1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
from typing import (
TYPE_CHECKING,
AbstractSet,
Any,
Dict,
Hashable,
Iterable,
List,
Mapping,
NamedTuple,
Optional,
Sequence,
Set,
Tuple,
Union,
)
import pandas as pd
from . import dtypes, pdcompat
from .alignment import deep_align
from .duck_array_ops import lazy_array_equiv
from .utils import Frozen, compat_dict_union, dict_equiv
from .variable import Variable, as_variable, assert_unique_multiindex_level_names
if TYPE_CHECKING:
from .coordinates import Coordinates
from .dataarray import DataArray
from .dataset import Dataset
DimsLike = Union[Hashable, Sequence[Hashable]]
ArrayLike = Any
VariableLike = Union[
ArrayLike,
Tuple[DimsLike, ArrayLike],
Tuple[DimsLike, ArrayLike, Mapping],
Tuple[DimsLike, ArrayLike, Mapping, Mapping],
]
XarrayValue = Union[DataArray, Variable, VariableLike]
DatasetLike = Union[Dataset, Mapping[Hashable, XarrayValue]]
CoercibleValue = Union[XarrayValue, pd.Series, pd.DataFrame]
CoercibleMapping = Union[Dataset, Mapping[Hashable, CoercibleValue]]
PANDAS_TYPES = (pd.Series, pd.DataFrame, pdcompat.Panel)
_VALID_COMPAT = Frozen(
{
"identical": 0,
"equals": 1,
"broadcast_equals": 2,
"minimal": 3,
"no_conflicts": 4,
"override": 5,
}
)
def broadcast_dimension_size(variables: List[Variable]) -> Dict[Hashable, int]:
"""Extract dimension sizes from a dictionary of variables.
Raises ValueError if any dimensions have different sizes.
"""
dims: Dict[Hashable, int] = {}
for var in variables:
for dim, size in zip(var.dims, var.shape):
if dim in dims and size != dims[dim]:
raise ValueError("index %r not aligned" % dim)
dims[dim] = size
return dims
class MergeError(ValueError):
"""Error class for merge failures due to incompatible arguments."""
# inherits from ValueError for backward compatibility
# TODO: move this to an xarray.exceptions module?
def unique_variable(
name: Hashable,
variables: List[Variable],
compat: str = "broadcast_equals",
equals: bool = None,
) -> Variable:
"""Return the unique variable from a list of variables or raise MergeError.
Parameters
----------
name : hashable
Name for this variable.
variables : list of Variable
List of Variable objects, all of which go by the same name in different
inputs.
compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional
Type of equality check to use.
equals : None or bool, optional
corresponding to result of compat test
Returns
-------
Variable to use in the result.
Raises
------
MergeError: if any of the variables are not equal.
"""
out = variables[0]
if len(variables) == 1 or compat == "override":
return out
combine_method = None
if compat == "minimal":
compat = "broadcast_equals"
if compat == "broadcast_equals":
dim_lengths = broadcast_dimension_size(variables)
out = out.set_dims(dim_lengths)
if compat == "no_conflicts":
combine_method = "fillna"
if equals is None:
# first check without comparing values i.e. no computes
for var in variables[1:]:
equals = getattr(out, compat)(var, equiv=lazy_array_equiv)
if equals is not True:
break
if equals is None:
# now compare values with minimum number of computes
out = out.compute()
for var in variables[1:]:
equals = getattr(out, compat)(var)
if not equals:
break
if not equals:
raise MergeError(
f"conflicting values for variable {name!r} on objects to be combined. "
"You can skip this check by specifying compat='override'."
)
if combine_method:
for var in variables[1:]:
out = getattr(out, combine_method)(var)
return out
def _assert_compat_valid(compat):
if compat not in _VALID_COMPAT:
raise ValueError(
"compat={!r} invalid: must be {}".format(compat, set(_VALID_COMPAT))
)
MergeElement = Tuple[Variable, Optional[pd.Index]]
def merge_collected(
grouped: Dict[Hashable, List[MergeElement]],
prioritized: Mapping[Hashable, MergeElement] = None,
compat: str = "minimal",
) -> Tuple[Dict[Hashable, Variable], Dict[Hashable, pd.Index]]:
"""Merge dicts of variables, while resolving conflicts appropriately.
