File: utils.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (821 lines) | stat: -rw-r--r-- 23,300 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
"""Internal utilties; not for external use
"""
import contextlib
import functools
import itertools
import os.path
import re
import warnings
from enum import Enum
from typing import (
    AbstractSet,
    Any,
    Callable,
    Collection,
    Container,
    Dict,
    Hashable,
    Iterable,
    Iterator,
    Mapping,
    MutableMapping,
    MutableSet,
    Optional,
    Sequence,
    Tuple,
    TypeVar,
    Union,
    cast,
)

import numpy as np
import pandas as pd

K = TypeVar("K")
V = TypeVar("V")
T = TypeVar("T")


def _check_inplace(inplace: Optional[bool]) -> None:
    if inplace is not None:
        raise TypeError(
            "The `inplace` argument has been removed from xarray. "
            "You can achieve an identical effect with python's standard assignment."
        )


def alias_message(old_name: str, new_name: str) -> str:
    return f"{old_name} has been deprecated. Use {new_name} instead."


def alias_warning(old_name: str, new_name: str, stacklevel: int = 3) -> None:
    warnings.warn(
        alias_message(old_name, new_name), FutureWarning, stacklevel=stacklevel
    )


def alias(obj: Callable[..., T], old_name: str) -> Callable[..., T]:
    assert isinstance(old_name, str)

    @functools.wraps(obj)
    def wrapper(*args, **kwargs):
        alias_warning(old_name, obj.__name__)
        return obj(*args, **kwargs)

    wrapper.__doc__ = alias_message(old_name, obj.__name__)
    return wrapper


def _maybe_cast_to_cftimeindex(index: pd.Index) -> pd.Index:
    from ..coding.cftimeindex import CFTimeIndex

    if len(index) > 0 and index.dtype == "O":
        try:
            return CFTimeIndex(index)
        except (ImportError, TypeError):
            return index
    else:
        return index


def maybe_cast_to_coords_dtype(label, coords_dtype):
    if coords_dtype.kind == "f" and not isinstance(label, slice):
        label = np.asarray(label, dtype=coords_dtype)
    return label


def safe_cast_to_index(array: Any) -> pd.Index:
    """Given an array, safely cast it to a pandas.Index.

    If it is already a pandas.Index, return it unchanged.

    Unlike pandas.Index, if the array has dtype=object or dtype=timedelta64,
    this function will not attempt to do automatic type conversion but will
    always return an index with dtype=object.
    """
    if isinstance(array, pd.Index):
        index = array
    elif hasattr(array, "to_index"):
        index = array.to_index()
    else:
        kwargs = {}
        if hasattr(array, "dtype") and array.dtype.kind == "O":
            kwargs["dtype"] = object
        index = pd.Index(np.asarray(array), **kwargs)
    return _maybe_cast_to_cftimeindex(index)


def multiindex_from_product_levels(
    levels: Sequence[pd.Index], names: Sequence[str] = None
) -> pd.MultiIndex:
    """Creating a MultiIndex from a product without refactorizing levels.

    Keeping levels the same gives back the original labels when we unstack.

    Parameters
    ----------
    levels : sequence of pd.Index
        Values for each MultiIndex level.
    names : sequence of str, optional
        Names for each level.

    Returns
    -------
    pandas.MultiIndex
    """
    if any(not isinstance(lev, pd.Index) for lev in levels):
        raise TypeError("levels must be a list of pd.Index objects")

    split_labels, levels = zip(*[lev.factorize() for lev in levels])
    labels_mesh = np.meshgrid(*split_labels, indexing="ij")
    labels = [x.ravel() for x in labels_mesh]
    return pd.MultiIndex(levels, labels, sortorder=0, names=names)


def maybe_wrap_array(original, new_array):
    """Wrap a transformed array with __array_wrap__ if it can be done safely.

