1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
"""Define core operations for xarray objects.
TODO(shoyer): rewrite this module, making use of xarray.core.computation,
NumPy's __array_ufunc__ and mixin classes instead of the unintuitive "inject"
functions.
"""
import operator
import numpy as np
from . import dtypes, duck_array_ops
from .nputils import array_eq, array_ne
try:
import bottleneck as bn
has_bottleneck = True
except ImportError:
# use numpy methods instead
bn = np
has_bottleneck = False
UNARY_OPS = ["neg", "pos", "abs", "invert"]
CMP_BINARY_OPS = ["lt", "le", "ge", "gt"]
NUM_BINARY_OPS = [
"add",
"sub",
"mul",
"truediv",
"floordiv",
"mod",
"pow",
"and",
"xor",
"or",
]
# methods which pass on the numpy return value unchanged
# be careful not to list methods that we would want to wrap later
NUMPY_SAME_METHODS = ["item", "searchsorted"]
# methods which don't modify the data shape, so the result should still be
# wrapped in an Variable/DataArray
NUMPY_UNARY_METHODS = ["argsort", "clip", "conj", "conjugate"]
# methods which remove an axis
REDUCE_METHODS = ["all", "any"]
NAN_REDUCE_METHODS = [
"max",
"min",
"mean",
"prod",
"sum",
"std",
"var",
"median",
]
NAN_CUM_METHODS = ["cumsum", "cumprod"]
# TODO: wrap take, dot, sort
_CUM_DOCSTRING_TEMPLATE = """\
Apply `{name}` along some dimension of {cls}.
Parameters
----------
{extra_args}
skipna : bool, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
keep_attrs : bool, optional
If True, the attributes (`attrs`) will be copied from the original
object to the new one. If False (default), the new object will be
returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to `{name}`.
Returns
-------
cumvalue : {cls}
New {cls} object with `{name}` applied to its data along the
indicated dimension.
"""
_REDUCE_DOCSTRING_TEMPLATE = """\
Reduce this {cls}'s data by applying `{name}` along some dimension(s).
Parameters
----------
{extra_args}{skip_na_docs}{min_count_docs}
keep_attrs : bool, optional
If True, the attributes (`attrs`) will be copied from the original
object to the new one. If False (default), the new object will be
returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to the appropriate array
function for calculating `{name}` on this object's data.
Returns
-------
reduced : {cls}
New {cls} object with `{name}` applied to its data and the
indicated dimension(s) removed.
"""
_SKIPNA_DOCSTRING = """
skipna : bool, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64)."""
_MINCOUNT_DOCSTRING = """
min_count : int, default: None
The required number of valid values to perform the operation.
If fewer than min_count non-NA values are present the result will
be NA. New in version 0.10.8: Added with the default being None."""
_COARSEN_REDUCE_DOCSTRING_TEMPLATE = """\
Coarsen this object by applying `{name}` along its dimensions.
Parameters
----------
**kwargs : dict
Additional keyword arguments passed on to `{name}`.
Returns
-------
reduced : DataArray or Dataset
New object with `{name}` applied along its coasen dimnensions.
"""
def fillna(data, other, join="left", dataset_join="left"):
"""Fill missing values in this object with data from the other object.
Follows normal broadcasting and alignment rules.
Parameters
----------
join : {"outer", "inner", "left", "right"}, optional
Method for joining the indexes of the passed objects along each
dimension
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": raise `ValueError` instead of aligning when indexes to be
aligned are not equal
dataset_join : {"outer", "inner", "left", "right"}, optional
Method for joining variables of Dataset objects with mismatched
data variables.
- "outer": take variables from both Dataset objects
- "inner": take only overlapped variables
- "left": take only variables from the first object
- "right": take only variables from the last object
"""
from .computation import apply_ufunc
return apply_ufunc(
duck_array_ops.fillna,
data,
other,
join=join,
dask="allowed",
dataset_join=dataset_join,
dataset_fill_value=np.nan,
keep_attrs=True,
)
def where_method(self, cond, other=dtypes.NA):
"""Return elements from `self` or `other` depending on `cond`.
Parameters
----------
cond : DataArray or Dataset with boolean dtype
Locations at which to preserve this objects values.
other : scalar, DataArray or Dataset, optional
Value to use for locations in this object where ``cond`` is False.
By default, inserts missing values.
Returns
-------
Same type as caller.