Parameters
----------
grouped : mapping
prioritized : mapping
compat : str
Type of equality check to use when checking for conflicts.
Returns
-------
Dict with keys taken by the union of keys on list_of_mappings,
and Variable values corresponding to those that should be found on the
merged result.
"""
if prioritized is None:
prioritized = {}
_assert_compat_valid(compat)
merged_vars: Dict[Hashable, Variable] = {}
merged_indexes: Dict[Hashable, pd.Index] = {}
for name, elements_list in grouped.items():
if name in prioritized:
variable, index = prioritized[name]
merged_vars[name] = variable
if index is not None:
merged_indexes[name] = index
else:
indexed_elements = [
(variable, index)
for variable, index in elements_list
if index is not None
]
if indexed_elements:
# TODO(shoyer): consider adjusting this logic. Are we really
# OK throwing away variable without an index in favor of
# indexed variables, without even checking if values match?
variable, index = indexed_elements[0]
for _, other_index in indexed_elements[1:]:
if not index.equals(other_index):
raise MergeError(
"conflicting values for index %r on objects to be "
"combined:\nfirst value: %r\nsecond value: %r"
% (name, index, other_index)
)
if compat == "identical":
for other_variable, _ in indexed_elements[1:]:
if not dict_equiv(variable.attrs, other_variable.attrs):
raise MergeError(
"conflicting attribute values on combined "
"variable %r:\nfirst value: %r\nsecond value: %r"
% (name, variable.attrs, other_variable.attrs)
)
merged_vars[name] = variable
merged_indexes[name] = index
else:
variables = [variable for variable, _ in elements_list]
try:
merged_vars[name] = unique_variable(name, variables, compat)
except MergeError:
if compat != "minimal":
# we need more than "minimal" compatibility (for which
# we drop conflicting coordinates)
raise
return merged_vars, merged_indexes
def collect_variables_and_indexes(
list_of_mappings: "List[DatasetLike]",
) -> Dict[Hashable, List[MergeElement]]:
"""Collect variables and indexes from list of mappings of xarray objects.
Mappings must either be Dataset objects, or have values of one of the
following types:
- an xarray.Variable
- a tuple `(dims, data[, attrs[, encoding]])` that can be converted in
an xarray.Variable
- or an xarray.DataArray
"""
from .dataarray import DataArray
from .dataset import Dataset
grouped: Dict[Hashable, List[Tuple[Variable, pd.Index]]] = {}
def append(name, variable, index):
values = grouped.setdefault(name, [])
values.append((variable, index))
def append_all(variables, indexes):
for name, variable in variables.items():
append(name, variable, indexes.get(name))
for mapping in list_of_mappings:
if isinstance(mapping, Dataset):
append_all(mapping.variables, mapping.indexes)
continue
for name, variable in mapping.items():
if isinstance(variable, DataArray):
coords = variable._coords.copy() # use private API for speed
indexes = dict(variable.indexes)
# explicitly overwritten variables should take precedence
coords.pop(name, None)
indexes.pop(name, None)
append_all(coords, indexes)
variable = as_variable(variable, name=name)
if variable.dims == (name,):
variable = variable.to_index_variable()
index = variable.to_index()
else:
index = None
append(name, variable, index)
return grouped
def collect_from_coordinates(
list_of_coords: "List[Coordinates]",
) -> Dict[Hashable, List[MergeElement]]:
"""Collect variables and indexes to be merged from Coordinate objects."""
grouped: Dict[Hashable, List[Tuple[Variable, pd.Index]]] = {}
for coords in list_of_coords:
variables = coords.variables
indexes = coords.indexes
for name, variable in variables.items():
value = grouped.setdefault(name, [])
value.append((variable, indexes.get(name)))
return grouped
def merge_coordinates_without_align(
objects: "List[Coordinates]",
prioritized: Mapping[Hashable, MergeElement] = None,
exclude_dims: AbstractSet = frozenset(),
) -> Tuple[Dict[Hashable, Variable], Dict[Hashable, pd.Index]]:
"""Merge variables/indexes from coordinates without automatic alignments.
This function is used for merging coordinate from pre-existing xarray
objects.