    This lets us treat arbitrary functions that take and return ndarray objects
    like ufuncs, as long as they return an array with the same shape.
    """
    # in case func lost array's metadata
    if isinstance(new_array, np.ndarray) and new_array.shape == original.shape:
        return original.__array_wrap__(new_array)
    else:
        return new_array


def equivalent(first: T, second: T) -> bool:
    """Compare two objects for equivalence (identity or equality), using
    array_equiv if either object is an ndarray. If both objects are lists,
    equivalent is sequentially called on all the elements.
    """
    # TODO: refactor to avoid circular import
    from . import duck_array_ops

    if isinstance(first, np.ndarray) or isinstance(second, np.ndarray):
        return duck_array_ops.array_equiv(first, second)
    elif isinstance(first, list) or isinstance(second, list):
        return list_equiv(first, second)
    else:
        return (
            (first is second)
            or (first == second)
            or (pd.isnull(first) and pd.isnull(second))
        )


def list_equiv(first, second):
    equiv = True
    if len(first) != len(second):
        return False
    else:
        for f, s in zip(first, second):
            equiv = equiv and equivalent(f, s)
    return equiv


def peek_at(iterable: Iterable[T]) -> Tuple[T, Iterator[T]]:
    """Returns the first value from iterable, as well as a new iterator with
    the same content as the original iterable
    """
    gen = iter(iterable)
    peek = next(gen)
    return peek, itertools.chain([peek], gen)


def update_safety_check(
    first_dict: Mapping[K, V],
    second_dict: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> None:
    """Check the safety of updating one dictionary with another.

    Raises ValueError if dictionaries have non-compatible values for any key,
    where compatibility is determined by identity (they are the same item) or
    the `compat` function.

    Parameters
    ----------
    first_dict, second_dict : dict-like
        All items in the second dictionary are checked against for conflicts
        against items in the first dictionary.
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.
    """
    for k, v in second_dict.items():
        if k in first_dict and not compat(v, first_dict[k]):
            raise ValueError(
                "unsafe to merge dictionaries without "
                "overriding values; conflicting key %r" % k
            )


def remove_incompatible_items(
    first_dict: MutableMapping[K, V],
    second_dict: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> None:
    """Remove incompatible items from the first dictionary in-place.

    Items are retained if their keys are found in both dictionaries and the
    values are compatible.

    Parameters
    ----------
    first_dict, second_dict : dict-like
        Mappings to merge.
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.
    """
    for k in list(first_dict):
        if k not in second_dict or not compat(first_dict[k], second_dict[k]):
            del first_dict[k]


def is_dict_like(value: Any) -> bool:
    return hasattr(value, "keys") and hasattr(value, "__getitem__")


def is_full_slice(value: Any) -> bool:
    return isinstance(value, slice) and value == slice(None)


def is_list_like(value: Any) -> bool:
    return isinstance(value, list) or isinstance(value, tuple)


def is_duck_array(value: Any) -> bool:
    if isinstance(value, np.ndarray):
        return True
    return (
        hasattr(value, "ndim")
        and hasattr(value, "shape")
        and hasattr(value, "dtype")
        and hasattr(value, "__array_function__")
        and hasattr(value, "__array_ufunc__")
    )


def either_dict_or_kwargs(
    pos_kwargs: Optional[Mapping[Hashable, T]],
    kw_kwargs: Mapping[str, T],
    func_name: str,
) -> Mapping[Hashable, T]:
    if pos_kwargs is not None:
        if not is_dict_like(pos_kwargs):
            raise ValueError(
                "the first argument to .%s must be a dictionary" % func_name
            )
        if kw_kwargs:
            raise ValueError(
                "cannot specify both keyword and positional "
                "arguments to .%s" % func_name
            )
        return pos_kwargs
    else:
        # Need an explicit cast to appease mypy due to invariance; see
        # https://github.com/python/mypy/issues/6228
        return cast(Mapping[Hashable, T], kw_kwargs)


def is_scalar(value: Any, include_0d: bool = True) -> bool:
    """Whether to treat a value as a scalar.

    Any non-iterable, string, or 0-D array
    """
    from .variable import NON_NUMPY_SUPPORTED_ARRAY_TYPES

    if include_0d:
        include_0d = getattr(value, "ndim", None) == 0
    return (
        include_0d
        or isinstance(value, (str, bytes))
        or not (
            isinstance(value, (Iterable,) + NON_NUMPY_SUPPORTED_ARRAY_TYPES)
            or hasattr(value, "__array_function__")
        )
    )


def is_valid_numpy_dtype(dtype: Any) -> bool:
    try:
        np.dtype(dtype)
    except (TypeError, ValueError):
        return False
    else:
        return True


def to_0d_object_array(value: Any) -> np.ndarray:
    """Given a value, wrap it in a 0-D numpy.ndarray with dtype=object."""
    result = np.empty((), dtype=object)
    result[()] = value
    return result


def to_0d_array(value: Any) -> np.ndarray:
    """Given a value, wrap it in a 0-D numpy.ndarray."""
    if np.isscalar(value) or (isinstance(value, np.ndarray) and value.ndim == 0):
        return np.array(value)
    else:
        return to_0d_object_array(value)


def dict_equiv(
    first: Mapping[K, V],
    second: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> bool:
    """Test equivalence of two dict-like objects. If any of the values are
    numpy arrays, compare them correctly.

