1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
try:
import dask
import dask.array
from dask.array.utils import meta_from_array
from dask.highlevelgraph import HighLevelGraph
except ImportError:
pass
import collections
import itertools
import operator
from typing import (
Any,
Callable,
DefaultDict,
Dict,
Hashable,
Iterable,
List,
Mapping,
Sequence,
Tuple,
TypeVar,
Union,
)
import numpy as np
from .alignment import align
from .dataarray import DataArray
from .dataset import Dataset
T_DSorDA = TypeVar("T_DSorDA", DataArray, Dataset)
def unzip(iterable):
return zip(*iterable)
def assert_chunks_compatible(a: Dataset, b: Dataset):
a = a.unify_chunks()
b = b.unify_chunks()
for dim in set(a.chunks).intersection(set(b.chunks)):
if a.chunks[dim] != b.chunks[dim]:
raise ValueError(f"Chunk sizes along dimension {dim!r} are not equal.")
def check_result_variables(
result: Union[DataArray, Dataset], expected: Mapping[str, Any], kind: str
):
if kind == "coords":
nice_str = "coordinate"
elif kind == "data_vars":
nice_str = "data"
# check that coords and data variables are as expected
missing = expected[kind] - set(getattr(result, kind))
if missing:
raise ValueError(
"Result from applying user function does not contain "
f"{nice_str} variables {missing}."
)
extra = set(getattr(result, kind)) - expected[kind]
if extra:
raise ValueError(
"Result from applying user function has unexpected "
f"{nice_str} variables {extra}."
)
def dataset_to_dataarray(obj: Dataset) -> DataArray:
if not isinstance(obj, Dataset):
raise TypeError("Expected Dataset, got %s" % type(obj))
if len(obj.data_vars) > 1:
raise TypeError(
"Trying to convert Dataset with more than one data variable to DataArray"
)
return next(iter(obj.data_vars.values()))
def dataarray_to_dataset(obj: DataArray) -> Dataset:
# only using _to_temp_dataset would break
# func = lambda x: x.to_dataset()
# since that relies on preserving name.
if obj.name is None:
dataset = obj._to_temp_dataset()
else:
dataset = obj.to_dataset()
return dataset
def make_meta(obj):
"""If obj is a DataArray or Dataset, return a new object of the same type and with
the same variables and dtypes, but where all variables have size 0 and numpy
backend.
If obj is neither a DataArray nor Dataset, return it unaltered.
"""
if isinstance(obj, DataArray):
obj_array = obj
obj = obj._to_temp_dataset()
elif isinstance(obj, Dataset):
obj_array = None
else:
return obj
meta = Dataset()
for name, variable in obj.variables.items():
meta_obj = meta_from_array(variable.data, ndim=variable.ndim)
meta[name] = (variable.dims, meta_obj, variable.attrs)
meta.attrs = obj.attrs
meta = meta.set_coords(obj.coords)
if obj_array is not None:
return obj_array._from_temp_dataset(meta)
return meta
def infer_template(
func: Callable[..., T_DSorDA], obj: Union[DataArray, Dataset], *args, **kwargs
) -> T_DSorDA:
"""Infer return object by running the function on meta objects."""
meta_args = [make_meta(arg) for arg in (obj,) + args]
try:
template = func(*meta_args, **kwargs)
except Exception as e:
raise Exception(
"Cannot infer object returned from running user provided function. "
"Please supply the 'template' kwarg to map_blocks."
) from e
if not isinstance(template, (Dataset, DataArray)):
raise TypeError(
"Function must return an xarray DataArray or Dataset. Instead it returned "
f"{type(template)}"
)
return template
def make_dict(x: Union[DataArray, Dataset]) -> Dict[Hashable, Any]:
"""Map variable name to numpy(-like) data
(Dataset.to_dict() is too complicated).
"""
if isinstance(x, DataArray):
x = x._to_temp_dataset()
return {k: v.data for k, v in x.variables.items()}
def _get_chunk_slicer(dim: Hashable, chunk_index: Mapping, chunk_bounds: Mapping):
if dim in chunk_index:
which_chunk = chunk_index[dim]
return slice(chunk_bounds[dim][which_chunk], chunk_bounds[dim][which_chunk + 1])
return slice(None)
def map_blocks(
func: Callable[..., T_DSorDA],
obj: Union[DataArray, Dataset],
args: Sequence[Any] = (),
kwargs: Mapping[str, Any] = None,
template: Union[DataArray, Dataset] = None,
) -> T_DSorDA:
"""Apply a function to each block of a DataArray or Dataset.
.. warning::
This function is experimental and its signature may change.
