1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
|
import itertools
import textwrap
import warnings
from datetime import datetime
from inspect import getfullargspec
from typing import Any, Iterable, Mapping, Tuple, Union
import numpy as np
import pandas as pd
from ..core.options import OPTIONS
from ..core.utils import is_scalar
try:
import nc_time_axis # noqa: F401
nc_time_axis_available = True
except ImportError:
nc_time_axis_available = False
ROBUST_PERCENTILE = 2.0
_registered = False
def register_pandas_datetime_converter_if_needed():
# based on https://github.com/pandas-dev/pandas/pull/17710
global _registered
if not _registered:
pd.plotting.register_matplotlib_converters()
_registered = True
def import_matplotlib_pyplot():
"""Import pyplot as register appropriate converters."""
register_pandas_datetime_converter_if_needed()
import matplotlib.pyplot as plt
return plt
def _determine_extend(calc_data, vmin, vmax):
extend_min = calc_data.min() < vmin
extend_max = calc_data.max() > vmax
if extend_min and extend_max:
extend = "both"
elif extend_min:
extend = "min"
elif extend_max:
extend = "max"
else:
extend = "neither"
return extend
def _build_discrete_cmap(cmap, levels, extend, filled):
"""
Build a discrete colormap and normalization of the data.
"""
import matplotlib as mpl
if not filled:
# non-filled contour plots
extend = "max"
if extend == "both":
ext_n = 2
elif extend in ["min", "max"]:
ext_n = 1
else:
ext_n = 0
n_colors = len(levels) + ext_n - 1
pal = _color_palette(cmap, n_colors)
new_cmap, cnorm = mpl.colors.from_levels_and_colors(levels, pal, extend=extend)
# copy the old cmap name, for easier testing
new_cmap.name = getattr(cmap, "name", cmap)
# copy colors to use for bad, under, and over values in case they have been
# set to non-default values
try:
# matplotlib<3.2 only uses bad color for masked values
bad = cmap(np.ma.masked_invalid([np.nan]))[0]
except TypeError:
# cmap was a str or list rather than a color-map object, so there are
# no bad, under or over values to check or copy
pass
else:
under = cmap(-np.inf)
over = cmap(np.inf)
new_cmap.set_bad(bad)
# Only update under and over if they were explicitly changed by the user
# (i.e. are different from the lowest or highest values in cmap). Otherwise
# leave unchanged so new_cmap uses its default values (its own lowest and
# highest values).
if under != cmap(0):
new_cmap.set_under(under)
if over != cmap(cmap.N - 1):
new_cmap.set_over(over)
return new_cmap, cnorm
def _color_palette(cmap, n_colors):
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
colors_i = np.linspace(0, 1.0, n_colors)
if isinstance(cmap, (list, tuple)):
# we have a list of colors
cmap = ListedColormap(cmap, N=n_colors)
pal = cmap(colors_i)
elif isinstance(cmap, str):
# we have some sort of named palette
try:
# is this a matplotlib cmap?
cmap = plt.get_cmap(cmap)
pal = cmap(colors_i)
except ValueError:
# ValueError happens when mpl doesn't like a colormap, try seaborn
try:
from seaborn import color_palette
pal = color_palette(cmap, n_colors=n_colors)
except (ValueError, ImportError):
# or maybe we just got a single color as a string
cmap = ListedColormap([cmap], N=n_colors)
pal = cmap(colors_i)
else:
# cmap better be a LinearSegmentedColormap (e.g. viridis)
pal = cmap(colors_i)
return pal
# _determine_cmap_params is adapted from Seaborn:
# https://github.com/mwaskom/seaborn/blob/v0.6/seaborn/matrix.py#L158
# Used under the terms of Seaborn's license, see licenses/SEABORN_LICENSE.
def _determine_cmap_params(
plot_data,
vmin=None,
vmax=None,
cmap=None,
center=None,
robust=False,
extend=None,
levels=None,
filled=True,
norm=None,
_is_facetgrid=False,
):
"""
Use some heuristics to set good defaults for colorbar and range.
