1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
|
"""Internal utilties; not for external use
"""
import contextlib
import functools
import itertools
import os.path
import re
import warnings
from enum import Enum
from typing import (
AbstractSet,
Any,
Callable,
Collection,
Container,
Dict,
Hashable,
Iterable,
Iterator,
Mapping,
MutableMapping,
MutableSet,
Optional,
Sequence,
Tuple,
TypeVar,
Union,
cast,
)
import numpy as np
import pandas as pd
K = TypeVar("K")
V = TypeVar("V")
T = TypeVar("T")
def _check_inplace(inplace: Optional[bool]) -> None:
if inplace is not None:
raise TypeError(
"The `inplace` argument has been removed from xarray. "
"You can achieve an identical effect with python's standard assignment."
)
def alias_message(old_name: str, new_name: str) -> str:
return f"{old_name} has been deprecated. Use {new_name} instead."
def alias_warning(old_name: str, new_name: str, stacklevel: int = 3) -> None:
warnings.warn(
alias_message(old_name, new_name), FutureWarning, stacklevel=stacklevel
)
def alias(obj: Callable[..., T], old_name: str) -> Callable[..., T]:
assert isinstance(old_name, str)
@functools.wraps(obj)
def wrapper(*args, **kwargs):
alias_warning(old_name, obj.__name__)
return obj(*args, **kwargs)
wrapper.__doc__ = alias_message(old_name, obj.__name__)
return wrapper
def _maybe_cast_to_cftimeindex(index: pd.Index) -> pd.Index:
from ..coding.cftimeindex import CFTimeIndex
if len(index) > 0 and index.dtype == "O":
try:
return CFTimeIndex(index)
except (ImportError, TypeError):
return index
else:
return index
def maybe_cast_to_coords_dtype(label, coords_dtype):
if coords_dtype.kind == "f" and not isinstance(label, slice):
label = np.asarray(label, dtype=coords_dtype)
return label
def safe_cast_to_index(array: Any) -> pd.Index:
"""Given an array, safely cast it to a pandas.Index.
If it is already a pandas.Index, return it unchanged.
Unlike pandas.Index, if the array has dtype=object or dtype=timedelta64,
this function will not attempt to do automatic type conversion but will
always return an index with dtype=object.
"""
if isinstance(array, pd.Index):
index = array
elif hasattr(array, "to_index"):
index = array.to_index()
else:
kwargs = {}
if hasattr(array, "dtype") and array.dtype.kind == "O":
kwargs["dtype"] = object
index = pd.Index(np.asarray(array), **kwargs)
return _maybe_cast_to_cftimeindex(index)
def multiindex_from_product_levels(
levels: Sequence[pd.Index], names: Sequence[str] = None
) -> pd.MultiIndex:
"""Creating a MultiIndex from a product without refactorizing levels.
Keeping levels the same gives back the original labels when we unstack.
Parameters
----------
levels : sequence of pd.Index
Values for each MultiIndex level.
names : sequence of str, optional
Names for each level.
Returns
-------
pandas.MultiIndex
"""
if any(not isinstance(lev, pd.Index) for lev in levels):
raise TypeError("levels must be a list of pd.Index objects")
split_labels, levels = zip(*[lev.factorize() for lev in levels])
labels_mesh = np.meshgrid(*split_labels, indexing="ij")
labels = [x.ravel() for x in labels_mesh]
return pd.MultiIndex(levels, labels, sortorder=0, names=names)
def maybe_wrap_array(original, new_array):
"""Wrap a transformed array with __array_wrap__ if it can be done safely.
This lets us treat arbitrary functions that take and return ndarray objects
like ufuncs, as long as they return an array with the same shape.
"""
# in case func lost array's metadata
if isinstance(new_array, np.ndarray) and new_array.shape == original.shape:
return original.__array_wrap__(new_array)
else:
return new_array
def equivalent(first: T, second: T) -> bool:
"""Compare two objects for equivalence (identity or equality), using
array_equiv if either object is an ndarray. If both objects are lists,
equivalent is sequentially called on all the elements.
