1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
|
"""
Use this module directly:
import xarray.plot as xplt
Or use the methods on a DataArray or Dataset:
DataArray.plot._____
Dataset.plot._____
"""
import functools
import numpy as np
import pandas as pd
from .facetgrid import _easy_facetgrid
from .utils import (
_add_colorbar,
_assert_valid_xy,
_ensure_plottable,
_infer_interval_breaks,
_infer_xy_labels,
_process_cmap_cbar_kwargs,
_rescale_imshow_rgb,
_resolve_intervals_1dplot,
_resolve_intervals_2dplot,
_update_axes,
get_axis,
import_matplotlib_pyplot,
label_from_attrs,
)
def _infer_line_data(darray, x, y, hue):
ndims = len(darray.dims)
if x is not None and y is not None:
raise ValueError("Cannot specify both x and y kwargs for line plots.")
if x is not None:
_assert_valid_xy(darray, x, "x")
if y is not None:
_assert_valid_xy(darray, y, "y")
if ndims == 1:
huename = None
hueplt = None
huelabel = ""
if x is not None:
xplt = darray[x]
yplt = darray
elif y is not None:
xplt = darray
yplt = darray[y]
else: # Both x & y are None
dim = darray.dims[0]
xplt = darray[dim]
yplt = darray
else:
if x is None and y is None and hue is None:
raise ValueError("For 2D inputs, please specify either hue, x or y.")
if y is None:
xname, huename = _infer_xy_labels(darray=darray, x=x, y=hue)
xplt = darray[xname]
if xplt.ndim > 1:
if huename in darray.dims:
otherindex = 1 if darray.dims.index(huename) == 0 else 0
otherdim = darray.dims[otherindex]
yplt = darray.transpose(otherdim, huename, transpose_coords=False)
xplt = xplt.transpose(otherdim, huename, transpose_coords=False)
else:
raise ValueError(
"For 2D inputs, hue must be a dimension"
" i.e. one of " + repr(darray.dims)
)
else:
(xdim,) = darray[xname].dims
(huedim,) = darray[huename].dims
yplt = darray.transpose(xdim, huedim)
else:
yname, huename = _infer_xy_labels(darray=darray, x=y, y=hue)
yplt = darray[yname]
if yplt.ndim > 1:
if huename in darray.dims:
otherindex = 1 if darray.dims.index(huename) == 0 else 0
otherdim = darray.dims[otherindex]
xplt = darray.transpose(otherdim, huename, transpose_coords=False)
yplt = yplt.transpose(otherdim, huename, transpose_coords=False)
else:
raise ValueError(
"For 2D inputs, hue must be a dimension"
" i.e. one of " + repr(darray.dims)
)
else:
(ydim,) = darray[yname].dims
(huedim,) = darray[huename].dims
xplt = darray.transpose(ydim, huedim)
huelabel = label_from_attrs(darray[huename])
hueplt = darray[huename]
xlabel = label_from_attrs(xplt)
ylabel = label_from_attrs(yplt)
return xplt, yplt, hueplt, xlabel, ylabel, huelabel
def plot(
darray,
row=None,
col=None,
col_wrap=None,
ax=None,
hue=None,
rtol=0.01,
subplot_kws=None,
**kwargs,
):
"""
Default plot of DataArray using matplotlib.pyplot.
Calls xarray plotting function based on the dimensions of
darray.squeeze()
=============== ===========================
Dimensions Plotting function
--------------- ---------------------------
1 :py:func:`xarray.plot.line`
2 :py:func:`xarray.plot.pcolormesh`
Anything else :py:func:`xarray.plot.hist`
=============== ===========================
Parameters
----------
darray : DataArray
row : str, optional
If passed, make row faceted plots on this dimension name
col : str, optional
If passed, make column faceted plots on this dimension name
hue : str, optional
If passed, make faceted line plots with hue on this dimension name
col_wrap : int, optional
Use together with ``col`` to wrap faceted plots
ax : matplotlib.axes.Axes, optional
If None, uses the current axis. Not applicable when using facets.
rtol : float, optional
Relative tolerance used to determine if the indexes
are uniformly spaced. Usually a small positive number.
subplot_kws : dict, optional
Dictionary of keyword arguments for matplotlib subplots.
