1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
import functools
import numpy as np
import pandas as pd
from ..core.alignment import broadcast
from .facetgrid import _easy_facetgrid
from .utils import (
_add_colorbar,
_is_numeric,
_process_cmap_cbar_kwargs,
get_axis,
label_from_attrs,
)
# copied from seaborn
_MARKERSIZE_RANGE = np.array([18.0, 72.0])
def _infer_meta_data(ds, x, y, hue, hue_style, add_guide):
dvars = set(ds.variables.keys())
error_msg = " must be one of ({:s})".format(", ".join(dvars))
if x not in dvars:
raise ValueError("x" + error_msg)
if y not in dvars:
raise ValueError("y" + error_msg)
if hue is not None and hue not in dvars:
raise ValueError("hue" + error_msg)
if hue:
hue_is_numeric = _is_numeric(ds[hue].values)
if hue_style is None:
hue_style = "continuous" if hue_is_numeric else "discrete"
if not hue_is_numeric and (hue_style == "continuous"):
raise ValueError(
f"Cannot create a colorbar for a non numeric coordinate: {hue}"
)
if add_guide is None or add_guide is True:
add_colorbar = True if hue_style == "continuous" else False
add_legend = True if hue_style == "discrete" else False
else:
add_colorbar = False
add_legend = False
else:
if add_guide is True:
raise ValueError("Cannot set add_guide when hue is None.")
add_legend = False
add_colorbar = False
if hue_style is not None and hue_style not in ["discrete", "continuous"]:
raise ValueError("hue_style must be either None, 'discrete' or 'continuous'.")
if hue:
hue_label = label_from_attrs(ds[hue])
hue = ds[hue]
else:
hue_label = None
hue = None
return {
"add_colorbar": add_colorbar,
"add_legend": add_legend,
"hue_label": hue_label,
"hue_style": hue_style,
"xlabel": label_from_attrs(ds[x]),
"ylabel": label_from_attrs(ds[y]),
"hue": hue,
}
def _infer_scatter_data(ds, x, y, hue, markersize, size_norm, size_mapping=None):
broadcast_keys = ["x", "y"]
to_broadcast = [ds[x], ds[y]]
if hue:
to_broadcast.append(ds[hue])
broadcast_keys.append("hue")
if markersize:
to_broadcast.append(ds[markersize])
broadcast_keys.append("size")
broadcasted = dict(zip(broadcast_keys, broadcast(*to_broadcast)))
data = {"x": broadcasted["x"], "y": broadcasted["y"], "hue": None, "sizes": None}
if hue:
data["hue"] = broadcasted["hue"]
if markersize:
size = broadcasted["size"]
if size_mapping is None:
size_mapping = _parse_size(size, size_norm)
data["sizes"] = size.copy(
data=np.reshape(size_mapping.loc[size.values.ravel()].values, size.shape)
)
return data
# copied from seaborn
def _parse_size(data, norm):
import matplotlib as mpl
if data is None:
return None
data = data.values.flatten()
if not _is_numeric(data):
levels = np.unique(data)
numbers = np.arange(1, 1 + len(levels))[::-1]
else:
levels = numbers = np.sort(np.unique(data))
min_width, max_width = _MARKERSIZE_RANGE
# width_range = min_width, max_width
if norm is None:
norm = mpl.colors.Normalize()
elif isinstance(norm, tuple):
norm = mpl.colors.Normalize(*norm)
elif not isinstance(norm, mpl.colors.Normalize):
err = "``size_norm`` must be None, tuple, or Normalize object."
raise ValueError(err)
norm.clip = True
if not norm.scaled():
norm(np.asarray(numbers))
# limits = norm.vmin, norm.vmax
scl = norm(numbers)
widths = np.asarray(min_width + scl * (max_width - min_width))
if scl.mask.any():
widths[scl.mask] = 0
sizes = dict(zip(levels, widths))
return pd.Series(sizes)
class _Dataset_PlotMethods:
"""
Enables use of xarray.plot functions as attributes on a Dataset.
For example, Dataset.plot.scatter
"""
def __init__(self, dataset):
self._ds = dataset
def __call__(self, *args, **kwargs):
raise ValueError(
"Dataset.plot cannot be called directly. Use "
"an explicit plot method, e.g. ds.plot.scatter(...)"