"""
# TODO: refactor to avoid circular import
from . import duck_array_ops
if isinstance(first, np.ndarray) or isinstance(second, np.ndarray):
return duck_array_ops.array_equiv(first, second)
elif isinstance(first, list) or isinstance(second, list):
return list_equiv(first, second)
else:
return (
(first is second)
or (first == second)
or (pd.isnull(first) and pd.isnull(second))
)
def list_equiv(first, second):
equiv = True
if len(first) != len(second):
return False
else:
for f, s in zip(first, second):
equiv = equiv and equivalent(f, s)
return equiv
def peek_at(iterable: Iterable[T]) -> Tuple[T, Iterator[T]]:
"""Returns the first value from iterable, as well as a new iterator with
the same content as the original iterable
"""
gen = iter(iterable)
peek = next(gen)
return peek, itertools.chain([peek], gen)
def update_safety_check(
first_dict: Mapping[K, V],
second_dict: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> None:
"""Check the safety of updating one dictionary with another.
Raises ValueError if dictionaries have non-compatible values for any key,
where compatibility is determined by identity (they are the same item) or
the `compat` function.
Parameters
----------
first_dict, second_dict : dict-like
All items in the second dictionary are checked against for conflicts
against items in the first dictionary.
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
"""
for k, v in second_dict.items():
if k in first_dict and not compat(v, first_dict[k]):
raise ValueError(
"unsafe to merge dictionaries without "
"overriding values; conflicting key %r" % k
)
def remove_incompatible_items(
first_dict: MutableMapping[K, V],
second_dict: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> None:
"""Remove incompatible items from the first dictionary in-place.
Items are retained if their keys are found in both dictionaries and the
values are compatible.
Parameters
----------
first_dict, second_dict : dict-like
Mappings to merge.
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
"""
for k in list(first_dict):
if k not in second_dict or not compat(first_dict[k], second_dict[k]):
del first_dict[k]
def is_dict_like(value: Any) -> bool:
return hasattr(value, "keys") and hasattr(value, "__getitem__")
def is_full_slice(value: Any) -> bool:
return isinstance(value, slice) and value == slice(None)
def is_list_like(value: Any) -> bool:
return isinstance(value, list) or isinstance(value, tuple)
def is_duck_array(value: Any) -> bool:
if isinstance(value, np.ndarray):
return True
return (
hasattr(value, "ndim")
and hasattr(value, "shape")
and hasattr(value, "dtype")
and hasattr(value, "__array_function__")
and hasattr(value, "__array_ufunc__")
)
def either_dict_or_kwargs(
pos_kwargs: Optional[Mapping[Hashable, T]],
kw_kwargs: Mapping[str, T],
func_name: str,
) -> Mapping[Hashable, T]:
if pos_kwargs is not None:
if not is_dict_like(pos_kwargs):
raise ValueError(
"the first argument to .%s must be a dictionary" % func_name
)
if kw_kwargs:
raise ValueError(
"cannot specify both keyword and positional "
"arguments to .%s" % func_name
)
return pos_kwargs
else:
# Need an explicit cast to appease mypy due to invariance; see
# https://github.com/python/mypy/issues/6228
return cast(Mapping[Hashable, T], kw_kwargs)
def is_scalar(value: Any, include_0d: bool = True) -> bool:
"""Whether to treat a value as a scalar.
Any non-iterable, string, or 0-D array
"""
from .variable import NON_NUMPY_SUPPORTED_ARRAY_TYPES
if include_0d:
include_0d = getattr(value, "ndim", None) == 0
return (
include_0d
or isinstance(value, (str, bytes))
or not (
isinstance(value, (Iterable,) + NON_NUMPY_SUPPORTED_ARRAY_TYPES)
or hasattr(value, "__array_function__")
)
)
def is_valid_numpy_dtype(dtype: Any) -> bool:
try:
np.dtype(dtype)
except (TypeError, ValueError):
return False
else:
return True
def to_0d_object_array(value: Any) -> np.ndarray:
"""Given a value, wrap it in a 0-D numpy.ndarray with dtype=object."""
result = np.empty((), dtype=object)
result[()] = value
return result
def to_0d_array(value: Any) -> np.ndarray:
"""Given a value, wrap it in a 0-D numpy.ndarray."""
if np.isscalar(value) or (isinstance(value, np.ndarray) and value.ndim == 0):
return np.array(value)
else:
return to_0d_object_array(value)
def dict_equiv(
first: Mapping[K, V],
second: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> bool:
"""Test equivalence of two dict-like objects. If any of the values are
numpy arrays, compare them correctly.