**kwargs : optional
Additional keyword arguments to matplotlib
"""
darray = darray.squeeze().compute()
plot_dims = set(darray.dims)
plot_dims.discard(row)
plot_dims.discard(col)
plot_dims.discard(hue)
ndims = len(plot_dims)
error_msg = (
"Only 1d and 2d plots are supported for facets in xarray. "
"See the package `Seaborn` for more options."
)
if ndims in [1, 2]:
if row or col:
kwargs["subplot_kws"] = subplot_kws
kwargs["row"] = row
kwargs["col"] = col
kwargs["col_wrap"] = col_wrap
if ndims == 1:
plotfunc = line
kwargs["hue"] = hue
elif ndims == 2:
if hue:
plotfunc = line
kwargs["hue"] = hue
else:
plotfunc = pcolormesh
kwargs["subplot_kws"] = subplot_kws
else:
if row or col or hue:
raise ValueError(error_msg)
plotfunc = hist
kwargs["ax"] = ax
return plotfunc(darray, **kwargs)
# This function signature should not change so that it can use
# matplotlib format strings
def line(
darray,
*args,
row=None,
col=None,
figsize=None,
aspect=None,
size=None,
ax=None,
hue=None,
x=None,
y=None,
xincrease=None,
yincrease=None,
xscale=None,
yscale=None,
xticks=None,
yticks=None,
xlim=None,
ylim=None,
add_legend=True,
_labels=True,
**kwargs,
):
"""
Line plot of DataArray index against values
Wraps :func:`matplotlib:matplotlib.pyplot.plot`
Parameters
----------
darray : DataArray
Must be 1 dimensional
figsize : tuple, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
aspect : scalar, optional
Aspect ratio of plot, so that ``aspect * size`` gives the width in
inches. Only used if a ``size`` is provided.
size : scalar, optional
If provided, create a new figure for the plot with the given size.
Height (in inches) of each plot. See also: ``aspect``.
ax : matplotlib axes object, optional
Axis on which to plot this figure. By default, use the current axis.
Mutually exclusive with ``size`` and ``figsize``.
hue : string, optional
Dimension or coordinate for which you want multiple lines plotted.
If plotting against a 2D coordinate, ``hue`` must be a dimension.
x, y : string, optional
Dimension, coordinate or MultiIndex level for x, y axis.
Only one of these may be specified.
The other coordinate plots values from the DataArray on which this
plot method is called.
xscale, yscale : 'linear', 'symlog', 'log', 'logit', optional
Specifies scaling for the x- and y-axes respectively
xticks, yticks : Specify tick locations for x- and y-axes
xlim, ylim : Specify x- and y-axes limits
xincrease : None, True, or False, optional
Should the values on the x axes be increasing from left to right?
if None, use the default for the matplotlib function.
yincrease : None, True, or False, optional
Should the values on the y axes be increasing from top to bottom?
if None, use the default for the matplotlib function.
add_legend : bool, optional
Add legend with y axis coordinates (2D inputs only).
*args, **kwargs : optional
Additional arguments to matplotlib.pyplot.plot
"""
# Handle facetgrids first
if row or col:
allargs = locals().copy()
allargs.update(allargs.pop("kwargs"))
allargs.pop("darray")
return _easy_facetgrid(darray, line, kind="line", **allargs)
ndims = len(darray.dims)
if ndims > 2:
raise ValueError(
"Line plots are for 1- or 2-dimensional DataArrays. "
"Passed DataArray has {ndims} "
"dimensions".format(ndims=ndims)
)
# The allargs dict passed to _easy_facetgrid above contains args
if args == ():
args = kwargs.pop("args", ())
else:
assert "args" not in kwargs
ax = get_axis(figsize, size, aspect, ax)
xplt, yplt, hueplt, xlabel, ylabel, hue_label = _infer_line_data(darray, x, y, hue)
# Remove pd.Intervals if contained in xplt.values and/or yplt.values.
xplt_val, yplt_val, xlabel, ylabel, kwargs = _resolve_intervals_1dplot(
xplt.values, yplt.values, xlabel, ylabel, kwargs
)
_ensure_plottable(xplt_val, yplt_val)
primitive = ax.plot(xplt_val, yplt_val, *args, **kwargs)
if _labels:
if xlabel is not None:
ax.set_xlabel(xlabel)
if ylabel is not None:
ax.set_ylabel(ylabel)
ax.set_title(darray._title_for_slice())
if darray.ndim == 2 and add_legend:
ax.legend(handles=primitive, labels=list(hueplt.values), title=hue_label)