Parameters
----------
func : callable
User-provided function that accepts a DataArray or Dataset as its first
parameter ``obj``. The function will receive a subset or 'block' of ``obj`` (see below),
corresponding to one chunk along each chunked dimension. ``func`` will be
executed as ``func(subset_obj, *subset_args, **kwargs)``.
This function must return either a single DataArray or a single Dataset.
This function cannot add a new chunked dimension.
obj : DataArray, Dataset
Passed to the function as its first argument, one block at a time.
args : sequence
Passed to func after unpacking and subsetting any xarray objects by blocks.
xarray objects in args must be aligned with obj, otherwise an error is raised.
kwargs : mapping
Passed verbatim to func after unpacking. xarray objects, if any, will not be
subset to blocks. Passing dask collections in kwargs is not allowed.
template : DataArray or Dataset, optional
xarray object representing the final result after compute is called. If not provided,
the function will be first run on mocked-up data, that looks like ``obj`` but
has sizes 0, to determine properties of the returned object such as dtype,
variable names, attributes, new dimensions and new indexes (if any).
``template`` must be provided if the function changes the size of existing dimensions.
When provided, ``attrs`` on variables in `template` are copied over to the result. Any
``attrs`` set by ``func`` will be ignored.
Returns
-------
A single DataArray or Dataset with dask backend, reassembled from the outputs of the
function.
Notes
-----
This function is designed for when ``func`` needs to manipulate a whole xarray object
subset to each block. In the more common case where ``func`` can work on numpy arrays, it is
recommended to use ``apply_ufunc``.
If none of the variables in ``obj`` is backed by dask arrays, calling this function is
equivalent to calling ``func(obj, *args, **kwargs)``.
See Also
--------
dask.array.map_blocks, xarray.apply_ufunc, xarray.Dataset.map_blocks,
xarray.DataArray.map_blocks
Examples
--------
Calculate an anomaly from climatology using ``.groupby()``. Using
``xr.map_blocks()`` allows for parallel operations with knowledge of ``xarray``,
its indices, and its methods like ``.groupby()``.
>>> def calculate_anomaly(da, groupby_type="time.month"):
... gb = da.groupby(groupby_type)
... clim = gb.mean(dim="time")
... return gb - clim
>>> time = xr.cftime_range("1990-01", "1992-01", freq="M")
>>> month = xr.DataArray(time.month, coords={"time": time}, dims=["time"])
>>> np.random.seed(123)
>>> array = xr.DataArray(
... np.random.rand(len(time)),
... dims=["time"],
... coords={"time": time, "month": month},
... ).chunk()
>>> array.map_blocks(calculate_anomaly, template=array).compute()
<xarray.DataArray (time: 24)>
array([ 0.12894847, 0.11323072, -0.0855964 , -0.09334032, 0.26848862,
0.12382735, 0.22460641, 0.07650108, -0.07673453, -0.22865714,
-0.19063865, 0.0590131 , -0.12894847, -0.11323072, 0.0855964 ,
0.09334032, -0.26848862, -0.12382735, -0.22460641, -0.07650108,
0.07673453, 0.22865714, 0.19063865, -0.0590131 ])
Coordinates:
* time (time) object 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
month (time) int64 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Note that one must explicitly use ``args=[]`` and ``kwargs={}`` to pass arguments
to the function being applied in ``xr.map_blocks()``:
>>> array.map_blocks(
... calculate_anomaly,
... kwargs={"groupby_type": "time.year"},
... template=array,
... ) # doctest: +ELLIPSIS
<xarray.DataArray (time: 24)>
dask.array<calculate_anomaly-...-<this, shape=(24,), dtype=float64, chunksize=(24,), chunktype=numpy.ndarray>
Coordinates:
* time (time) object 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
month (time) int64 dask.array<chunksize=(24,), meta=np.ndarray>
"""
def _wrapper(
func: Callable,
args: List,
kwargs: dict,
arg_is_array: Iterable[bool],
expected: dict,
):
"""
Wrapper function that receives datasets in args; converts to dataarrays when necessary;
passes these to the user function `func` and checks returned objects for expected shapes/sizes/etc.
"""
converted_args = [
dataset_to_dataarray(arg) if is_array else arg
for is_array, arg in zip(arg_is_array, args)
]
result = func(*converted_args, **kwargs)
# check all dims are present
missing_dimensions = set(expected["shapes"]) - set(result.sizes)
if missing_dimensions:
raise ValueError(
f"Dimensions {missing_dimensions} missing on returned object."
)
# check that index lengths and values are as expected
for name, index in result.indexes.items():
if name in expected["shapes"]:
if len(index) != expected["shapes"][name]:
raise ValueError(
f"Received dimension {name!r} of length {len(index)}. Expected length {expected['shapes'][name]}."
