1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
import warnings
import numpy as np
from . import dtypes, nputils, utils
from .duck_array_ops import _dask_or_eager_func, count, fillna, isnull, where_method
from .pycompat import dask_array_type
try:
import dask.array as dask_array
from . import dask_array_compat
except ImportError:
dask_array = None
dask_array_compat = None # type: ignore
def _replace_nan(a, val):
"""
replace nan in a by val, and returns the replaced array and the nan
position
"""
mask = isnull(a)
return where_method(val, mask, a), mask
def _maybe_null_out(result, axis, mask, min_count=1):
"""
xarray version of pandas.core.nanops._maybe_null_out
"""
if axis is not None and getattr(result, "ndim", False):
null_mask = (np.take(mask.shape, axis).prod() - mask.sum(axis) - min_count) < 0
if null_mask.any():
dtype, fill_value = dtypes.maybe_promote(result.dtype)
result = result.astype(dtype)
result[null_mask] = fill_value
elif getattr(result, "dtype", None) not in dtypes.NAT_TYPES:
null_mask = mask.size - mask.sum()
if null_mask < min_count:
result = np.nan
return result
def _nan_argminmax_object(func, fill_value, value, axis=None, **kwargs):
"""In house nanargmin, nanargmax for object arrays. Always return integer
type
"""
valid_count = count(value, axis=axis)
value = fillna(value, fill_value)
data = _dask_or_eager_func(func)(value, axis=axis, **kwargs)
# TODO This will evaluate dask arrays and might be costly.
if (valid_count == 0).any():
raise ValueError("All-NaN slice encountered")
return data
def _nan_minmax_object(func, fill_value, value, axis=None, **kwargs):
""" In house nanmin and nanmax for object array """
valid_count = count(value, axis=axis)
filled_value = fillna(value, fill_value)
data = getattr(np, func)(filled_value, axis=axis, **kwargs)
if not hasattr(data, "dtype"): # scalar case
data = fill_value if valid_count == 0 else data
# we've computed a single min, max value of type object.
# don't let np.array turn a tuple back into an array
return utils.to_0d_object_array(data)
return where_method(data, valid_count != 0)
def nanmin(a, axis=None, out=None):
if a.dtype.kind == "O":
return _nan_minmax_object("min", dtypes.get_pos_infinity(a.dtype), a, axis)
module = dask_array if isinstance(a, dask_array_type) else nputils
return module.nanmin(a, axis=axis)
def nanmax(a, axis=None, out=None):
if a.dtype.kind == "O":
return _nan_minmax_object("max", dtypes.get_neg_infinity(a.dtype), a, axis)
module = dask_array if isinstance(a, dask_array_type) else nputils
return module.nanmax(a, axis=axis)
def nanargmin(a, axis=None):
if a.dtype.kind == "O":
fill_value = dtypes.get_pos_infinity(a.dtype)
return _nan_argminmax_object("argmin", fill_value, a, axis=axis)
module = dask_array if isinstance(a, dask_array_type) else nputils
return module.nanargmin(a, axis=axis)
def nanargmax(a, axis=None):
if a.dtype.kind == "O":
fill_value = dtypes.get_neg_infinity(a.dtype)
return _nan_argminmax_object("argmax", fill_value, a, axis=axis)
module = dask_array if isinstance(a, dask_array_type) else nputils
return module.nanargmax(a, axis=axis)
def nansum(a, axis=None, dtype=None, out=None, min_count=None):
a, mask = _replace_nan(a, 0)
result = _dask_or_eager_func("sum")(a, axis=axis, dtype=dtype)
if min_count is not None:
return _maybe_null_out(result, axis, mask, min_count)
else:
return result
def _nanmean_ddof_object(ddof, value, axis=None, dtype=None, **kwargs):
""" In house nanmean. ddof argument will be used in _nanvar method """
from .duck_array_ops import _dask_or_eager_func, count, fillna, where_method
valid_count = count(value, axis=axis)
value = fillna(value, 0)
# As dtype inference is impossible for object dtype, we assume float
# https://github.com/dask/dask/issues/3162
if dtype is None and value.dtype.kind == "O":
dtype = value.dtype if value.dtype.kind in ["cf"] else float
data = _dask_or_eager_func("sum")(value, axis=axis, dtype=dtype, **kwargs)
data = data / (valid_count - ddof)
return where_method(data, valid_count != 0)
def nanmean(a, axis=None, dtype=None, out=None):
if a.dtype.kind == "O":
return _nanmean_ddof_object(0, a, axis=axis, dtype=dtype)
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", r"Mean of empty slice", category=RuntimeWarning
)
if isinstance(a, dask_array_type):
return dask_array.nanmean(a, axis=axis, dtype=dtype)
return np.nanmean(a, axis=axis, dtype=dtype)
def nanmedian(a, axis=None, out=None):
# The dask algorithm works by rechunking to one chunk along axis
# Make sure we trigger the dask error when passing all dimensions
# so that we don't rechunk the entire array to one chunk and
# possibly blow memory
if axis is not None and len(np.atleast_1d(axis)) == a.ndim:
axis = None
return _dask_or_eager_func(
"nanmedian", dask_module=dask_array_compat, eager_module=nputils
)(a, axis=axis)
def _nanvar_object(value, axis=None, ddof=0, keepdims=False, **kwargs):
value_mean = _nanmean_ddof_object(
ddof=0, value=value, axis=axis, keepdims=True, **kwargs
)
squared = (value.astype(value_mean.dtype) - value_mean) ** 2
return _nanmean_ddof_object(ddof, squared, axis=axis, keepdims=keepdims, **kwargs)
def nanvar(a, axis=None, dtype=None, out=None, ddof=0):
if a.dtype.kind == "O":
return _nanvar_object(a, axis=axis, dtype=dtype, ddof=ddof)
return _dask_or_eager_func("nanvar", eager_module=nputils)(
a, axis=axis, dtype=dtype, ddof=ddof
)
def nanstd(a, axis=None, dtype=None, out=None, ddof=0):
return _dask_or_eager_func("nanstd", eager_module=nputils)(
a, axis=axis, dtype=dtype, ddof=ddof
)
def nanprod(a, axis=None, dtype=None, out=None, min_count=None):
a, mask = _replace_nan(a, 1)
result = _dask_or_eager_func("nanprod")(a, axis=axis, dtype=dtype, out=out)
if min_count is not None:
return _maybe_null_out(result, axis, mask, min_count)
else:
return result
def nancumsum(a, axis=None, dtype=None, out=None):
return _dask_or_eager_func("nancumsum", eager_module=nputils)(
a, axis=axis, dtype=dtype
)
def nancumprod(a, axis=None, dtype=None, out=None):
return _dask_or_eager_func("nancumprod", eager_module=nputils)(
a, axis=axis, dtype=dtype
)
|