_dim))
        else:  # np.ndarray or slice
            if isinstance(k, slice):
                k = np.arange(*k.indices(size))
            assert k.dtype.kind in {"i", "u"}
            shape = [(1,) * i_dim + (k.size,) + (1,) * (n_dim - i_dim - 1)]
            new_key.append(k.reshape(*shape))
            i_dim += 1
    return VectorizedIndexer(tuple(new_key))


def _outer_to_numpy_indexer(key, shape):
    """Convert an OuterIndexer into an indexer for NumPy.

    Parameters
    ----------
    key : Basic/OuterIndexer
        An indexer to convert.
    shape : tuple
        Shape of the array subject to the indexing.

    Returns
    -------
    tuple
        Tuple suitable for use to index a NumPy array.
    """
    if len([k for k in key.tuple if not isinstance(k, slice)]) <= 1:
        # If there is only one vector and all others are slice,
        # it can be safely used in mixed basic/advanced indexing.
        # Boolean index should already be converted to integer array.
        return key.tuple
    else:
        return _outer_to_vectorized_indexer(key, shape).tuple


def _combine_indexers(old_key, shape, new_key):
    """Combine two indexers.

    Parameters
    ----------
    old_key: ExplicitIndexer
        The first indexer for the original array
    shape: tuple of ints
        Shape of the original array to be indexed by old_key
    new_key:
        The second indexer for indexing original[old_key]
    """
    if not isinstance(old_key, VectorizedIndexer):
        old_key = _outer_to_vectorized_indexer(old_key, shape)
    if len(old_key.tuple) == 0:
        return new_key

    new_shape = np.broadcast(*old_key.tuple).shape
    if isinstance(new_key, VectorizedIndexer):
        new_key = _arrayize_vectorized_indexer(new_key, new_shape)
    else:
        new_key = _outer_to_vectorized_indexer(new_key, new_shape)

    return VectorizedIndexer(
        tuple(o[new_key.tuple] for o in np.broadcast_arrays(*old_key.tuple))
    )


@enum.unique
class IndexingSupport(enum.Enum):
    # for backends that support only basic indexer
    BASIC = 0
    # for backends that support basic / outer indexer
    OUTER = 1
    # for backends that support outer indexer including at most 1 vector.
    OUTER_1VECTOR = 2
    # for backends that support full vectorized indexer.
    VECTORIZED = 3


def explicit_indexing_adapter(
    key: ExplicitIndexer,
    shape: Tuple[int, ...],
    indexing_support: IndexingSupport,
    raw_indexing_method: Callable,
) -> Any:
    """Support explicit indexing by delegating to a raw indexing method.

    Outer and/or vectorized indexers are supported by indexing a second time
    with a NumPy array.

    Parameters
    ----------
    key : ExplicitIndexer
        Explicit indexing object.
    shape : Tuple[int, ...]
        Shape of the indexed array.
    indexing_support : IndexingSupport enum
        Form of indexing supported by raw_indexing_method.
    raw_indexing_method: callable
        Function (like ndarray.__getitem__) that when called with indexing key
        in the form of a tuple returns an indexed array.

    Returns
    -------
    Indexing result, in the form of a duck numpy-array.
    """
    raw_key, numpy_indices = decompose_indexer(key, shape, indexing_support)
    result = raw_indexing_method(raw_key.tuple)
    if numpy_indices.tuple:
        # index the loaded np.ndarray
        result = NumpyIndexingAdapter(np.asarray(result))[numpy_indices]
    return result


def decompose_indexer(
    indexer: ExplicitIndexer, shape: Tuple[int, ...], indexing_support: IndexingSupport
) -> Tuple[ExplicitIndexer, ExplicitIndexer]:
    if isinstance(indexer, VectorizedIndexer):
        return _decompose_vectorized_indexer(indexer, shape, indexing_support)
    if isinstance(indexer, (BasicIndexer, OuterIndexer)):
        return _decompose_outer_indexer(indexer, shape, indexing_support)
    raise TypeError(f"unexpected key type: {indexer}")


def _decompose_slice(key, size):
    """convert a slice to successive two slices. The first slice always has
    a positive step.
    """
    start, stop, step = key.indices(size)
    if step > 0:
        # If key already has a positive step, use it as is in the backend
        return key, slice(None)
    else:
        # determine stop precisely for step > 1 case
        # e.g. [98:2:-2] -> [98:3:-2]
        stop = start + int((stop - start - 1) / step) * step + 1
        start, stop = stop + 1, start + 1
        return slice(start, stop, -step), slice(None, None, -1)


def _decompose_vectorized_indexer(
    indexer: VectorizedIndexer,
    shape: Tuple[int, ...],
    indexing_support: IndexingSupport,
) -> Tuple[ExplicitIndexer, ExplicitIndexer]:
    """
    Decompose vectorized indexer to the successive two indexers, where the
    first indexer will be used to index backend arrays, while the second one
    is used to index loaded on-memory np.ndarray.