# Rotate dates on xlabels
# Do this without calling autofmt_xdate so that x-axes ticks
# on other subplots (if any) are not deleted.
# https://stackoverflow.com/questions/17430105/autofmt-xdate-deletes-x-axis-labels-of-all-subplots
if np.issubdtype(xplt.dtype, np.datetime64):
for xlabels in ax.get_xticklabels():
xlabels.set_rotation(30)
xlabels.set_ha("right")
_update_axes(ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim)
return primitive
def step(darray, *args, where="pre", drawstyle=None, ds=None, **kwargs):
"""
Step plot of DataArray index against values
Similar to :func:`matplotlib:matplotlib.pyplot.step`
Parameters
----------
where : {"pre", "post", "mid"}, default: "pre"
Define where the steps should be placed:
- "pre": The y value is continued constantly to the left from
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
value ``y[i]``.
- "post": The y value is continued constantly to the right from
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
value ``y[i]``.
- "mid": Steps occur half-way between the *x* positions.
Note that this parameter is ignored if one coordinate consists of
:py:func:`pandas.Interval` values, e.g. as a result of
:py:func:`xarray.Dataset.groupby_bins`. In this case, the actual
boundaries of the interval are used.
*args, **kwargs : optional
Additional arguments following :py:func:`xarray.plot.line`
"""
if where not in {"pre", "post", "mid"}:
raise ValueError("'where' argument to step must be 'pre', 'post' or 'mid'")
if ds is not None:
if drawstyle is None:
drawstyle = ds
else:
raise TypeError("ds and drawstyle are mutually exclusive")
if drawstyle is None:
drawstyle = ""
drawstyle = "steps-" + where + drawstyle
return line(darray, *args, drawstyle=drawstyle, **kwargs)
def hist(
darray,
figsize=None,
size=None,
aspect=None,
ax=None,
xincrease=None,
yincrease=None,
xscale=None,
yscale=None,
xticks=None,
yticks=None,
xlim=None,
ylim=None,
**kwargs,
):
"""
Histogram of DataArray
Wraps :func:`matplotlib:matplotlib.pyplot.hist`
Plots N dimensional arrays by first flattening the array.
Parameters
----------
darray : DataArray
Can be any dimension
figsize : tuple, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
aspect : scalar, optional
Aspect ratio of plot, so that ``aspect * size`` gives the width in
inches. Only used if a ``size`` is provided.
size : scalar, optional
If provided, create a new figure for the plot with the given size.
Height (in inches) of each plot. See also: ``aspect``.
ax : matplotlib.axes.Axes, optional
Axis on which to plot this figure. By default, use the current axis.
Mutually exclusive with ``size`` and ``figsize``.
**kwargs : optional
Additional keyword arguments to matplotlib.pyplot.hist
"""
ax = get_axis(figsize, size, aspect, ax)
no_nan = np.ravel(darray.values)
no_nan = no_nan[pd.notnull(no_nan)]
primitive = ax.hist(no_nan, **kwargs)
ax.set_title("Histogram")
ax.set_xlabel(label_from_attrs(darray))
_update_axes(ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim)
return primitive
# MUST run before any 2d plotting functions are defined since
# _plot2d decorator adds them as methods here.
class _PlotMethods:
"""
Enables use of xarray.plot functions as attributes on a DataArray.
For example, DataArray.plot.imshow
"""
__slots__ = ("_da",)
def __init__(self, darray):
self._da = darray
def __call__(self, **kwargs):
return plot(self._da, **kwargs)
# we can't use functools.wraps here since that also modifies the name / qualname
__doc__ = __call__.__doc__ = plot.__doc__
__call__.__wrapped__ = plot # type: ignore
__call__.__annotations__ = plot.__annotations__
@functools.wraps(hist)
def hist(self, ax=None, **kwargs):
return hist(self._da, ax=ax, **kwargs)
@functools.wraps(line)
def line(self, *args, **kwargs):
return line(self._da, *args, **kwargs)
@functools.wraps(step)
def step(self, *args, **kwargs):
return step(self._da, *args, **kwargs)
def override_signature(f):
def wrapper(func):
func.__wrapped__ = f
return func
return wrapper
def _plot2d(plotfunc):
"""
Decorator for common 2d plotting logic
Also adds the 2d plot method to class _PlotMethods
"""
commondoc = """
Parameters
----------
darray : DataArray
Must be 2 dimensional, unless creating faceted plots
x : string, optional
Coordinate for x axis. If None use darray.dims[1]
y : string, optional
Coordinate for y axis. If None use darray.dims[0]
figsize : tuple, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
aspect : scalar, optional
Aspect ratio of plot, so that ``aspect * size`` gives the width in
inches. Only used if a ``size`` is provided.
size : scalar, optional
If provided, create a new figure for the plot with the given size.