    Parameters
    ----------
    first, second : dict-like
        Dictionaries to compare for equality
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.

    Returns
    -------
    equals : bool
        True if the dictionaries are equal
    """
    for k in first:
        if k not in second or not compat(first[k], second[k]):
            return False
    for k in second:
        if k not in first:
            return False
    return True


def compat_dict_intersection(
    first_dict: Mapping[K, V],
    second_dict: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> MutableMapping[K, V]:
    """Return the intersection of two dictionaries as a new dictionary.

    Items are retained if their keys are found in both dictionaries and the
    values are compatible.

    Parameters
    ----------
    first_dict, second_dict : dict-like
        Mappings to merge.
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.

    Returns
    -------
    intersection : dict
        Intersection of the contents.
    """
    new_dict = dict(first_dict)
    remove_incompatible_items(new_dict, second_dict, compat)
    return new_dict


def compat_dict_union(
    first_dict: Mapping[K, V],
    second_dict: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> MutableMapping[K, V]:
    """Return the union of two dictionaries as a new dictionary.

    An exception is raised if any keys are found in both dictionaries and the
    values are not compatible.

    Parameters
    ----------
    first_dict, second_dict : dict-like
        Mappings to merge.
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.

    Returns
    -------
    union : dict
        union of the contents.
    """
    new_dict = dict(first_dict)
    update_safety_check(first_dict, second_dict, compat)
    new_dict.update(second_dict)
    return new_dict


class Frozen(Mapping[K, V]):
    """Wrapper around an object implementing the mapping interface to make it
    immutable. If you really want to modify the mapping, the mutable version is
    saved under the `mapping` attribute.
    """

    __slots__ = ("mapping",)

    def __init__(self, mapping: Mapping[K, V]):
        self.mapping = mapping

    def __getitem__(self, key: K) -> V:
        return self.mapping[key]

    def __iter__(self) -> Iterator[K]:
        return iter(self.mapping)

    def __len__(self) -> int:
        return len(self.mapping)

    def __contains__(self, key: object) -> bool:
        return key in self.mapping

    def __repr__(self) -> str:
        return "{}({!r})".format(type(self).__name__, self.mapping)


def FrozenDict(*args, **kwargs) -> Frozen:
    return Frozen(dict(*args, **kwargs))


class SortedKeysDict(MutableMapping[K, V]):
    """An wrapper for dictionary-like objects that always iterates over its
    items in sorted order by key but is otherwise equivalent to the underlying
    mapping.
    """

    __slots__ = ("mapping",)

    def __init__(self, mapping: MutableMapping[K, V] = None):
        self.mapping = {} if mapping is None else mapping

    def __getitem__(self, key: K) -> V:
        return self.mapping[key]

    def __setitem__(self, key: K, value: V) -> None:
        self.mapping[key] = value

    def __delitem__(self, key: K) -> None:
        del self.mapping[key]

    def __iter__(self) -> Iterator[K]:
        # see #4571 for the reason of the type ignore
        return iter(sorted(self.mapping))  # type: ignore

    def __len__(self) -> int:
        return len(self.mapping)

    def __contains__(self, key: object) -> bool:
        return key in self.mapping

    def __repr__(self) -> str:
        return "{}({!r})".format(type(self).__name__, self.mapping)


class OrderedSet(MutableSet[T]):
    """A simple ordered set.