)
def _dsplot(plotfunc):
commondoc = """
Parameters
----------
ds : Dataset
x, y : str
Variable names for x, y axis.
hue: str, optional
Variable by which to color scattered points
hue_style: str, optional
Can be either 'discrete' (legend) or 'continuous' (color bar).
markersize: str, optional
scatter only. Variable by which to vary size of scattered points.
size_norm: optional
Either None or 'Norm' instance to normalize the 'markersize' variable.
add_guide: bool, optional
Add a guide that depends on hue_style
- for "discrete", build a legend.
This is the default for non-numeric `hue` variables.
- for "continuous", build a colorbar
row : str, optional
If passed, make row faceted plots on this dimension name
col : str, optional
If passed, make column faceted plots on this dimension name
col_wrap : int, optional
Use together with ``col`` to wrap faceted plots
ax : matplotlib axes object, optional
If None, uses the current axis. Not applicable when using facets.
subplot_kws : dict, optional
Dictionary of keyword arguments for matplotlib subplots. Only applies
to FacetGrid plotting.
aspect : scalar, optional
Aspect ratio of plot, so that ``aspect * size`` gives the width in
inches. Only used if a ``size`` is provided.
size : scalar, optional
If provided, create a new figure for the plot with the given size.
Height (in inches) of each plot. See also: ``aspect``.
norm : ``matplotlib.colors.Normalize`` instance, optional
If the ``norm`` has vmin or vmax specified, the corresponding kwarg
must be None.
vmin, vmax : float, optional
Values to anchor the colormap, otherwise they are inferred from the
data and other keyword arguments. When a diverging dataset is inferred,
setting one of these values will fix the other by symmetry around
``center``. Setting both values prevents use of a diverging colormap.
If discrete levels are provided as an explicit list, both of these
values are ignored.
cmap : str or colormap, optional
The mapping from data values to color space. Either a
matplotlib colormap name or object. If not provided, this will
be either ``viridis`` (if the function infers a sequential
dataset) or ``RdBu_r`` (if the function infers a diverging
dataset). When `Seaborn` is installed, ``cmap`` may also be a
`seaborn` color palette. If ``cmap`` is seaborn color palette
and the plot type is not ``contour`` or ``contourf``, ``levels``
must also be specified.
colors : color-like or list of color-like, optional
A single color or a list of colors. If the plot type is not ``contour``
or ``contourf``, the ``levels`` argument is required.
center : float, optional
The value at which to center the colormap. Passing this value implies
use of a diverging colormap. Setting it to ``False`` prevents use of a
diverging colormap.
robust : bool, optional
If True and ``vmin`` or ``vmax`` are absent, the colormap range is
computed with 2nd and 98th percentiles instead of the extreme values.
extend : {"neither", "both", "min", "max"}, optional
How to draw arrows extending the colorbar beyond its limits. If not
provided, extend is inferred from vmin, vmax and the data limits.
levels : int or list-like object, optional
Split the colormap (cmap) into discrete color intervals. If an integer
is provided, "nice" levels are chosen based on the data range: this can
imply that the final number of levels is not exactly the expected one.
Setting ``vmin`` and/or ``vmax`` with ``levels=N`` is equivalent to
setting ``levels=np.linspace(vmin, vmax, N)``.
**kwargs : optional
Additional keyword arguments to matplotlib
"""
# Build on the original docstring
plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}"
@functools.wraps(plotfunc)
def newplotfunc(
ds,
x=None,
y=None,
hue=None,
hue_style=None,
col=None,
row=None,
ax=None,
figsize=None,
size=None,
col_wrap=None,
sharex=True,
sharey=True,
aspect=None,
subplot_kws=None,
add_guide=None,
cbar_kwargs=None,
cbar_ax=None,
vmin=None,
vmax=None,
norm=None,
infer_intervals=None,
center=None,
levels=None,
robust=None,
colors=None,
extend=None,
cmap=None,
**kwargs,
):
_is_facetgrid = kwargs.pop("_is_facetgrid", False)
if _is_facetgrid: # facetgrid call
meta_data = kwargs.pop("meta_data")
else:
meta_data = _infer_meta_data(ds, x, y, hue, hue_style, add_guide)
hue_style = meta_data["hue_style"]
# handle facetgrids first
if col or row:
allargs = locals().copy()
allargs["plotfunc"] = globals()[plotfunc.__name__]