Height (in inches) of each plot. See also: ``aspect``.
ax : matplotlib axes object, optional
Axis on which to plot this figure. By default, use the current axis.
Mutually exclusive with ``size`` and ``figsize``.
row : string, optional
If passed, make row faceted plots on this dimension name
col : string, optional
If passed, make column faceted plots on this dimension name
col_wrap : int, optional
Use together with ``col`` to wrap faceted plots
xscale, yscale : 'linear', 'symlog', 'log', 'logit', optional
Specifies scaling for the x- and y-axes respectively
xticks, yticks : Specify tick locations for x- and y-axes
xlim, ylim : Specify x- and y-axes limits
xincrease : None, True, or False, optional
Should the values on the x axes be increasing from left to right?
if None, use the default for the matplotlib function.
yincrease : None, True, or False, optional
Should the values on the y axes be increasing from top to bottom?
if None, use the default for the matplotlib function.
add_colorbar : bool, optional
Adds colorbar to axis
add_labels : bool, optional
Use xarray metadata to label axes
norm : ``matplotlib.colors.Normalize`` instance, optional
If the ``norm`` has vmin or vmax specified, the corresponding kwarg
must be None.
vmin, vmax : floats, optional
Values to anchor the colormap, otherwise they are inferred from the
data and other keyword arguments. When a diverging dataset is inferred,
setting one of these values will fix the other by symmetry around
``center``. Setting both values prevents use of a diverging colormap.
If discrete levels are provided as an explicit list, both of these
values are ignored.
cmap : matplotlib colormap name or object, optional
The mapping from data values to color space. If not provided, this
will be either be ``viridis`` (if the function infers a sequential
dataset) or ``RdBu_r`` (if the function infers a diverging dataset).
When `Seaborn` is installed, ``cmap`` may also be a `seaborn`
color palette. If ``cmap`` is seaborn color palette and the plot type
is not ``contour`` or ``contourf``, ``levels`` must also be specified.
colors : discrete colors to plot, optional
A single color or a list of colors. If the plot type is not ``contour``
or ``contourf``, the ``levels`` argument is required.
center : float, optional
The value at which to center the colormap. Passing this value implies
use of a diverging colormap. Setting it to ``False`` prevents use of a
diverging colormap.
robust : bool, optional
If True and ``vmin`` or ``vmax`` are absent, the colormap range is
computed with 2nd and 98th percentiles instead of the extreme values.
extend : {"neither", "both", "min", "max"}, optional
How to draw arrows extending the colorbar beyond its limits. If not
provided, extend is inferred from vmin, vmax and the data limits.
levels : int or list-like object, optional
Split the colormap (cmap) into discrete color intervals. If an integer
is provided, "nice" levels are chosen based on the data range: this can
imply that the final number of levels is not exactly the expected one.
Setting ``vmin`` and/or ``vmax`` with ``levels=N`` is equivalent to
setting ``levels=np.linspace(vmin, vmax, N)``.
infer_intervals : bool, optional
Only applies to pcolormesh. If True, the coordinate intervals are
passed to pcolormesh. If False, the original coordinates are used
(this can be useful for certain map projections). The default is to
always infer intervals, unless the mesh is irregular and plotted on
a map projection.
subplot_kws : dict, optional
Dictionary of keyword arguments for matplotlib subplots. Only used
for 2D and FacetGrid plots.
cbar_ax : matplotlib Axes, optional
Axes in which to draw the colorbar.
cbar_kwargs : dict, optional
Dictionary of keyword arguments to pass to the colorbar.
