File: nputils.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (290 lines) | stat: -rw-r--r-- 9,585 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import warnings

import numpy as np
import pandas as pd
from numpy.core.multiarray import normalize_axis_index

try:
    import bottleneck as bn

    _USE_BOTTLENECK = True
except ImportError:
    # use numpy methods instead
    bn = np
    _USE_BOTTLENECK = False


def _select_along_axis(values, idx, axis):
    other_ind = np.ix_(*[np.arange(s) for s in idx.shape])
    sl = other_ind[:axis] + (idx,) + other_ind[axis:]
    return values[sl]


def nanfirst(values, axis):
    axis = normalize_axis_index(axis, values.ndim)
    idx_first = np.argmax(~pd.isnull(values), axis=axis)
    return _select_along_axis(values, idx_first, axis)


def nanlast(values, axis):
    axis = normalize_axis_index(axis, values.ndim)
    rev = (slice(None),) * axis + (slice(None, None, -1),)
    idx_last = -1 - np.argmax(~pd.isnull(values)[rev], axis=axis)
    return _select_along_axis(values, idx_last, axis)


def inverse_permutation(indices):
    """Return indices for an inverse permutation.

    Parameters
    ----------
    indices : 1D np.ndarray with dtype=int
        Integer positions to assign elements to.

    Returns
    -------
    inverse_permutation : 1D np.ndarray with dtype=int
        Integer indices to take from the original array to create the
        permutation.
    """
    # use intp instead of int64 because of windows :(
    inverse_permutation = np.empty(len(indices), dtype=np.intp)
    inverse_permutation[indices] = np.arange(len(indices), dtype=np.intp)
    return inverse_permutation


def _ensure_bool_is_ndarray(result, *args):
    # numpy will sometimes return a scalar value from binary comparisons if it
    # can't handle the comparison instead of broadcasting, e.g.,
    # In [10]: 1 == np.array(['a', 'b'])
    # Out[10]: False
    # This function ensures that the result is the appropriate shape in these
    # cases
    if isinstance(result, bool):
        shape = np.broadcast(*args).shape
        constructor = np.ones if result else np.zeros
        result = constructor(shape, dtype=bool)
    return result


def array_eq(self, other):
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", r"elementwise comparison failed")
        return _ensure_bool_is_ndarray(self == other, self, other)


def array_ne(self, other):
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", r"elementwise comparison failed")
        return _ensure_bool_is_ndarray(self != other, self, other)


def _is_contiguous(positions):
    """Given a non-empty list, does it consist of contiguous integers?"""
    previous = positions[0]
    for current in positions[1:]:
        if current != previous + 1:
            return False
        previous = current
    return True


def _advanced_indexer_subspaces(key):
    """Indices of the advanced indexes subspaces for mixed indexing and vindex."""
    if not isinstance(key, tuple):
        key = (key,)
    advanced_index_positions = [
        i for i, k in enumerate(key) if not isinstance(k, slice)
    ]

    if not advanced_index_positions or not _is_contiguous(advanced_index_positions):
        # Nothing to reorder: dimensions on the indexing result are already
        # ordered like vindex. See NumPy's rule for "Combining advanced and
        # basic indexing":
        # https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#combining-advanced-and-basic-indexing
        return (), ()

    non_slices = [k for k in key if not isinstance(k, slice)]
    ndim = len(np.broadcast(*non_slices).shape)
    mixed_positions = advanced_index_positions[0] + np.arange(ndim)
    vindex_positions = np.arange(ndim)
    return mixed_positions, vindex_positions


class NumpyVIndexAdapter:
    """Object that implements indexing like vindex on a np.ndarray.

    This is a pure Python implementation of (some of) the logic in this NumPy
    proposal: https://github.com/numpy/numpy/pull/6256
    """

    def __init__(self, array):
        self._array = array

    def __getitem__(self, key):
        mixed_positions, vindex_positions = _advanced_indexer_subspaces(key)
        return np.moveaxis(self._array[key], mixed_positions, vindex_positions)

    def __setitem__(self, key, value):
        """Value must have dimensionality matching the key."""
        mixed_positions, vindex_positions = _advanced_indexer_subspaces(key)
        self._array[key] = np.moveaxis(value, vindex_positions, mixed_positions)


def rolling_window(a, axis, window, center, fill_value):
    """ rolling window with padding. """
    pads = [(0, 0) for s in a.shape]
    if not hasattr(axis, "__len__"):
        axis = [axis]
        window = [window]
        center = [center]

    for ax, win, cent in zip(axis, window, center):
        if cent:
            start = int(win / 2)  # 10 -> 5,  9 -> 4
            end = win - 1 - start
            pads[ax] = (start, end)
        else:
            pads[ax] = (win - 1, 0)
    a = np.pad(a, pads, mode="constant", constant_values=fill_value)
    for ax, win in zip(axis, window):
        a = _rolling_window(a, win, ax)
    return a


def _rolling_window(a, window, axis=-1):
    """
    Make an ndarray with a rolling window along axis.