    The API matches the builtin set, but it preserves insertion order of elements, like
    a dict. Note that, unlike in an OrderedDict, equality tests are not order-sensitive.
    """

    _d: Dict[T, None]

    __slots__ = ("_d",)

    def __init__(self, values: AbstractSet[T] = None):
        self._d = {}
        if values is not None:
            # Disable type checking - both mypy and PyCharm believe that
            # we're altering the type of self in place (see signature of
            # MutableSet.__ior__)
            self |= values  # type: ignore

    # Required methods for MutableSet

    def __contains__(self, value: object) -> bool:
        return value in self._d

    def __iter__(self) -> Iterator[T]:
        return iter(self._d)

    def __len__(self) -> int:
        return len(self._d)

    def add(self, value: T) -> None:
        self._d[value] = None

    def discard(self, value: T) -> None:
        del self._d[value]

    # Additional methods

    def update(self, values: AbstractSet[T]) -> None:
        # See comment on __init__ re. type checking
        self |= values  # type: ignore

    def __repr__(self) -> str:
        return "{}({!r})".format(type(self).__name__, list(self))


class NdimSizeLenMixin:
    """Mixin class that extends a class that defines a ``shape`` property to
    one that also defines ``ndim``, ``size`` and ``__len__``.
    """

    __slots__ = ()

    @property
    def ndim(self: Any) -> int:
        return len(self.shape)

    @property
    def size(self: Any) -> int:
        # cast to int so that shape = () gives size = 1
        return int(np.prod(self.shape))

    def __len__(self: Any) -> int:
        try:
            return self.shape[0]
        except IndexError:
            raise TypeError("len() of unsized object")


class NDArrayMixin(NdimSizeLenMixin):
    """Mixin class for making wrappers of N-dimensional arrays that conform to
    the ndarray interface required for the data argument to Variable objects.

    A subclass should set the `array` property and override one or more of
    `dtype`, `shape` and `__getitem__`.
    """

    __slots__ = ()

    @property
    def dtype(self: Any) -> np.dtype:
        return self.array.dtype

    @property
    def shape(self: Any) -> Tuple[int]:
        return self.array.shape

    def __getitem__(self: Any, key):
        return self.array[key]

    def __repr__(self: Any) -> str:
        return "{}(array={!r})".format(type(self).__name__, self.array)


class ReprObject:
    """Object that prints as the given value, for use with sentinel values."""

    __slots__ = ("_value",)

    def __init__(self, value: str):
        self._value = value

    def __repr__(self) -> str:
        return self._value

    def __eq__(self, other) -> bool:
        if isinstance(other, ReprObject):
            return self._value == other._value
        return False

    def __hash__(self) -> int:
        return hash((type(self), self._value))

    def __dask_tokenize__(self):
        from dask.base import normalize_token

        return normalize_token((type(self), self._value))


@contextlib.contextmanager
def close_on_error(f):
    """Context manager to ensure that a file opened by xarray is closed if an
    exception is raised before the user sees the file object.
    """
    try:
        yield
    except Exception:
        f.close()
        raise


def is_remote_uri(path: str) -> bool:
    return bool(re.search(r"^https?\://", path))


def is_grib_path(path: str) -> bool:
    _, ext = os.path.splitext(path)
    return ext in [".grib", ".grb", ".grib2", ".grb2"]


def is_uniform_spaced(arr, **kwargs) -> bool:
    """Return True if values of an array are uniformly spaced and sorted.

    >>> is_uniform_spaced(range(5))
    True
    >>> is_uniform_spaced([-4, 0, 100])
    False

    kwargs are additional arguments to ``np.isclose``
    """
    arr = np.array(arr, dtype=float)
    diffs = np.diff(arr)
    return bool(np.isclose(diffs.min(), diffs.max(), **kwargs))


def hashable(v: Any) -> bool:
    """Determine whether `v` can be hashed."""
    try:
        hash(v)
    except TypeError:
        return False
    return True


def not_implemented(*args, **kwargs):
    return NotImplemented


def decode_numpy_dict_values(attrs: Mapping[K, V]) -> Dict[K, V]:
    """Convert attribute values from numpy objects to native Python objects,
    for use in to_dict
    """
    attrs = dict(attrs)
    for k, v in attrs.items():
        if isinstance(v, np.ndarray):
            attrs[k] = v.tolist()
        elif isinstance(v, np.generic):
            attrs[k] = v.item()
    return attrs


def ensure_us_time_resolution(val):
    """Convert val out of numpy time, for use in to_dict.
    Needed because of numpy bug GH#7619"""
    if np.issubdtype(val.dtype, np.datetime64):
        val = val.astype("datetime64[us]")
    elif np.issubdtype(val.dtype, np.timedelta64):
        val = val.astype("timedelta64[us]")
    return val


class HiddenKeyDict(MutableMapping[K, V]):
    """Acts like a normal dictionary, but hides certain keys."""