"""
collected = collect_from_coordinates(objects)
if exclude_dims:
filtered: Dict[Hashable, List[MergeElement]] = {}
for name, elements in collected.items():
new_elements = [
(variable, index)
for variable, index in elements
if exclude_dims.isdisjoint(variable.dims)
]
if new_elements:
filtered[name] = new_elements
else:
filtered = collected
return merge_collected(filtered, prioritized)
def determine_coords(
list_of_mappings: Iterable["DatasetLike"],
) -> Tuple[Set[Hashable], Set[Hashable]]:
"""Given a list of dicts with xarray object values, identify coordinates.
Parameters
----------
list_of_mappings : list of dict or list of Dataset
Of the same form as the arguments to expand_variable_dicts.
Returns
-------
coord_names : set of variable names
noncoord_names : set of variable names
All variable found in the input should appear in either the set of
coordinate or non-coordinate names.
"""
from .dataarray import DataArray
from .dataset import Dataset
coord_names: Set[Hashable] = set()
noncoord_names: Set[Hashable] = set()
for mapping in list_of_mappings:
if isinstance(mapping, Dataset):
coord_names.update(mapping.coords)
noncoord_names.update(mapping.data_vars)
else:
for name, var in mapping.items():
if isinstance(var, DataArray):
coords = set(var._coords) # use private API for speed
# explicitly overwritten variables should take precedence
coords.discard(name)
coord_names.update(coords)
return coord_names, noncoord_names
def coerce_pandas_values(objects: Iterable["CoercibleMapping"]) -> List["DatasetLike"]:
"""Convert pandas values found in a list of labeled objects.
Parameters
----------
objects : list of Dataset or mapping
The mappings may contain any sort of objects coercible to
xarray.Variables as keys, including pandas objects.
Returns
-------
List of Dataset or dictionary objects. Any inputs or values in the inputs
that were pandas objects have been converted into native xarray objects.
"""
from .dataarray import DataArray
from .dataset import Dataset
out = []
for obj in objects:
if isinstance(obj, Dataset):
variables: "DatasetLike" = obj
else:
variables = {}
if isinstance(obj, PANDAS_TYPES):
obj = dict(obj.iteritems())
for k, v in obj.items():
if isinstance(v, PANDAS_TYPES):
v = DataArray(v)
variables[k] = v
out.append(variables)
return out
def _get_priority_vars_and_indexes(
objects: List["DatasetLike"], priority_arg: Optional[int], compat: str = "equals"
) -> Dict[Hashable, MergeElement]:
"""Extract the priority variable from a list of mappings.
We need this method because in some cases the priority argument itself
might have conflicting values (e.g., if it is a dict with two DataArray
values with conflicting coordinate values).
Parameters
----------
objects : list of dict-like of Variable
Dictionaries in which to find the priority variables.
priority_arg : int or None
Integer object whose variable should take priority.
compat : {"identical", "equals", "broadcast_equals", "no_conflicts"}, optional
Compatibility checks to use when merging variables.
Returns
-------
A dictionary of variables and associated indexes (if any) to prioritize.
"""
if priority_arg is None:
return {}
collected = collect_variables_and_indexes([objects[priority_arg]])
variables, indexes = merge_collected(collected, compat=compat)
grouped: Dict[Hashable, MergeElement] = {}
for name, variable in variables.items():
grouped[name] = (variable, indexes.get(name))
return grouped
def merge_coords(
objects: Iterable["CoercibleMapping"],
compat: str = "minimal",
join: str = "outer",
priority_arg: Optional[int] = None,
indexes: Optional[Mapping[Hashable, pd.Index]] = None,
fill_value: object = dtypes.NA,
) -> Tuple[Dict[Hashable, Variable], Dict[Hashable, pd.Index]]:
"""Merge coordinate variables.
See merge_core below for argument descriptions. This works similarly to
merge_core, except everything we don't worry about whether variables are
coordinates or not.
"""
_assert_compat_valid(compat)
coerced = coerce_pandas_values(objects)
aligned = deep_align(
coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value
)
collected = collect_variables_and_indexes(aligned)
prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat)
variables, out_indexes = merge_collected(collected, prioritized, compat=compat)
assert_unique_multiindex_level_names(variables)
return variables, out_indexes
def merge_data_and_coords(data, coords, compat="broadcast_equals", join="outer"):
"""Used in Dataset.__init__."""
objects = [data, coords]
explicit_coords = coords.keys()
indexes = dict(_extract_indexes_from_coords(coords))
return merge_core(
objects, compat, join, explicit_coords=explicit_coords, indexes=indexes
)
def _extract_indexes_from_coords(coords):
"""Yields the name & index of valid indexes from a mapping of coords"""
for name, variable in coords.items():
variable = as_variable(variable, name=name)
if variable.dims == (name,):
yield name, variable.to_index()
def assert_valid_explicit_coords(variables, dims, explicit_coords):
"""Validate explicit coordinate names/dims.