    Parameters
    ----------
    indexer: VectorizedIndexer
    indexing_support: one of IndexerSupport entries

    Returns
    -------
    backend_indexer: OuterIndexer or BasicIndexer
    np_indexers: an ExplicitIndexer (VectorizedIndexer / BasicIndexer)

    Notes
    -----
    This function is used to realize the vectorized indexing for the backend
    arrays that only support basic or outer indexing.

    As an example, let us consider to index a few elements from a backend array
    with a vectorized indexer ([0, 3, 1], [2, 3, 2]).
    Even if the backend array only supports outer indexing, it is more
    efficient to load a subslice of the array than loading the entire array,

    >>> array = np.arange(36).reshape(6, 6)
    >>> backend_indexer = OuterIndexer((np.array([0, 1, 3]), np.array([2, 3])))
    >>> # load subslice of the array
    ... array = NumpyIndexingAdapter(array)[backend_indexer]
    >>> np_indexer = VectorizedIndexer((np.array([0, 2, 1]), np.array([0, 1, 0])))
    >>> # vectorized indexing for on-memory np.ndarray.
    ... NumpyIndexingAdapter(array)[np_indexer]
    array([ 2, 21,  8])
    """
    assert isinstance(indexer, VectorizedIndexer)

    if indexing_support is IndexingSupport.VECTORIZED:
        return indexer, BasicIndexer(())

    backend_indexer_elems = []
    np_indexer_elems = []
    # convert negative indices
    indexer_elems = [
        np.where(k < 0, k + s, k) if isinstance(k, np.ndarray) else k
        for k, s in zip(indexer.tuple, shape)
    ]

    for k, s in zip(indexer_elems, shape):
        if isinstance(k, slice):
            # If it is a slice, then we will slice it as-is
            # (but make its step positive) in the backend,
            # and then use all of it (slice(None)) for the in-memory portion.
            bk_slice, np_slice = _decompose_slice(k, s)
            backend_indexer_elems.append(bk_slice)
            np_indexer_elems.append(np_slice)
        else:
            # If it is a (multidimensional) np.ndarray, just pickup the used
            # keys without duplication and store them as a 1d-np.ndarray.
            oind, vind = np.unique(k, return_inverse=True)
            backend_indexer_elems.append(oind)
            np_indexer_elems.append(vind.reshape(*k.shape))

    backend_indexer = OuterIndexer(tuple(backend_indexer_elems))
    np_indexer = VectorizedIndexer(tuple(np_indexer_elems))

    if indexing_support is IndexingSupport.OUTER:
        return backend_indexer, np_indexer

    # If the backend does not support outer indexing,
    # backend_indexer (OuterIndexer) is also decomposed.
    backend_indexer1, np_indexer1 = _decompose_outer_indexer(
        backend_indexer, shape, indexing_support
    )
    np_indexer = _combine_indexers(np_indexer1, shape, np_indexer)
    return backend_indexer1, np_indexer


def _decompose_outer_indexer(
    indexer: Union[BasicIndexer, OuterIndexer],
    shape: Tuple[int, ...],
    indexing_support: IndexingSupport,
) -> Tuple[ExplicitIndexer, ExplicitIndexer]:
    """
    Decompose outer indexer to the successive two indexers, where the
    first indexer will be used to index backend arrays, while the second one
    is used to index the loaded on-memory np.ndarray.

    Parameters
    ----------
    indexer: OuterIndexer or BasicIndexer
    indexing_support: One of the entries of IndexingSupport

    Returns
    -------
    backend_indexer: OuterIndexer or BasicIndexer
    np_indexers: an ExplicitIndexer (OuterIndexer / BasicIndexer)

    Notes
    -----
    This function is used to realize the vectorized indexing for the backend
    arrays that only support basic or outer indexing.