Parameters
----------
first, second : dict-like
Dictionaries to compare for equality
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
Returns
-------
equals : bool
True if the dictionaries are equal
"""
for k in first:
if k not in second or not compat(first[k], second[k]):
return False
for k in second:
if k not in first:
return False
return True
def compat_dict_intersection(
first_dict: Mapping[K, V],
second_dict: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> MutableMapping[K, V]:
"""Return the intersection of two dictionaries as a new dictionary.
Items are retained if their keys are found in both dictionaries and the
values are compatible.
Parameters
----------
first_dict, second_dict : dict-like
Mappings to merge.
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
Returns
-------
intersection : dict
Intersection of the contents.
"""
new_dict = dict(first_dict)
remove_incompatible_items(new_dict, second_dict, compat)
return new_dict
def compat_dict_union(
first_dict: Mapping[K, V],
second_dict: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> MutableMapping[K, V]:
"""Return the union of two dictionaries as a new dictionary.
An exception is raised if any keys are found in both dictionaries and the
values are not compatible.
Parameters
----------
first_dict, second_dict : dict-like
Mappings to merge.
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
Returns
-------
union : dict
union of the contents.
"""
new_dict = dict(first_dict)
update_safety_check(first_dict, second_dict, compat)
new_dict.update(second_dict)
return new_dict
class Frozen(Mapping[K, V]):
"""Wrapper around an object implementing the mapping interface to make it
immutable. If you really want to modify the mapping, the mutable version is
saved under the `mapping` attribute.
"""
__slots__ = ("mapping",)
def __init__(self, mapping: Mapping[K, V]):
self.mapping = mapping
def __getitem__(self, key: K) -> V:
return self.mapping[key]
def __iter__(self) -> Iterator[K]:
return iter(self.mapping)
def __len__(self) -> int:
return len(self.mapping)
def __contains__(self, key: object) -> bool:
return key in self.mapping
def __repr__(self) -> str:
return "{}({!r})".format(type(self).__name__, self.mapping)
def FrozenDict(*args, **kwargs) -> Frozen:
return Frozen(dict(*args, **kwargs))
class SortedKeysDict(MutableMapping[K, V]):
"""An wrapper for dictionary-like objects that always iterates over its
items in sorted order by key but is otherwise equivalent to the underlying
mapping.
"""
__slots__ = ("mapping",)
def __init__(self, mapping: MutableMapping[K, V] = None):
self.mapping = {} if mapping is None else mapping
def __getitem__(self, key: K) -> V:
return self.mapping[key]
def __setitem__(self, key: K, value: V) -> None:
self.mapping[key] = value
def __delitem__(self, key: K) -> None:
del self.mapping[key]
def __iter__(self) -> Iterator[K]:
# see #4571 for the reason of the type ignore
return iter(sorted(self.mapping)) # type: ignore
def __len__(self) -> int:
return len(self.mapping)
def __contains__(self, key: object) -> bool:
return key in self.mapping
def __repr__(self) -> str:
return "{}({!r})".format(type(self).__name__, self.mapping)
class OrderedSet(MutableSet[T]):
"""A simple ordered set.
The API matches the builtin set, but it preserves insertion order of elements, like
a dict. Note that, unlike in an OrderedDict, equality tests are not order-sensitive.