Raise a MergeError if an explicit coord shares a name with a dimension
but is comprised of arbitrary dimensions.
"""
for coord_name in explicit_coords:
if coord_name in dims and variables[coord_name].dims != (coord_name,):
raise MergeError(
"coordinate %s shares a name with a dataset dimension, but is "
"not a 1D variable along that dimension. This is disallowed "
"by the xarray data model." % coord_name
)
def merge_attrs(variable_attrs, combine_attrs):
"""Combine attributes from different variables according to combine_attrs"""
if not variable_attrs:
# no attributes to merge
return None
if combine_attrs == "drop":
return {}
elif combine_attrs == "override":
return variable_attrs[0]
elif combine_attrs == "no_conflicts":
result = dict(variable_attrs[0])
for attrs in variable_attrs[1:]:
try:
result = compat_dict_union(result, attrs)
except ValueError:
raise MergeError(
"combine_attrs='no_conflicts', but some values are not "
"the same. Merging %s with %s" % (str(result), str(attrs))
)
return result
elif combine_attrs == "identical":
result = dict(variable_attrs[0])
for attrs in variable_attrs[1:]:
if not dict_equiv(result, attrs):
raise MergeError(
"combine_attrs='identical', but attrs differ. First is %s "
", other is %s." % (str(result), str(attrs))
)
return result
else:
raise ValueError("Unrecognised value for combine_attrs=%s" % combine_attrs)
class _MergeResult(NamedTuple):
variables: Dict[Hashable, Variable]
coord_names: Set[Hashable]
dims: Dict[Hashable, int]
indexes: Dict[Hashable, pd.Index]
attrs: Dict[Hashable, Any]
def merge_core(
objects: Iterable["CoercibleMapping"],
compat: str = "broadcast_equals",
join: str = "outer",
combine_attrs: Optional[str] = "override",
priority_arg: Optional[int] = None,
explicit_coords: Optional[Sequence] = None,
indexes: Optional[Mapping[Hashable, pd.Index]] = None,
fill_value: object = dtypes.NA,
) -> _MergeResult:
"""Core logic for merging labeled objects.
This is not public API.
Parameters
----------
objects : list of mapping
All values must be convertable to labeled arrays.
compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional
Compatibility checks to use when merging variables.
join : {"outer", "inner", "left", "right"}, optional
How to combine objects with different indexes.
combine_attrs : {"drop", "identical", "no_conflicts", "override"}, optional
How to combine attributes of objects
priority_arg : int, optional
Optional argument in `objects` that takes precedence over the others.
explicit_coords : set, optional
An explicit list of variables from `objects` that are coordinates.
indexes : dict, optional
Dictionary with values given by pandas.Index objects.
fill_value : scalar, optional
Value to use for newly missing values
Returns
-------
variables : dict
Dictionary of Variable objects.
coord_names : set
Set of coordinate names.
dims : dict
Dictionary mapping from dimension names to sizes.
attrs : dict
Dictionary of attributes
Raises
------
MergeError if the merge cannot be done successfully.
"""
from .dataarray import DataArray
from .dataset import Dataset, calculate_dimensions
_assert_compat_valid(compat)
coerced = coerce_pandas_values(objects)
aligned = deep_align(
coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value
)
collected = collect_variables_and_indexes(aligned)
prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat)
variables, out_indexes = merge_collected(collected, prioritized, compat=compat)
assert_unique_multiindex_level_names(variables)
dims = calculate_dimensions(variables)
coord_names, noncoord_names = determine_coords(coerced)
if explicit_coords is not None:
assert_valid_explicit_coords(variables, dims, explicit_coords)
coord_names.update(explicit_coords)
for dim, size in dims.items():
if dim in variables:
coord_names.add(dim)
ambiguous_coords = coord_names.intersection(noncoord_names)
if ambiguous_coords:
raise MergeError(
"unable to determine if these variables should be "
"coordinates or not in the merged result: %s" % ambiguous_coords
)
attrs = merge_attrs(
[
var.attrs
for var in coerced
if isinstance(var, Dataset) or isinstance(var, DataArray)
],
combine_attrs,
)
return _MergeResult(variables, coord_names, dims, out_indexes, attrs)
def merge(
objects: Iterable[Union["DataArray", "CoercibleMapping"]],
compat: str = "no_conflicts",
join: str = "outer",
fill_value: object = dtypes.NA,
combine_attrs: str = "drop",
) -> "Dataset":
"""Merge any number of xarray objects into a single Dataset as variables.