    As an example, let us consider to index a few elements from a backend array
    with a orthogonal indexer ([0, 3, 1], [2, 3, 2]).
    Even if the backend array only supports basic indexing, it is more
    efficient to load a subslice of the array than loading the entire array,

    >>> array = np.arange(36).reshape(6, 6)
    >>> backend_indexer = BasicIndexer((slice(0, 3), slice(2, 4)))
    >>> # load subslice of the array
    ... array = NumpyIndexingAdapter(array)[backend_indexer]
    >>> np_indexer = OuterIndexer((np.array([0, 2, 1]), np.array([0, 1, 0])))
    >>> # outer indexing for on-memory np.ndarray.
    ... NumpyIndexingAdapter(array)[np_indexer]
    array([[ 2,  3,  2],
           [14, 15, 14],
           [ 8,  9,  8]])
    """
    if indexing_support == IndexingSupport.VECTORIZED:
        return indexer, BasicIndexer(())
    assert isinstance(indexer, (OuterIndexer, BasicIndexer))

    backend_indexer = []
    np_indexer = []
    # make indexer positive
    pos_indexer = []
    for k, s in zip(indexer.tuple, shape):
        if isinstance(k, np.ndarray):
            pos_indexer.append(np.where(k < 0, k + s, k))
        elif isinstance(k, integer_types) and k < 0:
            pos_indexer.append(k + s)
        else:
            pos_indexer.append(k)
    indexer_elems = pos_indexer

    if indexing_support is IndexingSupport.OUTER_1VECTOR:
        # some backends such as h5py supports only 1 vector in indexers
        # We choose the most efficient axis
        gains = [
            (np.max(k) - np.min(k) + 1.0) / len(np.unique(k))
            if isinstance(k, np.ndarray)
            else 0
            for k in indexer_elems
        ]
        array_index = np.argmax(np.array(gains)) if len(gains) > 0 else None

        for i, (k, s) in enumerate(zip(indexer_elems, shape)):
            if isinstance(k, np.ndarray) and i != array_index:
                # np.ndarray key is converted to slice that covers the entire
                # entries of this key.
                backend_indexer.append(slice(np.min(k), np.max(k) + 1))
                np_indexer.append(k - np.min(k))
            elif isinstance(k, np.ndarray):
                # Remove duplicates and sort them in the increasing order
                pkey, ekey = np.unique(k, return_inverse=True)
                backend_indexer.append(pkey)
                np_indexer.append(ekey)
            elif isinstance(k, integer_types):
                backend_indexer.append(k)
            else:  # slice:  convert positive step slice for backend
                bk_slice, np_slice = _decompose_slice(k, s)
                backend_indexer.append(bk_slice)
                np_indexer.append(np_slice)

        return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer)))

    if indexing_support == IndexingSupport.OUTER:
        for k, s in zip(indexer_elems, shape):
            if isinstance(k, slice):
                # slice:  convert positive step slice for backend
                bk_slice, np_slice = _decompose_slice(k, s)
                backend_indexer.append(bk_slice)
                np_indexer.append(np_slice)
            elif isinstance(k, integer_types):
                backend_indexer.append(k)
            elif isinstance(k, np.ndarray) and (np.diff(k) >= 0).all():
                backend_indexer.append(k)
                np_indexer.append(slice(None))
            else:
                # Remove duplicates and sort them in the increasing order
                oind, vind = np.unique(k, return_inverse=True)
                backend_indexer.append(oind)
                np_indexer.append(vind.reshape(*k.shape))

        return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer)))

    # basic indexer
    assert indexing_support == IndexingSupport.BASIC

    for k, s in zip(indexer_elems, shape):
        if isinstance(k, np.ndarray):
            # np.ndarray key is converted to slice that covers the entire
            # entries of this key.
            backend_indexer.append(slice(np.min(k), np.max(k) + 1))
            np_indexer.append(k - np.min(k))
        elif isinstance(k, integer_types):
            backend_indexer.append(k)
        else:  # slice:  convert positive step slice for backend
            bk_slice, np_slice = _decompose_slice(k, s)
            backend_indexer.append(bk_slice)
            np_indexer.append(np_slice)

    return (BasicIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer)))