"""
_d: Dict[T, None]
__slots__ = ("_d",)
def __init__(self, values: AbstractSet[T] = None):
self._d = {}
if values is not None:
# Disable type checking - both mypy and PyCharm believe that
# we're altering the type of self in place (see signature of
# MutableSet.__ior__)
self |= values # type: ignore
# Required methods for MutableSet
def __contains__(self, value: object) -> bool:
return value in self._d
def __iter__(self) -> Iterator[T]:
return iter(self._d)
def __len__(self) -> int:
return len(self._d)
def add(self, value: T) -> None:
self._d[value] = None
def discard(self, value: T) -> None:
del self._d[value]
# Additional methods
def update(self, values: AbstractSet[T]) -> None:
# See comment on __init__ re. type checking
self |= values # type: ignore
def __repr__(self) -> str:
return "{}({!r})".format(type(self).__name__, list(self))
class NdimSizeLenMixin:
"""Mixin class that extends a class that defines a ``shape`` property to
one that also defines ``ndim``, ``size`` and ``__len__``.
"""
__slots__ = ()
@property
def ndim(self: Any) -> int:
return len(self.shape)
@property
def size(self: Any) -> int:
# cast to int so that shape = () gives size = 1
return int(np.prod(self.shape))
def __len__(self: Any) -> int:
try:
return self.shape[0]
except IndexError:
raise TypeError("len() of unsized object")
class NDArrayMixin(NdimSizeLenMixin):
"""Mixin class for making wrappers of N-dimensional arrays that conform to
the ndarray interface required for the data argument to Variable objects.
A subclass should set the `array` property and override one or more of
`dtype`, `shape` and `__getitem__`.
"""
__slots__ = ()
@property
def dtype(self: Any) -> np.dtype:
return self.array.dtype
@property
def shape(self: Any) -> Tuple[int]:
return self.array.shape
def __getitem__(self: Any, key):
return self.array[key]
def __repr__(self: Any) -> str:
return "{}(array={!r})".format(type(self).__name__, self.array)
class ReprObject:
"""Object that prints as the given value, for use with sentinel values."""
__slots__ = ("_value",)
def __init__(self, value: str):
self._value = value
def __repr__(self) -> str:
return self._value
def __eq__(self, other) -> bool:
if isinstance(other, ReprObject):
return self._value == other._value
return False
def __hash__(self) -> int:
return hash((type(self), self._value))
def __dask_tokenize__(self):
from dask.base import normalize_token
return normalize_token((type(self), self._value))
@contextlib.contextmanager
def close_on_error(f):
"""Context manager to ensure that a file opened by xarray is closed if an
exception is raised before the user sees the file object.
"""
try:
yield
except Exception:
f.close()
raise
def is_remote_uri(path: str) -> bool:
return bool(re.search(r"^https?\://", path))
def is_grib_path(path: str) -> bool:
_, ext = os.path.splitext(path)
return ext in [".grib", ".grb", ".grib2", ".grb2"]
def is_uniform_spaced(arr, **kwargs) -> bool:
"""Return True if values of an array are uniformly spaced and sorted.
>>> is_uniform_spaced(range(5))
True
>>> is_uniform_spaced([-4, 0, 100])
False
kwargs are additional arguments to ``np.isclose``
"""
arr = np.array(arr, dtype=float)
diffs = np.diff(arr)
return bool(np.isclose(diffs.min(), diffs.max(), **kwargs))
def hashable(v: Any) -> bool:
"""Determine whether `v` can be hashed."""
try:
hash(v)
except TypeError:
return False
return True
def not_implemented(*args, **kwargs):
return NotImplemented
def decode_numpy_dict_values(attrs: Mapping[K, V]) -> Dict[K, V]:
"""Convert attribute values from numpy objects to native Python objects,
for use in to_dict
"""
attrs = dict(attrs)
for k, v in attrs.items():
if isinstance(v, np.ndarray):
attrs[k] = v.tolist()
elif isinstance(v, np.generic):
attrs[k] = v.item()
return attrs
def ensure_us_time_resolution(val):
"""Convert val out of numpy time, for use in to_dict.
Needed because of numpy bug GH#7619"""
if np.issubdtype(val.dtype, np.datetime64):
val = val.astype("datetime64[us]")
elif np.issubdtype(val.dtype, np.timedelta64):
val = val.astype("timedelta64[us]")
return val
class HiddenKeyDict(MutableMapping[K, V]):
"""Acts like a normal dictionary, but hides certain keys."""