    __slots__ = ("_data", "_hidden_keys")

    # ``__init__`` method required to create instance from class.

    def __init__(self, data: MutableMapping[K, V], hidden_keys: Iterable[K]):
        self._data = data
        self._hidden_keys = frozenset(hidden_keys)

    def _raise_if_hidden(self, key: K) -> None:
        if key in self._hidden_keys:
            raise KeyError("Key `%r` is hidden." % key)

    # The next five methods are requirements of the ABC.
    def __setitem__(self, key: K, value: V) -> None:
        self._raise_if_hidden(key)
        self._data[key] = value

    def __getitem__(self, key: K) -> V:
        self._raise_if_hidden(key)
        return self._data[key]

    def __delitem__(self, key: K) -> None:
        self._raise_if_hidden(key)
        del self._data[key]

    def __iter__(self) -> Iterator[K]:
        for k in self._data:
            if k not in self._hidden_keys:
                yield k

    def __len__(self) -> int:
        num_hidden = len(self._hidden_keys & self._data.keys())
        return len(self._data) - num_hidden


def infix_dims(dims_supplied: Collection, dims_all: Collection) -> Iterator:
    """
    Resolves a supplied list containing an ellispsis representing other items, to
    a generator with the 'realized' list of all items
    """
    if ... in dims_supplied:
        if len(set(dims_all)) != len(dims_all):
            raise ValueError("Cannot use ellipsis with repeated dims")
        if len([d for d in dims_supplied if d == ...]) > 1:
            raise ValueError("More than one ellipsis supplied")
        other_dims = [d for d in dims_all if d not in dims_supplied]
        for d in dims_supplied:
            if d == ...:
                yield from other_dims
            else:
                yield d
    else:
        if set(dims_supplied) ^ set(dims_all):
            raise ValueError(
                f"{dims_supplied} must be a permuted list of {dims_all}, unless `...` is included"
            )
        yield from dims_supplied


def get_temp_dimname(dims: Container[Hashable], new_dim: Hashable) -> Hashable:
    """Get an new dimension name based on new_dim, that is not used in dims.
    If the same name exists, we add an underscore(s) in the head.

    Example1:
        dims: ['a', 'b', 'c']
        new_dim: ['_rolling']
        -> ['_rolling']
    Example2:
        dims: ['a', 'b', 'c', '_rolling']
        new_dim: ['_rolling']
        -> ['__rolling']
    """
    while new_dim in dims:
        new_dim = "_" + str(new_dim)
    return new_dim


def drop_dims_from_indexers(
    indexers: Mapping[Hashable, Any],
    dims: Union[list, Mapping[Hashable, int]],
    missing_dims: str,
) -> Mapping[Hashable, Any]:
    """Depending on the setting of missing_dims, drop any dimensions from indexers that
    are not present in dims.

    Parameters
    ----------
    indexers : dict
    dims : sequence
    missing_dims : {"raise", "warn", "ignore"}
    """

    if missing_dims == "raise":
        invalid = indexers.keys() - set(dims)
        if invalid:
            raise ValueError(
                f"dimensions {invalid} do not exist. Expected one or more of {dims}"
            )

        return indexers

    elif missing_dims == "warn":

        # don't modify input
        indexers = dict(indexers)

        invalid = indexers.keys() - set(dims)
        if invalid:
            warnings.warn(
                f"dimensions {invalid} do not exist. Expected one or more of {dims}"
            )
        for key in invalid:
            indexers.pop(key)

        return indexers

    elif missing_dims == "ignore":
        return {key: val for key, val in indexers.items() if key in dims}

    else:
        raise ValueError(
            f"Unrecognised option {missing_dims} for missing_dims argument"
        )


class UncachedAccessor:
    """Acts like a property, but on both classes and class instances

    This class is necessary because some tools (e.g. pydoc and sphinx)
    inspect classes for which property returns itself and not the
    accessor.
    """

    def __init__(self, accessor):
        self._accessor = accessor

    def __get__(self, obj, cls):
        if obj is None:
            return self._accessor

        return self._accessor(obj)


# Singleton type, as per https://github.com/python/typing/pull/240
class Default(Enum):
    token = 0


_default = Default.token