def _arrayize_vectorized_indexer(indexer, shape):
    """ Return an identical vindex but slices are replaced by arrays """
    slices = [v for v in indexer.tuple if isinstance(v, slice)]
    if len(slices) == 0:
        return indexer

    arrays = [v for v in indexer.tuple if isinstance(v, np.ndarray)]
    n_dim = arrays[0].ndim if len(arrays) > 0 else 0
    i_dim = 0
    new_key = []
    for v, size in zip(indexer.tuple, shape):
        if isinstance(v, np.ndarray):
            new_key.append(np.reshape(v, v.shape + (1,) * len(slices)))
        else:  # slice
            shape = (1,) * (n_dim + i_dim) + (-1,) + (1,) * (len(slices) - i_dim - 1)
            new_key.append(np.arange(*v.indices(size)).reshape(shape))
            i_dim += 1
    return VectorizedIndexer(tuple(new_key))


def _dask_array_with_chunks_hint(array, chunks):
    """Create a dask array using the chunks hint for dimensions of size > 1."""
    import dask.array as da

    if len(chunks) < array.ndim:
        raise ValueError("not enough chunks in hint")
    new_chunks = []
    for chunk, size in zip(chunks, array.shape):
        new_chunks.append(chunk if size > 1 else (1,))
    return da.from_array(array, new_chunks)


def _logical_any(args):
    return functools.reduce(operator.or_, args)


def _masked_result_drop_slice(key, data=None):

    key = (k for k in key if not isinstance(k, slice))
    chunks_hint = getattr(data, "chunks", None)

    new_keys = []
    for k in key:
        if isinstance(k, np.ndarray):
            if is_duck_dask_array(data):
                new_keys.append(_dask_array_with_chunks_hint(k, chunks_hint))
            elif isinstance(data, sparse_array_type):
                import sparse

                new_keys.append(sparse.COO.from_numpy(k))
            else:
                new_keys.append(k)
        else:
            new_keys.append(k)

    mask = _logical_any(k == -1 for k in new_keys)
    return mask


def create_mask(indexer, shape, data=None):
    """Create a mask for indexing with a fill-value.

    Parameters
    ----------
    indexer : ExplicitIndexer
        Indexer with -1 in integer or ndarray value to indicate locations in
        the result that should be masked.
    shape : tuple
        Shape of the array being indexed.
    data : optional
        Data for which mask is being created. If data is a dask arrays, its chunks
        are used as a hint for chunks on the resulting mask. If data is a sparse
        array, the returned mask is also a sparse array.

    Returns
    -------
    mask : bool, np.ndarray, SparseArray or dask.array.Array with dtype=bool
        Same type as data. Has the same shape as the indexing result.
    """
    if isinstance(indexer, OuterIndexer):
        key = _outer_to_vectorized_indexer(indexer, shape).tuple
        assert not any(isinstance(k, slice) for k in key)
        mask = _masked_result_drop_slice(key, data)

    elif isinstance(indexer, VectorizedIndexer):
        key = indexer.tuple
        base_mask = _masked_result_drop_slice(key, data)
        slice_shape = tuple(
            np.arange(*k.indices(size)).size
            for k, size in zip(key, shape)
            if isinstance(k, slice)
        )
        expanded_mask = base_mask[(Ellipsis,) + (np.newaxis,) * len(slice_shape)]
        mask = duck_array_ops.broadcast_to(expanded_mask, base_mask.shape + slice_shape)

    elif isinstance(indexer, BasicIndexer):
        mask = any(k == -1 for k in indexer.tuple)

    else:
        raise TypeError("unexpected key type: {}".format(type(indexer)))

    return mask


def _posify_mask_subindexer(index):
    """Convert masked indices in a flat array to the nearest unmasked index.

    Parameters
    ----------
    index : np.ndarray
        One dimensional ndarray with dtype=int.

    Returns
    -------
    np.ndarray
        One dimensional ndarray with all values equal to -1 replaced by an
        adjacent non-masked element.
    """
    masked = index == -1
    unmasked_locs = np.flatnonzero(~masked)
    if not unmasked_locs.size:
        # indexing unmasked_locs is invalid
        return np.zeros_like(index)
    masked_locs = np.flatnonzero(masked)
    prev_value = np.maximum(0, np.searchsorted(unmasked_locs, masked_locs) - 1)
    new_index = index.copy()
    new_index[masked_locs] = index[unmasked_locs[prev_value]]
    return new_index


def posify_mask_indexer(indexer):
    """Convert masked values (-1) in an indexer to nearest unmasked values.