**kwargs : optional
Additional arguments to wrapped matplotlib function
Returns
-------
artist :
The same type of primitive artist that the wrapped matplotlib
function returns
"""
# Build on the original docstring
plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}"
# plotfunc and newplotfunc have different signatures:
# - plotfunc: (x, y, z, ax, **kwargs)
# - newplotfunc: (darray, x, y, **kwargs)
# where plotfunc accepts numpy arrays, while newplotfunc accepts a DataArray
# and variable names. newplotfunc also explicitly lists most kwargs, so we
# need to shorten it
def signature(darray, x, y, **kwargs):
pass
@override_signature(signature)
@functools.wraps(plotfunc)
def newplotfunc(
darray,
x=None,
y=None,
figsize=None,
size=None,
aspect=None,
ax=None,
row=None,
col=None,
col_wrap=None,
xincrease=True,
yincrease=True,
add_colorbar=None,
add_labels=True,
vmin=None,
vmax=None,
cmap=None,
center=None,
robust=False,
extend=None,
levels=None,
infer_intervals=None,
colors=None,
subplot_kws=None,
cbar_ax=None,
cbar_kwargs=None,
xscale=None,
yscale=None,
xticks=None,
yticks=None,
xlim=None,
ylim=None,
norm=None,
**kwargs,
):
# All 2d plots in xarray share this function signature.
# Method signature below should be consistent.
# Decide on a default for the colorbar before facetgrids
if add_colorbar is None:
add_colorbar = plotfunc.__name__ != "contour"
imshow_rgb = plotfunc.__name__ == "imshow" and darray.ndim == (
3 + (row is not None) + (col is not None)
)
if imshow_rgb:
# Don't add a colorbar when showing an image with explicit colors
add_colorbar = False
# Matplotlib does not support normalising RGB data, so do it here.
# See eg. https://github.com/matplotlib/matplotlib/pull/10220
if robust or vmax is not None or vmin is not None:
darray = _rescale_imshow_rgb(darray, vmin, vmax, robust)
vmin, vmax, robust = None, None, False
# Handle facetgrids first
if row or col:
allargs = locals().copy()
del allargs["darray"]
del allargs["imshow_rgb"]
allargs.update(allargs.pop("kwargs"))
# Need the decorated plotting function
allargs["plotfunc"] = globals()[plotfunc.__name__]
return _easy_facetgrid(darray, kind="dataarray", **allargs)
plt = import_matplotlib_pyplot()
rgb = kwargs.pop("rgb", None)
if rgb is not None and plotfunc.__name__ != "imshow":
raise ValueError('The "rgb" keyword is only valid for imshow()')
elif rgb is not None and not imshow_rgb:
raise ValueError(
'The "rgb" keyword is only valid for imshow()'
"with a three-dimensional array (per facet)"
)
xlab, ylab = _infer_xy_labels(
darray=darray, x=x, y=y, imshow=imshow_rgb, rgb=rgb
)
# better to pass the ndarrays directly to plotting functions
xval = darray[xlab].values
yval = darray[ylab].values
# check if we need to broadcast one dimension
if xval.ndim < yval.ndim:
dims = darray[ylab].dims
if xval.shape[0] == yval.shape[0]:
xval = np.broadcast_to(xval[:, np.newaxis], yval.shape)
else:
xval = np.broadcast_to(xval[np.newaxis, :], yval.shape)
elif yval.ndim < xval.ndim:
dims = darray[xlab].dims
if yval.shape[0] == xval.shape[0]:
yval = np.broadcast_to(yval[:, np.newaxis], xval.shape)
else:
yval = np.broadcast_to(yval[np.newaxis, :], xval.shape)
elif xval.ndim == 2:
dims = darray[xlab].dims
else:
dims = (darray[ylab].dims[0], darray[xlab].dims[0])
# May need to transpose for correct x, y labels
# xlab may be the name of a coord, we have to check for dim names
if imshow_rgb:
# For RGB[A] images, matplotlib requires the color dimension
# to be last. In Xarray the order should be unimportant, so
# we transpose to (y, x, color) to make this work.
yx_dims = (ylab, xlab)
dims = yx_dims + tuple(d for d in darray.dims if d not in yx_dims)
if dims != darray.dims:
darray = darray.transpose(*dims, transpose_coords=True)
# Pass the data as a masked ndarray too
zval = darray.to_masked_array(copy=False)