__slots__ = ("_data", "_hidden_keys")
# ``__init__`` method required to create instance from class.
def __init__(self, data: MutableMapping[K, V], hidden_keys: Iterable[K]):
self._data = data
self._hidden_keys = frozenset(hidden_keys)
def _raise_if_hidden(self, key: K) -> None:
if key in self._hidden_keys:
raise KeyError("Key `%r` is hidden." % key)
# The next five methods are requirements of the ABC.
def __setitem__(self, key: K, value: V) -> None:
self._raise_if_hidden(key)
self._data[key] = value
def __getitem__(self, key: K) -> V:
self._raise_if_hidden(key)
return self._data[key]
def __delitem__(self, key: K) -> None:
self._raise_if_hidden(key)
del self._data[key]
def __iter__(self) -> Iterator[K]:
for k in self._data:
if k not in self._hidden_keys:
yield k
def __len__(self) -> int:
num_hidden = len(self._hidden_keys & self._data.keys())
return len(self._data) - num_hidden
def infix_dims(dims_supplied: Collection, dims_all: Collection) -> Iterator:
"""
Resolves a supplied list containing an ellispsis representing other items, to
a generator with the 'realized' list of all items
"""
if ... in dims_supplied:
if len(set(dims_all)) != len(dims_all):
raise ValueError("Cannot use ellipsis with repeated dims")
if len([d for d in dims_supplied if d == ...]) > 1:
raise ValueError("More than one ellipsis supplied")
other_dims = [d for d in dims_all if d not in dims_supplied]
for d in dims_supplied:
if d == ...:
yield from other_dims
else:
yield d
else:
if set(dims_supplied) ^ set(dims_all):
raise ValueError(
f"{dims_supplied} must be a permuted list of {dims_all}, unless `...` is included"
)
yield from dims_supplied
def get_temp_dimname(dims: Container[Hashable], new_dim: Hashable) -> Hashable:
"""Get an new dimension name based on new_dim, that is not used in dims.
If the same name exists, we add an underscore(s) in the head.
Example1:
dims: ['a', 'b', 'c']
new_dim: ['_rolling']
-> ['_rolling']
Example2:
dims: ['a', 'b', 'c', '_rolling']
new_dim: ['_rolling']
-> ['__rolling']
"""
while new_dim in dims:
new_dim = "_" + str(new_dim)
return new_dim
def drop_dims_from_indexers(
indexers: Mapping[Hashable, Any],
dims: Union[list, Mapping[Hashable, int]],
missing_dims: str,
) -> Mapping[Hashable, Any]:
"""Depending on the setting of missing_dims, drop any dimensions from indexers that
are not present in dims.
Parameters
----------
indexers : dict
dims : sequence
missing_dims : {"raise", "warn", "ignore"}
"""
if missing_dims == "raise":
invalid = indexers.keys() - set(dims)
if invalid:
raise ValueError(
f"dimensions {invalid} do not exist. Expected one or more of {dims}"
)
return indexers
elif missing_dims == "warn":
# don't modify input
indexers = dict(indexers)
invalid = indexers.keys() - set(dims)
if invalid:
warnings.warn(
f"dimensions {invalid} do not exist. Expected one or more of {dims}"
)
for key in invalid:
indexers.pop(key)
return indexers
elif missing_dims == "ignore":
return {key: val for key, val in indexers.items() if key in dims}
else:
raise ValueError(
f"Unrecognised option {missing_dims} for missing_dims argument"
)
class UncachedAccessor:
"""Acts like a property, but on both classes and class instances
This class is necessary because some tools (e.g. pydoc and sphinx)
inspect classes for which property returns itself and not the
accessor.
"""
def __init__(self, accessor):
self._accessor = accessor
def __get__(self, obj, cls):
if obj is None:
return self._accessor
return self._accessor(obj)
# Singleton type, as per https://github.com/python/typing/pull/240
class Default(Enum):
token = 0
_default = Default.token
|