    This routine is useful for dask, where it can be much faster to index
    adjacent points than arbitrary points from the end of an array.

    Parameters
    ----------
    indexer : ExplicitIndexer
        Input indexer.

    Returns
    -------
    ExplicitIndexer
        Same type of input, with all values in ndarray keys equal to -1
        replaced by an adjacent non-masked element.
    """
    key = tuple(
        _posify_mask_subindexer(k.ravel()).reshape(k.shape)
        if isinstance(k, np.ndarray)
        else k
        for k in indexer.tuple
    )
    return type(indexer)(key)


def is_fancy_indexer(indexer: Any) -> bool:
    """Return False if indexer is a int, slice, a 1-dimensional list, or a 0 or
    1-dimensional ndarray; in all other cases return True
    """
    if isinstance(indexer, (int, slice)):
        return False
    if isinstance(indexer, np.ndarray):
        return indexer.ndim > 1
    if isinstance(indexer, list):
        return bool(indexer) and not isinstance(indexer[0], int)
    return True


class NumpyIndexingAdapter(ExplicitlyIndexedNDArrayMixin):
    """Wrap a NumPy array to use explicit indexing."""

    __slots__ = ("array",)

    def __init__(self, array):
        # In NumpyIndexingAdapter we only allow to store bare np.ndarray
        if not isinstance(array, np.ndarray):
            raise TypeError(
                "NumpyIndexingAdapter only wraps np.ndarray. "
                "Trying to wrap {}".format(type(array))
            )
        self.array = array

    def _indexing_array_and_key(self, key):
        if isinstance(key, OuterIndexer):
            array = self.array
            key = _outer_to_numpy_indexer(key, self.array.shape)
        elif isinstance(key, VectorizedIndexer):
            array = nputils.NumpyVIndexAdapter(self.array)
            key = key.tuple
        elif isinstance(key, BasicIndexer):
            array = self.array
            # We want 0d slices rather than scalars. This is achieved by
            # appending an ellipsis (see
            # https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#detailed-notes).
            key = key.tuple + (Ellipsis,)
        else:
            raise TypeError("unexpected key type: {}".format(type(key)))

        return array, key

    def transpose(self, order):
        return self.array.transpose(order)

    def __getitem__(self, key):
        array, key = self._indexing_array_and_key(key)
        return array[key]

    def __setitem__(self, key, value):
        array, key = self._indexing_array_and_key(key)
        try:
            array[key] = value
        except ValueError:
            # More informative exception if read-only view
            if not array.flags.writeable and not array.flags.owndata:
                raise ValueError(
                    "Assignment destination is a view.  "
                    "Do you want to .copy() array first?"
                )
            else:
                raise


class NdArrayLikeIndexingAdapter(NumpyIndexingAdapter):
    __slots__ = ("array",)

    def __init__(self, array):
        if not hasattr(array, "__array_function__"):
            raise TypeError(
                "NdArrayLikeIndexingAdapter must wrap an object that "
                "implements the __array_function__ protocol"
            )
        self.array = array


class DaskIndexingAdapter(ExplicitlyIndexedNDArrayMixin):
    """Wrap a dask array to support explicit indexing."""

    __slots__ = ("array",)

    def __init__(self, array):
        """This adapter is created in Variable.__getitem__ in
        Variable._broadcast_indexes.
        """
        self.array = array

    def __getitem__(self, key):

        if not isinstance(key, VectorizedIndexer):
            # if possible, short-circuit when keys are effectively slice(None)
            # This preserves dask name and passes lazy array equivalence checks
            # (see duck_array_ops.lazy_array_equiv)
            rewritten_indexer = False
            new_indexer = []
            for idim, k in enumerate(key.tuple):
                if isinstance(k, Iterable) and duck_array_ops.array_equiv(
                    k, np.arange(self.array.shape[idim])
                ):
                    new_indexer.append(slice(None))
                    rewritten_indexer = True
                else:
                    new_indexer.append(k)
            if rewritten_indexer:
                key = type(key)(tuple(new_indexer))