    Parameters
    ----------
    a : array_like
        Array to add rolling window to
    axis: int
        axis position along which rolling window will be applied.
    window : int
        Size of rolling window

    Returns
    -------
    Array that is a view of the original array with a added dimension
    of size w.

    Examples
    --------
    >>> x = np.arange(10).reshape((2, 5))
    >>> _rolling_window(x, 3, axis=-1)
    array([[[0, 1, 2],
            [1, 2, 3],
            [2, 3, 4]],
    <BLANKLINE>
           [[5, 6, 7],
            [6, 7, 8],
            [7, 8, 9]]])

    Calculate rolling mean of last dimension:
    >>> np.mean(_rolling_window(x, 3, axis=-1), -1)
    array([[1., 2., 3.],
           [6., 7., 8.]])

    This function is taken from https://github.com/numpy/numpy/pull/31
    but slightly modified to accept axis option.
    """
    axis = normalize_axis_index(axis, a.ndim)
    a = np.swapaxes(a, axis, -1)

    if window < 1:
        raise ValueError(f"`window` must be at least 1. Given : {window}")
    if window > a.shape[-1]:
        raise ValueError(f"`window` is too long. Given : {window}")

    shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
    strides = a.strides + (a.strides[-1],)
    rolling = np.lib.stride_tricks.as_strided(
        a, shape=shape, strides=strides, writeable=False
    )
    return np.swapaxes(rolling, -2, axis)


def _create_bottleneck_method(name, npmodule=np):
    def f(values, axis=None, **kwargs):
        dtype = kwargs.get("dtype", None)
        bn_func = getattr(bn, name, None)

        if (
            _USE_BOTTLENECK
            and isinstance(values, np.ndarray)
            and bn_func is not None
            and not isinstance(axis, tuple)
            and values.dtype.kind in "uifc"
            and values.dtype.isnative
            and (dtype is None or np.dtype(dtype) == values.dtype)
        ):
            # bottleneck does not take care dtype, min_count
            kwargs.pop("dtype", None)
            result = bn_func(values, axis=axis, **kwargs)
        else:
            result = getattr(npmodule, name)(values, axis=axis, **kwargs)

        return result

    f.__name__ = name
    return f


def _nanpolyfit_1d(arr, x, rcond=None):
    out = np.full((x.shape[1] + 1,), np.nan)
    mask = np.isnan(arr)
    if not np.all(mask):
        out[:-1], resid, rank, _ = np.linalg.lstsq(x[~mask, :], arr[~mask], rcond=rcond)
        out[-1] = resid if resid.size > 0 else np.nan
        warn_on_deficient_rank(rank, x.shape[1])
    return out


def warn_on_deficient_rank(rank, order):
    if rank != order:
        warnings.warn("Polyfit may be poorly conditioned", np.RankWarning, stacklevel=2)


def least_squares(lhs, rhs, rcond=None, skipna=False):
    if skipna:
        added_dim = rhs.ndim == 1
        if added_dim:
            rhs = rhs.reshape(rhs.shape[0], 1)
        nan_cols = np.any(np.isnan(rhs), axis=0)
        out = np.empty((lhs.shape[1] + 1, rhs.shape[1]))
        if np.any(nan_cols):
            out[:, nan_cols] = np.apply_along_axis(
                _nanpolyfit_1d, 0, rhs[:, nan_cols], lhs
            )
        if np.any(~nan_cols):
            out[:-1, ~nan_cols], resids, rank, _ = np.linalg.lstsq(
                lhs, rhs[:, ~nan_cols], rcond=rcond
            )
            out[-1, ~nan_cols] = resids if resids.size > 0 else np.nan
            warn_on_deficient_rank(rank, lhs.shape[1])
        coeffs = out[:-1, :]
        residuals = out[-1, :]
        if added_dim:
            coeffs = coeffs.reshape(coeffs.shape[0])
            residuals = residuals.reshape(residuals.shape[0])
    else:
        coeffs, residuals, rank, _ = np.linalg.lstsq(lhs, rhs, rcond=rcond)
        if residuals.size == 0:
            residuals = coeffs[0] * np.nan
        warn_on_deficient_rank(rank, lhs.shape[1])
    return coeffs, residuals


nanmin = _create_bottleneck_method("nanmin")
nanmax = _create_bottleneck_method("nanmax")
nanmean = _create_bottleneck_method("nanmean")
nanmedian = _create_bottleneck_method("nanmedian")
nanvar = _create_bottleneck_method("nanvar")
nanstd = _create_bottleneck_method("nanstd")
nanprod = _create_bottleneck_method("nanprod")
nancumsum = _create_bottleneck_method("nancumsum")
nancumprod = _create_bottleneck_method("nancumprod")
nanargmin = _create_bottleneck_method("nanargmin")
nanargmax = _create_bottleneck_method("nanargmax")