)
if name in expected["indexes"]:
expected_index = expected["indexes"][name]
if not index.equals(expected_index):
raise ValueError(
f"Expected index {name!r} to be {expected_index!r}. Received {index!r} instead."
)
# check that all expected variables were returned
check_result_variables(result, expected, "coords")
if isinstance(result, Dataset):
check_result_variables(result, expected, "data_vars")
return make_dict(result)
if template is not None and not isinstance(template, (DataArray, Dataset)):
raise TypeError(
f"template must be a DataArray or Dataset. Received {type(template).__name__} instead."
)
if not isinstance(args, Sequence):
raise TypeError("args must be a sequence (for example, a list or tuple).")
if kwargs is None:
kwargs = {}
elif not isinstance(kwargs, Mapping):
raise TypeError("kwargs must be a mapping (for example, a dict)")
for value in kwargs.values():
if dask.is_dask_collection(value):
raise TypeError(
"Cannot pass dask collections in kwargs yet. Please compute or "
"load values before passing to map_blocks."
)
if not dask.is_dask_collection(obj):
return func(obj, *args, **kwargs)
all_args = [obj] + list(args)
is_xarray = [isinstance(arg, (Dataset, DataArray)) for arg in all_args]
is_array = [isinstance(arg, DataArray) for arg in all_args]
# there should be a better way to group this. partition?
xarray_indices, xarray_objs = unzip(
(index, arg) for index, arg in enumerate(all_args) if is_xarray[index]
)
others = [
(index, arg) for index, arg in enumerate(all_args) if not is_xarray[index]
]
# all xarray objects must be aligned. This is consistent with apply_ufunc.
aligned = align(*xarray_objs, join="exact")
xarray_objs = tuple(
dataarray_to_dataset(arg) if is_da else arg
for is_da, arg in zip(is_array, aligned)
)
_, npargs = unzip(
sorted(list(zip(xarray_indices, xarray_objs)) + others, key=lambda x: x[0])
)
# check that chunk sizes are compatible
input_chunks = dict(npargs[0].chunks)
input_indexes = dict(npargs[0].indexes)
for arg in xarray_objs[1:]:
assert_chunks_compatible(npargs[0], arg)
input_chunks.update(arg.chunks)
input_indexes.update(arg.indexes)
if template is None:
# infer template by providing zero-shaped arrays
template = infer_template(func, aligned[0], *args, **kwargs)
template_indexes = set(template.indexes)
preserved_indexes = template_indexes & set(input_indexes)
new_indexes = template_indexes - set(input_indexes)
indexes = {dim: input_indexes[dim] for dim in preserved_indexes}
indexes.update({k: template.indexes[k] for k in new_indexes})
output_chunks = {
dim: input_chunks[dim] for dim in template.dims if dim in input_chunks
}
else:
# template xarray object has been provided with proper sizes and chunk shapes
indexes = dict(template.indexes)
if isinstance(template, DataArray):
output_chunks = dict(zip(template.dims, template.chunks)) # type: ignore
else:
output_chunks = dict(template.chunks)
for dim in output_chunks:
if dim in input_chunks and len(input_chunks[dim]) != len(output_chunks[dim]):
raise ValueError(
"map_blocks requires that one block of the input maps to one block of output. "
f"Expected number of output chunks along dimension {dim!r} to be {len(input_chunks[dim])}. "
f"Received {len(output_chunks[dim])} instead. Please provide template if not provided, or "
"fix the provided template."
)
if isinstance(template, DataArray):
result_is_array = True
template_name = template.name
template = template._to_temp_dataset()
elif isinstance(template, Dataset):
result_is_array = False
else:
raise TypeError(
f"func output must be DataArray or Dataset; got {type(template)}"
)
# We're building a new HighLevelGraph hlg. We'll have one new layer
# for each variable in the dataset, which is the result of the
# func applied to the values.
graph: Dict[Any, Any] = {}
new_layers: DefaultDict[str, Dict[Any, Any]] = collections.defaultdict(dict)
gname = "{}-{}".format(
dask.utils.funcname(func), dask.base.tokenize(npargs[0], args, kwargs)
)
# map dims to list of chunk indexes
ichunk = {dim: range(len(chunks_v)) for dim, chunks_v in input_chunks.items()}
# mapping from chunk index to slice bounds
input_chunk_bounds = {
dim: np.cumsum((0,) + chunks_v) for dim, chunks_v in input_chunks.items()
}
output_chunk_bounds = {
dim: np.cumsum((0,) + chunks_v) for dim, chunks_v in output_chunks.items()
}
def subset_dataset_to_block(
graph: dict, gname: str, dataset: Dataset, input_chunk_bounds, chunk_index
):
"""
Creates a task that subsets an xarray dataset to a block determined by chunk_index.
Block extents are determined by input_chunk_bounds.