Parameters
----------
objects : iterable of Dataset or iterable of DataArray or iterable of dict-like
Merge together all variables from these objects. If any of them are
DataArray objects, they must have a name.
compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional
String indicating how to compare variables of the same name for
potential conflicts:
- "broadcast_equals": all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- "equals": all values and dimensions must be the same.
- "identical": all values, dimensions and attributes must be the
same.
- "no_conflicts": only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
- "override": skip comparing and pick variable from first dataset
join : {"outer", "inner", "left", "right", "exact"}, optional
String indicating how to combine differing indexes in objects.
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names to fill values. Use a data array's name to
refer to its values.
combine_attrs : {"drop", "identical", "no_conflicts", "override"}, \
default: "drop"
String indicating how to combine attrs of the objects being merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "override": skip comparing and copy attrs from the first dataset to
the result.
Returns
-------
Dataset
Dataset with combined variables from each object.
Examples
--------
>>> import xarray as xr
>>> x = xr.DataArray(
... [[1.0, 2.0], [3.0, 5.0]],
... dims=("lat", "lon"),
... coords={"lat": [35.0, 40.0], "lon": [100.0, 120.0]},
... name="var1",
... )
>>> y = xr.DataArray(
... [[5.0, 6.0], [7.0, 8.0]],
... dims=("lat", "lon"),
... coords={"lat": [35.0, 42.0], "lon": [100.0, 150.0]},
... name="var2",
... )
>>> z = xr.DataArray(
... [[0.0, 3.0], [4.0, 9.0]],
... dims=("time", "lon"),
... coords={"time": [30.0, 60.0], "lon": [100.0, 150.0]},
... name="var3",
... )
>>> x
<xarray.DataArray 'var1' (lat: 2, lon: 2)>
array([[1., 2.],
[3., 5.]])
Coordinates:
* lat (lat) float64 35.0 40.0
* lon (lon) float64 100.0 120.0
>>> y
<xarray.DataArray 'var2' (lat: 2, lon: 2)>
array([[5., 6.],
[7., 8.]])
Coordinates:
* lat (lat) float64 35.0 42.0
* lon (lon) float64 100.0 150.0
>>> z
<xarray.DataArray 'var3' (time: 2, lon: 2)>
array([[0., 3.],
[4., 9.]])
Coordinates:
* time (time) float64 30.0 60.0
* lon (lon) float64 100.0 150.0
>>> xr.merge([x, y, z])
<xarray.Dataset>
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 35.0 40.0 42.0
* lon (lon) float64 100.0 120.0 150.0
* time (time) float64 30.0 60.0
Data variables:
var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], compat="identical")
<xarray.Dataset>
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 35.0 40.0 42.0
* lon (lon) float64 100.0 120.0 150.0
* time (time) float64 30.0 60.0
Data variables:
var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], compat="equals")
<xarray.Dataset>
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 35.0 40.0 42.0
* lon (lon) float64 100.0 120.0 150.0
* time (time) float64 30.0 60.0
Data variables:
var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], compat="equals", fill_value=-999.0)
<xarray.Dataset>
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 35.0 40.0 42.0
* lon (lon) float64 100.0 120.0 150.0
* time (time) float64 30.0 60.0
Data variables:
var1 (lat, lon) float64 1.0 2.0 -999.0 3.0 ... -999.0 -999.0 -999.0
var2 (lat, lon) float64 5.0 -999.0 6.0 -999.0 ... -999.0 7.0 -999.0 8.0
var3 (time, lon) float64 0.0 -999.0 3.0 4.0 -999.0 9.0
>>> xr.merge([x, y, z], join="override")
<xarray.Dataset>
Dimensions: (lat: 2, lon: 2, time: 2)
Coordinates:
* lat (lat) float64 35.0 40.0
* lon (lon) float64 100.0 120.0
* time (time) float64 30.0 60.0