# Replace pd.Intervals if contained in xval or yval.
xplt, xlab_extra = _resolve_intervals_2dplot(xval, plotfunc.__name__)
yplt, ylab_extra = _resolve_intervals_2dplot(yval, plotfunc.__name__)
_ensure_plottable(xplt, yplt, zval)
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
plotfunc,
zval.data,
**locals(),
_is_facetgrid=kwargs.pop("_is_facetgrid", False),
)
if "contour" in plotfunc.__name__:
# extend is a keyword argument only for contour and contourf, but
# passing it to the colorbar is sufficient for imshow and
# pcolormesh
kwargs["extend"] = cmap_params["extend"]
kwargs["levels"] = cmap_params["levels"]
# if colors == a single color, matplotlib draws dashed negative
# contours. we lose this feature if we pass cmap and not colors
if isinstance(colors, str):
cmap_params["cmap"] = None
kwargs["colors"] = colors
if "pcolormesh" == plotfunc.__name__:
kwargs["infer_intervals"] = infer_intervals
if "imshow" == plotfunc.__name__ and isinstance(aspect, str):
# forbid usage of mpl strings
raise ValueError("plt.imshow's `aspect` kwarg is not available in xarray")
if subplot_kws is None:
subplot_kws = dict()
ax = get_axis(figsize, size, aspect, ax, **subplot_kws)
primitive = plotfunc(
xplt,
yplt,
zval,
ax=ax,
cmap=cmap_params["cmap"],
vmin=cmap_params["vmin"],
vmax=cmap_params["vmax"],
norm=cmap_params["norm"],
**kwargs,
)
# Label the plot with metadata
if add_labels:
ax.set_xlabel(label_from_attrs(darray[xlab], xlab_extra))
ax.set_ylabel(label_from_attrs(darray[ylab], ylab_extra))
ax.set_title(darray._title_for_slice())
if add_colorbar:
if add_labels and "label" not in cbar_kwargs:
cbar_kwargs["label"] = label_from_attrs(darray)
cbar = _add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params)
elif cbar_ax is not None or cbar_kwargs:
# inform the user about keywords which aren't used
raise ValueError(
"cbar_ax and cbar_kwargs can't be used with add_colorbar=False."
)
# origin kwarg overrides yincrease
if "origin" in kwargs:
yincrease = None
_update_axes(
ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim
)
# Rotate dates on xlabels
# Do this without calling autofmt_xdate so that x-axes ticks
# on other subplots (if any) are not deleted.
# https://stackoverflow.com/questions/17430105/autofmt-xdate-deletes-x-axis-labels-of-all-subplots
if np.issubdtype(xplt.dtype, np.datetime64):
for xlabels in ax.get_xticklabels():
xlabels.set_rotation(30)
xlabels.set_ha("right")
return primitive
# For use as DataArray.plot.plotmethod
@functools.wraps(newplotfunc)
def plotmethod(
_PlotMethods_obj,
x=None,
y=None,
figsize=None,
size=None,
aspect=None,
ax=None,
row=None,
col=None,
col_wrap=None,
xincrease=True,
yincrease=True,
add_colorbar=None,
add_labels=True,
vmin=None,
vmax=None,
cmap=None,
colors=None,
center=None,
robust=False,
extend=None,
levels=None,
infer_intervals=None,
subplot_kws=None,
cbar_ax=None,
cbar_kwargs=None,
xscale=None,
yscale=None,
xticks=None,
yticks=None,
xlim=None,
ylim=None,
norm=None,
**kwargs,
):
"""
The method should have the same signature as the function.
This just makes the method work on Plotmethods objects,
and passes all the other arguments straight through.
"""
allargs = locals()
allargs["darray"] = _PlotMethods_obj._da
allargs.update(kwargs)
for arg in ["_PlotMethods_obj", "newplotfunc", "kwargs"]:
del allargs[arg]
return newplotfunc(**allargs)
# Add to class _PlotMethods
setattr(_PlotMethods, plotmethod.__name__, plotmethod)
return newplotfunc
@_plot2d
def imshow(x, y, z, ax, **kwargs):
"""
Image plot of 2d DataArray using matplotlib.pyplot
Wraps :func:`matplotlib:matplotlib.pyplot.imshow`
While other plot methods require the DataArray to be strictly
two-dimensional, ``imshow`` also accepts a 3D array where some
dimension can be interpreted as RGB or RGBA color channels and
allows this dimension to be specified via the kwarg ``rgb=``.