Also subtasks that subset the constituent variables of a dataset.
"""
# this will become [[name1, variable1],
# [name2, variable2],
# ...]
# which is passed to dict and then to Dataset
data_vars = []
coords = []
chunk_tuple = tuple(chunk_index.values())
for name, variable in dataset.variables.items():
# make a task that creates tuple of (dims, chunk)
if dask.is_dask_collection(variable.data):
# recursively index into dask_keys nested list to get chunk
chunk = variable.__dask_keys__()
for dim in variable.dims:
chunk = chunk[chunk_index[dim]]
chunk_variable_task = (f"{gname}-{name}-{chunk[0]}",) + chunk_tuple
graph[chunk_variable_task] = (
tuple,
[variable.dims, chunk, variable.attrs],
)
else:
# non-dask array possibly with dimensions chunked on other variables
# index into variable appropriately
subsetter = {
dim: _get_chunk_slicer(dim, chunk_index, input_chunk_bounds)
for dim in variable.dims
}
subset = variable.isel(subsetter)
chunk_variable_task = (
"{}-{}".format(gname, dask.base.tokenize(subset)),
) + chunk_tuple
graph[chunk_variable_task] = (
tuple,
[subset.dims, subset, subset.attrs],
)
# this task creates dict mapping variable name to above tuple
if name in dataset._coord_names:
coords.append([name, chunk_variable_task])
else:
data_vars.append([name, chunk_variable_task])
return (Dataset, (dict, data_vars), (dict, coords), dataset.attrs)
# iterate over all possible chunk combinations
for chunk_tuple in itertools.product(*ichunk.values()):
# mapping from dimension name to chunk index
chunk_index = dict(zip(ichunk.keys(), chunk_tuple))
blocked_args = [
subset_dataset_to_block(graph, gname, arg, input_chunk_bounds, chunk_index)
if isxr
else arg
for isxr, arg in zip(is_xarray, npargs)
]
# expected["shapes", "coords", "data_vars", "indexes"] are used to
# raise nice error messages in _wrapper
expected = {}
# input chunk 0 along a dimension maps to output chunk 0 along the same dimension
# even if length of dimension is changed by the applied function
expected["shapes"] = {
k: output_chunks[k][v] for k, v in chunk_index.items() if k in output_chunks
}
expected["data_vars"] = set(template.data_vars.keys()) # type: ignore
expected["coords"] = set(template.coords.keys()) # type: ignore
expected["indexes"] = {
dim: indexes[dim][_get_chunk_slicer(dim, chunk_index, output_chunk_bounds)]
for dim in indexes
}
from_wrapper = (gname,) + chunk_tuple
graph[from_wrapper] = (_wrapper, func, blocked_args, kwargs, is_array, expected)
# mapping from variable name to dask graph key
var_key_map: Dict[Hashable, str] = {}
for name, variable in template.variables.items():
if name in indexes:
continue
gname_l = f"{gname}-{name}"
var_key_map[name] = gname_l
key: Tuple[Any, ...] = (gname_l,)
for dim in variable.dims:
if dim in chunk_index:
key += (chunk_index[dim],)
else:
# unchunked dimensions in the input have one chunk in the result
# output can have new dimensions with exactly one chunk
key += (0,)
# We're adding multiple new layers to the graph:
# The first new layer is the result of the computation on
# the array.
# Then we add one layer per variable, which extracts the
# result for that variable, and depends on just the first new
# layer.
new_layers[gname_l][key] = (operator.getitem, from_wrapper, name)
hlg = HighLevelGraph.from_collections(
gname,
graph,
dependencies=[arg for arg in npargs if dask.is_dask_collection(arg)],
)
for gname_l, layer in new_layers.items():
# This adds in the getitems for each variable in the dataset.
hlg.dependencies[gname_l] = {gname}
hlg.layers[gname_l] = layer
result = Dataset(coords=indexes, attrs=template.attrs)
for index in result.indexes:
result[index].attrs = template[index].attrs
result[index].encoding = template[index].encoding
for name, gname_l in var_key_map.items():
dims = template[name].dims
var_chunks = []
for dim in dims:
if dim in output_chunks:
var_chunks.append(output_chunks[dim])
elif dim in indexes:
var_chunks.append((len(indexes[dim]),))
elif dim in template.dims:
# new unindexed dimension
var_chunks.append((template.sizes[dim],))
data = dask.array.Array(
hlg, name=gname_l, chunks=var_chunks, dtype=template[name].dtype
)
result[name] = (dims, data, template[name].attrs)
result[name].encoding = template[name].encoding
result = result.set_coords(template._coord_names)
if result_is_array:
da = dataset_to_dataarray(result)
da.name = template_name
return da # type: ignore
return result # type: ignore
|