"""
from .computation import apply_ufunc
# alignment for three arguments is complicated, so don't support it yet
join = "inner" if other is dtypes.NA else "exact"
return apply_ufunc(
duck_array_ops.where_method,
self,
cond,
other,
join=join,
dataset_join=join,
dask="allowed",
keep_attrs=True,
)
def _call_possibly_missing_method(arg, name, args, kwargs):
try:
method = getattr(arg, name)
except AttributeError:
duck_array_ops.fail_on_dask_array_input(arg, func_name=name)
if hasattr(arg, "data"):
duck_array_ops.fail_on_dask_array_input(arg.data, func_name=name)
raise
else:
return method(*args, **kwargs)
def _values_method_wrapper(name):
def func(self, *args, **kwargs):
return _call_possibly_missing_method(self.data, name, args, kwargs)
func.__name__ = name
func.__doc__ = getattr(np.ndarray, name).__doc__
return func
def _method_wrapper(name):
def func(self, *args, **kwargs):
return _call_possibly_missing_method(self, name, args, kwargs)
func.__name__ = name
func.__doc__ = getattr(np.ndarray, name).__doc__
return func
def _func_slash_method_wrapper(f, name=None):
# try to wrap a method, but if not found use the function
# this is useful when patching in a function as both a DataArray and
# Dataset method
if name is None:
name = f.__name__
def func(self, *args, **kwargs):
try:
return getattr(self, name)(*args, **kwargs)
except AttributeError:
return f(self, *args, **kwargs)
func.__name__ = name
func.__doc__ = f.__doc__
return func
def inject_reduce_methods(cls):
methods = (
[
(name, getattr(duck_array_ops, "array_%s" % name), False)
for name in REDUCE_METHODS
]
+ [(name, getattr(duck_array_ops, name), True) for name in NAN_REDUCE_METHODS]
+ [("count", duck_array_ops.count, False)]
)
for name, f, include_skipna in methods:
numeric_only = getattr(f, "numeric_only", False)
available_min_count = getattr(f, "available_min_count", False)
skip_na_docs = _SKIPNA_DOCSTRING if include_skipna else ""
min_count_docs = _MINCOUNT_DOCSTRING if available_min_count else ""
func = cls._reduce_method(f, include_skipna, numeric_only)
func.__name__ = name
func.__doc__ = _REDUCE_DOCSTRING_TEMPLATE.format(
name=name,
cls=cls.__name__,
extra_args=cls._reduce_extra_args_docstring.format(name=name),
skip_na_docs=skip_na_docs,
min_count_docs=min_count_docs,
)
setattr(cls, name, func)
def inject_cum_methods(cls):
methods = [(name, getattr(duck_array_ops, name), True) for name in NAN_CUM_METHODS]
for name, f, include_skipna in methods:
numeric_only = getattr(f, "numeric_only", False)
func = cls._reduce_method(f, include_skipna, numeric_only)
func.__name__ = name
func.__doc__ = _CUM_DOCSTRING_TEMPLATE.format(
name=name,
cls=cls.__name__,
extra_args=cls._cum_extra_args_docstring.format(name=name),
)
setattr(cls, name, func)
def op_str(name):
return "__%s__" % name
def get_op(name):
return getattr(operator, op_str(name))
NON_INPLACE_OP = {get_op("i" + name): get_op(name) for name in NUM_BINARY_OPS}
def inplace_to_noninplace_op(f):
return NON_INPLACE_OP[f]
def inject_binary_ops(cls, inplace=False):
for name in CMP_BINARY_OPS + NUM_BINARY_OPS:
setattr(cls, op_str(name), cls._binary_op(get_op(name)))
for name, f in [("eq", array_eq), ("ne", array_ne)]:
setattr(cls, op_str(name), cls._binary_op(f))
for name in NUM_BINARY_OPS:
# only numeric operations have in-place and reflexive variants
setattr(cls, op_str("r" + name), cls._binary_op(get_op(name), reflexive=True))
if inplace:
setattr(cls, op_str("i" + name), cls._inplace_binary_op(get_op("i" + name)))
def inject_all_ops_and_reduce_methods(cls, priority=50, array_only=True):
# prioritize our operations over those of numpy.ndarray (priority=1)
# and numpy.matrix (priority=10)
cls.__array_priority__ = priority
# patch in standard special operations
for name in UNARY_OPS:
setattr(cls, op_str(name), cls._unary_op(get_op(name)))
inject_binary_ops(cls, inplace=True)
# patch in numpy/pandas methods
for name in NUMPY_UNARY_METHODS:
setattr(cls, name, cls._unary_op(_method_wrapper(name)))
f = _func_slash_method_wrapper(duck_array_ops.around, name="round")
setattr(cls, "round", cls._unary_op(f))
if array_only:
# these methods don't return arrays of the same shape as the input, so
# don't try to patch these in for Dataset objects
for name in NUMPY_SAME_METHODS:
setattr(cls, name, _values_method_wrapper(name))
inject_reduce_methods(cls)
inject_cum_methods(cls)
|