Data variables:
var1 (lat, lon) float64 1.0 2.0 3.0 5.0
var2 (lat, lon) float64 5.0 6.0 7.0 8.0
var3 (time, lon) float64 0.0 3.0 4.0 9.0
>>> xr.merge([x, y, z], join="inner")
<xarray.Dataset>
Dimensions: (lat: 1, lon: 1, time: 2)
Coordinates:
* lat (lat) float64 35.0
* lon (lon) float64 100.0
* time (time) float64 30.0 60.0
Data variables:
var1 (lat, lon) float64 1.0
var2 (lat, lon) float64 5.0
var3 (time, lon) float64 0.0 4.0
>>> xr.merge([x, y, z], compat="identical", join="inner")
<xarray.Dataset>
Dimensions: (lat: 1, lon: 1, time: 2)
Coordinates:
* lat (lat) float64 35.0
* lon (lon) float64 100.0
* time (time) float64 30.0 60.0
Data variables:
var1 (lat, lon) float64 1.0
var2 (lat, lon) float64 5.0
var3 (time, lon) float64 0.0 4.0
>>> xr.merge([x, y, z], compat="broadcast_equals", join="outer")
<xarray.Dataset>
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 35.0 40.0 42.0
* lon (lon) float64 100.0 120.0 150.0
* time (time) float64 30.0 60.0
Data variables:
var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], join="exact")
Traceback (most recent call last):
...
ValueError: indexes along dimension 'lat' are not equal
Raises
------
xarray.MergeError
If any variables with the same name have conflicting values.
See also
--------
concat
"""
from .dataarray import DataArray
from .dataset import Dataset
dict_like_objects = []
for obj in objects:
if not isinstance(obj, (DataArray, Dataset, dict)):
raise TypeError(
"objects must be an iterable containing only "
"Dataset(s), DataArray(s), and dictionaries."
)
obj = obj.to_dataset(promote_attrs=True) if isinstance(obj, DataArray) else obj
dict_like_objects.append(obj)
merge_result = merge_core(
dict_like_objects,
compat,
join,
combine_attrs=combine_attrs,
fill_value=fill_value,
)
merged = Dataset._construct_direct(**merge_result._asdict())
return merged
def dataset_merge_method(
dataset: "Dataset",
other: "CoercibleMapping",
overwrite_vars: Union[Hashable, Iterable[Hashable]],
compat: str,
join: str,
fill_value: Any,
) -> _MergeResult:
"""Guts of the Dataset.merge method."""
# we are locked into supporting overwrite_vars for the Dataset.merge
# method due for backwards compatibility
# TODO: consider deprecating it?
if isinstance(overwrite_vars, Iterable) and not isinstance(overwrite_vars, str):
overwrite_vars = set(overwrite_vars)
else:
overwrite_vars = {overwrite_vars}
if not overwrite_vars:
objs = [dataset, other]
priority_arg = None
elif overwrite_vars == set(other):
objs = [dataset, other]
priority_arg = 1
else:
other_overwrite: Dict[Hashable, CoercibleValue] = {}
other_no_overwrite: Dict[Hashable, CoercibleValue] = {}
for k, v in other.items():
if k in overwrite_vars:
other_overwrite[k] = v
else:
other_no_overwrite[k] = v
objs = [dataset, other_no_overwrite, other_overwrite]
priority_arg = 2
return merge_core(
objs, compat, join, priority_arg=priority_arg, fill_value=fill_value
)
def dataset_update_method(
dataset: "Dataset", other: "CoercibleMapping"
) -> _MergeResult:
"""Guts of the Dataset.update method.
This drops a duplicated coordinates from `other` if `other` is not an
`xarray.Dataset`, e.g., if it's a dict with DataArray values (GH2068,
GH2180).
"""
from .dataarray import DataArray
from .dataset import Dataset
if not isinstance(other, Dataset):
other = dict(other)
for key, value in other.items():
if isinstance(value, DataArray):
# drop conflicting coordinates
coord_names = [
c
for c in value.coords
if c not in value.dims and c in dataset.coords
]
if coord_names:
other[key] = value.drop_vars(coord_names)
return merge_core(
[dataset, other],
priority_arg=1,
indexes=dataset.indexes,
combine_attrs="override",
)
|