        if isinstance(key, BasicIndexer):
            return self.array[key.tuple]
        elif isinstance(key, VectorizedIndexer):
            return self.array.vindex[key.tuple]
        else:
            assert isinstance(key, OuterIndexer)
            key = key.tuple
            try:
                return self.array[key]
            except NotImplementedError:
                # manual orthogonal indexing.
                # TODO: port this upstream into dask in a saner way.
                value = self.array
                for axis, subkey in reversed(list(enumerate(key))):
                    value = value[(slice(None),) * axis + (subkey,)]
                return value

    def __setitem__(self, key, value):
        raise TypeError(
            "this variable's data is stored in a dask array, "
            "which does not support item assignment. To "
            "assign to this variable, you must first load it "
            "into memory explicitly using the .load() "
            "method or accessing its .values attribute."
        )

    def transpose(self, order):
        return self.array.transpose(order)


class PandasIndexAdapter(ExplicitlyIndexedNDArrayMixin):
    """Wrap a pandas.Index to preserve dtypes and handle explicit indexing."""

    __slots__ = ("array", "_dtype")

    def __init__(self, array: Any, dtype: DTypeLike = None):
        self.array = utils.safe_cast_to_index(array)
        if dtype is None:
            if isinstance(array, pd.PeriodIndex):
                dtype = np.dtype("O")
            elif hasattr(array, "categories"):
                # category isn't a real numpy dtype
                dtype = array.categories.dtype
            elif not utils.is_valid_numpy_dtype(array.dtype):
                dtype = np.dtype("O")
            else:
                dtype = array.dtype
        else:
            dtype = np.dtype(dtype)
        self._dtype = dtype

    @property
    def dtype(self) -> np.dtype:
        return self._dtype

    def __array__(self, dtype: DTypeLike = None) -> np.ndarray:
        if dtype is None:
            dtype = self.dtype
        array = self.array
        if isinstance(array, pd.PeriodIndex):
            with suppress(AttributeError):
                # this might not be public API
                array = array.astype("object")
        return np.asarray(array.values, dtype=dtype)

    @property
    def shape(self) -> Tuple[int]:
        return (len(self.array),)

    def __getitem__(
        self, indexer
    ) -> Union[NumpyIndexingAdapter, np.ndarray, np.datetime64, np.timedelta64]:
        key = indexer.tuple
        if isinstance(key, tuple) and len(key) == 1:
            # unpack key so it can index a pandas.Index object (pandas.Index
            # objects don't like tuples)
            (key,) = key

        if getattr(key, "ndim", 0) > 1:  # Return np-array if multidimensional
            return NumpyIndexingAdapter(self.array.values)[indexer]

        result = self.array[key]

        if isinstance(result, pd.Index):
            result = PandasIndexAdapter(result, dtype=self.dtype)
        else:
            # result is a scalar
            if result is pd.NaT:
                # work around the impossibility of casting NaT with asarray
                # note: it probably would be better in general to return
                # pd.Timestamp rather np.than datetime64 but this is easier
                # (for now)
                result = np.datetime64("NaT", "ns")
            elif isinstance(result, timedelta):
                result = np.timedelta64(getattr(result, "value", result), "ns")
            elif isinstance(result, pd.Timestamp):
                # Work around for GH: pydata/xarray#1932 and numpy/numpy#10668
                # numpy fails to convert pd.Timestamp to np.datetime64[ns]
                result = np.asarray(result.to_datetime64())
            elif self.dtype != object:
                result = np.asarray(result, dtype=self.dtype)

            # as for numpy.ndarray indexing, we always want the result to be
            # a NumPy array.
            result = utils.to_0d_array(result)

        return result

    def transpose(self, order) -> pd.Index:
        return self.array  # self.array should be always one-dimensional

    def __repr__(self) -> str:
        return "{}(array={!r}, dtype={!r})".format(
            type(self).__name__, self.array, self.dtype
        )

    def copy(self, deep: bool = True) -> "PandasIndexAdapter":
        # Not the same as just writing `self.array.copy(deep=deep)`, as
        # shallow copies of the underlying numpy.ndarrays become deep ones
        # upon pickling
        # >>> len(pickle.dumps((self.array, self.array)))
        # 4000281
        # >>> len(pickle.dumps((self.array, self.array.copy(deep=False))))
        # 8000341
        array = self.array.copy(deep=True) if deep else self.array
        return PandasIndexAdapter(array, self._dtype)