Unlike matplotlib, Xarray can apply ``vmin`` and ``vmax`` to RGB or RGBA
data, by applying a single scaling factor and offset to all bands.
Passing ``robust=True`` infers ``vmin`` and ``vmax``
:ref:`in the usual way <robust-plotting>`.
.. note::
This function needs uniformly spaced coordinates to
properly label the axes. Call DataArray.plot() to check.
The pixels are centered on the coordinates values. Ie, if the coordinate
value is 3.2 then the pixels for those coordinates will be centered on 3.2.
"""
if x.ndim != 1 or y.ndim != 1:
raise ValueError(
"imshow requires 1D coordinates, try using pcolormesh or contour(f)"
)
# Centering the pixels- Assumes uniform spacing
try:
xstep = (x[1] - x[0]) / 2.0
except IndexError:
# Arbitrary default value, similar to matplotlib behaviour
xstep = 0.1
try:
ystep = (y[1] - y[0]) / 2.0
except IndexError:
ystep = 0.1
left, right = x[0] - xstep, x[-1] + xstep
bottom, top = y[-1] + ystep, y[0] - ystep
defaults = {"origin": "upper", "interpolation": "nearest"}
if not hasattr(ax, "projection"):
# not for cartopy geoaxes
defaults["aspect"] = "auto"
# Allow user to override these defaults
defaults.update(kwargs)
if defaults["origin"] == "upper":
defaults["extent"] = [left, right, bottom, top]
else:
defaults["extent"] = [left, right, top, bottom]
if z.ndim == 3:
# matplotlib imshow uses black for missing data, but Xarray makes
# missing data transparent. We therefore add an alpha channel if
# there isn't one, and set it to transparent where data is masked.
if z.shape[-1] == 3:
alpha = np.ma.ones(z.shape[:2] + (1,), dtype=z.dtype)
if np.issubdtype(z.dtype, np.integer):
alpha *= 255
z = np.ma.concatenate((z, alpha), axis=2)
else:
z = z.copy()
z[np.any(z.mask, axis=-1), -1] = 0
primitive = ax.imshow(z, **defaults)
return primitive
@_plot2d
def contour(x, y, z, ax, **kwargs):
"""
Contour plot of 2d DataArray
Wraps :func:`matplotlib:matplotlib.pyplot.contour`
"""
primitive = ax.contour(x, y, z, **kwargs)
return primitive
@_plot2d
def contourf(x, y, z, ax, **kwargs):
"""
Filled contour plot of 2d DataArray
Wraps :func:`matplotlib:matplotlib.pyplot.contourf`
"""
primitive = ax.contourf(x, y, z, **kwargs)
return primitive
@_plot2d
def pcolormesh(x, y, z, ax, infer_intervals=None, **kwargs):
"""
Pseudocolor plot of 2d DataArray
Wraps :func:`matplotlib:matplotlib.pyplot.pcolormesh`
"""
# decide on a default for infer_intervals (GH781)
x = np.asarray(x)
if infer_intervals is None:
if hasattr(ax, "projection"):
if len(x.shape) == 1:
infer_intervals = True
else:
infer_intervals = False
else:
infer_intervals = True
if infer_intervals and (
(np.shape(x)[0] == np.shape(z)[1])
or ((x.ndim > 1) and (np.shape(x)[1] == np.shape(z)[1]))
):
if len(x.shape) == 1:
x = _infer_interval_breaks(x, check_monotonic=True)
else:
# we have to infer the intervals on both axes
x = _infer_interval_breaks(x, axis=1)
x = _infer_interval_breaks(x, axis=0)
if infer_intervals and (np.shape(y)[0] == np.shape(z)[0]):
if len(y.shape) == 1:
y = _infer_interval_breaks(y, check_monotonic=True)
else:
# we have to infer the intervals on both axes
y = _infer_interval_breaks(y, axis=1)
y = _infer_interval_breaks(y, axis=0)
primitive = ax.pcolormesh(x, y, z, **kwargs)
# by default, pcolormesh picks "round" values for bounds
# this results in ugly looking plots with lots of surrounding whitespace
if not hasattr(ax, "projection") and x.ndim == 1 and y.ndim == 1:
# not a cartopy geoaxis
ax.set_xlim(x[0], x[-1])
ax.set_ylim(y[0], y[-1])
return primitive
|