Parameters
==========
plot_data: Numpy array
Doesn't handle xarray objects
Returns
=======
cmap_params : dict
Use depends on the type of the plotting function
"""
import matplotlib as mpl
if isinstance(levels, Iterable):
levels = sorted(levels)
calc_data = np.ravel(plot_data[np.isfinite(plot_data)])
# Handle all-NaN input data gracefully
if calc_data.size == 0:
# Arbitrary default for when all values are NaN
calc_data = np.array(0.0)
# Setting center=False prevents a divergent cmap
possibly_divergent = center is not False
# Set center to 0 so math below makes sense but remember its state
center_is_none = False
if center is None:
center = 0
center_is_none = True
# Setting both vmin and vmax prevents a divergent cmap
if (vmin is not None) and (vmax is not None):
possibly_divergent = False
# Setting vmin or vmax implies linspaced levels
user_minmax = (vmin is not None) or (vmax is not None)
# vlim might be computed below
vlim = None
# save state; needed later
vmin_was_none = vmin is None
vmax_was_none = vmax is None
if vmin is None:
if robust:
vmin = np.percentile(calc_data, ROBUST_PERCENTILE)
else:
vmin = calc_data.min()
elif possibly_divergent:
vlim = abs(vmin - center)
if vmax is None:
if robust:
vmax = np.percentile(calc_data, 100 - ROBUST_PERCENTILE)
else:
vmax = calc_data.max()
elif possibly_divergent:
vlim = abs(vmax - center)
if possibly_divergent:
levels_are_divergent = (
isinstance(levels, Iterable) and levels[0] * levels[-1] < 0
)
# kwargs not specific about divergent or not: infer defaults from data
divergent = (
((vmin < 0) and (vmax > 0)) or not center_is_none or levels_are_divergent
)
else:
divergent = False
# A divergent map should be symmetric around the center value
if divergent:
if vlim is None:
vlim = max(abs(vmin - center), abs(vmax - center))
vmin, vmax = -vlim, vlim
# Now add in the centering value and set the limits
vmin += center
vmax += center
# now check norm and harmonize with vmin, vmax
if norm is not None:
if norm.vmin is None:
norm.vmin = vmin
else:
if not vmin_was_none and vmin != norm.vmin:
raise ValueError("Cannot supply vmin and a norm with a different vmin.")
vmin = norm.vmin
if norm.vmax is None:
norm.vmax = vmax
else:
if not vmax_was_none and vmax != norm.vmax:
raise ValueError("Cannot supply vmax and a norm with a different vmax.")
vmax = norm.vmax
# if BoundaryNorm, then set levels
if isinstance(norm, mpl.colors.BoundaryNorm):
levels = norm.boundaries
# Choose default colormaps if not provided
if cmap is None:
if divergent:
cmap = OPTIONS["cmap_divergent"]
else:
cmap = OPTIONS["cmap_sequential"]
# Handle discrete levels
if levels is not None:
if is_scalar(levels):
if user_minmax:
levels = np.linspace(vmin, vmax, levels)
elif levels == 1:
levels = np.asarray([(vmin + vmax) / 2])
else:
# N in MaxNLocator refers to bins, not ticks
ticker = mpl.ticker.MaxNLocator(levels - 1)
levels = ticker.tick_values(vmin, vmax)
vmin, vmax = levels[0], levels[-1]
# GH3734
if vmin == vmax:
vmin, vmax = mpl.ticker.LinearLocator(2).tick_values(vmin, vmax)
if extend is None:
extend = _determine_extend(calc_data, vmin, vmax)
if levels is not None or isinstance(norm, mpl.colors.BoundaryNorm):
cmap, newnorm = _build_discrete_cmap(cmap, levels, extend, filled)
norm = newnorm if norm is None else norm
# vmin & vmax needs to be None if norm is passed
# TODO: always return a norm with vmin and vmax
if norm is not None:
vmin = None
vmax = None
return dict(
vmin=vmin, vmax=vmax, cmap=cmap, extend=extend, levels=levels, norm=norm
)
def _infer_xy_labels_3d(darray, x, y, rgb):
"""
Determine x and y labels for showing RGB images.
Attempts to infer which dimension is RGB/RGBA by size and order of dims.
"""
assert rgb is None or rgb != x
assert rgb is None or rgb != y
# Start by detecting and reporting invalid combinations of arguments
assert darray.ndim == 3
not_none = [a for a in (x, y, rgb) if a is not None]
if len(set(not_none)) < len(not_none):
raise ValueError(
"Dimension names must be None or unique strings, but imshow was "
"passed x=%r, y=%r, and rgb=%r." % (x, y, rgb)
)
for label in not_none:
if label not in darray.dims:
raise ValueError(f"{label!r} is not a dimension")
# Then calculate rgb dimension if certain and check validity
could_be_color = [
label
for label in darray.dims
if darray[label].size in (3, 4) and label not in (x, y)
]
if rgb is None and not could_be_color:
raise ValueError(
"A 3-dimensional array was passed to imshow(), but there is no "
"dimension that could be color. At least one dimension must be "
"of size 3 (RGB) or 4 (RGBA), and not given as x or y."
)
if rgb is None and len(could_be_color) == 1:
rgb = could_be_color[0]
if rgb is not None and darray[rgb].size not in (3, 4):
raise ValueError(
"Cannot interpret dim %r of size %s as RGB or RGBA."