allargs["data"] = ds
# TODO dcherian: why do I need to remove kwargs?
for arg in ["meta_data", "kwargs", "ds"]:
del allargs[arg]
return _easy_facetgrid(kind="dataset", **allargs, **kwargs)
figsize = kwargs.pop("figsize", None)
ax = get_axis(figsize, size, aspect, ax)
if hue_style == "continuous" and hue is not None:
if _is_facetgrid:
cbar_kwargs = meta_data["cbar_kwargs"]
cmap_params = meta_data["cmap_params"]
else:
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
plotfunc, ds[hue].values, **locals()
)
# subset that can be passed to scatter, hist2d
cmap_params_subset = {
vv: cmap_params[vv] for vv in ["vmin", "vmax", "norm", "cmap"]
}
else:
cmap_params_subset = {}
primitive = plotfunc(
ds=ds,
x=x,
y=y,
hue=hue,
hue_style=hue_style,
ax=ax,
cmap_params=cmap_params_subset,
**kwargs,
)
if _is_facetgrid: # if this was called from Facetgrid.map_dataset,
return primitive # finish here. Else, make labels
if meta_data.get("xlabel", None):
ax.set_xlabel(meta_data.get("xlabel"))
if meta_data.get("ylabel", None):
ax.set_ylabel(meta_data.get("ylabel"))
if meta_data["add_legend"]:
ax.legend(handles=primitive, title=meta_data.get("hue_label", None))
if meta_data["add_colorbar"]:
cbar_kwargs = {} if cbar_kwargs is None else cbar_kwargs
if "label" not in cbar_kwargs:
cbar_kwargs["label"] = meta_data.get("hue_label", None)
_add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params)
return primitive
@functools.wraps(newplotfunc)
def plotmethod(
_PlotMethods_obj,
x=None,
y=None,
hue=None,
hue_style=None,
col=None,
row=None,
ax=None,
figsize=None,
col_wrap=None,
sharex=True,
sharey=True,
aspect=None,
size=None,
subplot_kws=None,
add_guide=None,
cbar_kwargs=None,
cbar_ax=None,
vmin=None,
vmax=None,
norm=None,
infer_intervals=None,
center=None,
levels=None,
robust=None,
colors=None,
extend=None,
cmap=None,
**kwargs,
):
"""
The method should have the same signature as the function.
This just makes the method work on Plotmethods objects,
and passes all the other arguments straight through.
"""
allargs = locals()
allargs["ds"] = _PlotMethods_obj._ds
allargs.update(kwargs)
for arg in ["_PlotMethods_obj", "newplotfunc", "kwargs"]:
del allargs[arg]
return newplotfunc(**allargs)
# Add to class _PlotMethods
setattr(_Dataset_PlotMethods, plotmethod.__name__, plotmethod)
return newplotfunc
@_dsplot
def scatter(ds, x, y, ax, **kwargs):
"""
Scatter Dataset data variables against each other.
"""
if "add_colorbar" in kwargs or "add_legend" in kwargs:
raise ValueError(
"Dataset.plot.scatter does not accept "
"'add_colorbar' or 'add_legend'. "
"Use 'add_guide' instead."
)
cmap_params = kwargs.pop("cmap_params")
hue = kwargs.pop("hue")
hue_style = kwargs.pop("hue_style")
markersize = kwargs.pop("markersize", None)
size_norm = kwargs.pop("size_norm", None)
size_mapping = kwargs.pop("size_mapping", None) # set by facetgrid
# need to infer size_mapping with full dataset
data = _infer_scatter_data(ds, x, y, hue, markersize, size_norm, size_mapping)
if hue_style == "discrete":
primitive = []
for label in np.unique(data["hue"].values):
mask = data["hue"] == label
if data["sizes"] is not None:
kwargs.update(s=data["sizes"].where(mask, drop=True).values.flatten())
primitive.append(
ax.scatter(
data["x"].where(mask, drop=True).values.flatten(),
data["y"].where(mask, drop=True).values.flatten(),
label=label,
**kwargs,
)
)
elif hue is None or hue_style == "continuous":
if data["sizes"] is not None:
kwargs.update(s=data["sizes"].values.ravel())
if data["hue"] is not None:
kwargs.update(c=data["hue"].values.ravel())
primitive = ax.scatter(
data["x"].values.ravel(), data["y"].values.ravel(), **cmap_params, **kwargs
)
return primitive
|