% (rgb, darray[rgb].size)
)
# If rgb dimension is still unknown, there must be two or three dimensions
# in could_be_color. We therefore warn, and use a heuristic to break ties.
if rgb is None:
assert len(could_be_color) in (2, 3)
rgb = could_be_color[-1]
warnings.warn(
"Several dimensions of this array could be colors. Xarray "
"will use the last possible dimension (%r) to match "
"matplotlib.pyplot.imshow. You can pass names of x, y, "
"and/or rgb dimensions to override this guess." % rgb
)
assert rgb is not None
# Finally, we pick out the red slice and delegate to the 2D version:
return _infer_xy_labels(darray.isel(**{rgb: 0}), x, y)
def _infer_xy_labels(darray, x, y, imshow=False, rgb=None):
"""
Determine x and y labels. For use in _plot2d
darray must be a 2 dimensional data array, or 3d for imshow only.
"""
if (x is not None) and (x == y):
raise ValueError("x and y cannot be equal.")
if imshow and darray.ndim == 3:
return _infer_xy_labels_3d(darray, x, y, rgb)
if x is None and y is None:
if darray.ndim != 2:
raise ValueError("DataArray must be 2d")
y, x = darray.dims
elif x is None:
_assert_valid_xy(darray, y, "y")
x = darray.dims[0] if y == darray.dims[1] else darray.dims[1]
elif y is None:
_assert_valid_xy(darray, x, "x")
y = darray.dims[0] if x == darray.dims[1] else darray.dims[1]
else:
_assert_valid_xy(darray, x, "x")
_assert_valid_xy(darray, y, "y")
if (
all(k in darray._level_coords for k in (x, y))
and darray._level_coords[x] == darray._level_coords[y]
):
raise ValueError("x and y cannot be levels of the same MultiIndex")
return x, y
def _assert_valid_xy(darray, xy, name):
"""
make sure x and y passed to plotting functions are valid
"""
# MultiIndex cannot be plotted; no point in allowing them here
multiindex = {darray._level_coords[lc] for lc in darray._level_coords}
valid_xy = (
set(darray.dims) | set(darray.coords) | set(darray._level_coords)
) - multiindex
if xy not in valid_xy:
valid_xy_str = "', '".join(sorted(valid_xy))
raise ValueError(f"{name} must be one of None, '{valid_xy_str}'")
def get_axis(figsize=None, size=None, aspect=None, ax=None, **kwargs):
try:
import matplotlib as mpl
import matplotlib.pyplot as plt
except ImportError:
raise ImportError("matplotlib is required for plot.utils.get_axis")
if figsize is not None:
if ax is not None:
raise ValueError("cannot provide both `figsize` and `ax` arguments")
if size is not None:
raise ValueError("cannot provide both `figsize` and `size` arguments")
_, ax = plt.subplots(figsize=figsize)
elif size is not None:
if ax is not None:
raise ValueError("cannot provide both `size` and `ax` arguments")
if aspect is None:
width, height = mpl.rcParams["figure.figsize"]
aspect = width / height
figsize = (size * aspect, size)
_, ax = plt.subplots(figsize=figsize)
elif aspect is not None:
raise ValueError("cannot provide `aspect` argument without `size`")
if kwargs and ax is not None:
raise ValueError("cannot use subplot_kws with existing ax")
if ax is None:
ax = plt.gca(**kwargs)
return ax
def label_from_attrs(da, extra=""):
"""Makes informative labels if variable metadata (attrs) follows
CF conventions."""
if da.attrs.get("long_name"):
name = da.attrs["long_name"]
elif da.attrs.get("standard_name"):
name = da.attrs["standard_name"]
elif da.name is not None:
name = da.name
else:
name = ""
if da.attrs.get("units"):
units = " [{}]".format(da.attrs["units"])
else:
units = ""
return "\n".join(textwrap.wrap(name + extra + units, 30))
def _interval_to_mid_points(array):
"""
Helper function which returns an array
with the Intervals' mid points.
"""
return np.array([x.mid for x in array])
def _interval_to_bound_points(array):
"""
Helper function which returns an array
with the Intervals' boundaries.
"""
array_boundaries = np.array([x.left for x in array])
array_boundaries = np.concatenate((array_boundaries, np.array([array[-1].right])))
return array_boundaries
def _interval_to_double_bound_points(xarray, yarray):
"""
Helper function to deal with a xarray consisting of pd.Intervals. Each
interval is replaced with both boundaries. I.e. the length of xarray
doubles. yarray is modified so it matches the new shape of xarray.
"""
xarray1 = np.array([x.left for x in xarray])
xarray2 = np.array([x.right for x in xarray])
xarray = list(itertools.chain.from_iterable(zip(xarray1, xarray2)))
yarray = list(itertools.chain.from_iterable(zip(yarray, yarray)))
return xarray, yarray
def _resolve_intervals_1dplot(xval, yval, xlabel, ylabel, kwargs):
"""
Helper function to replace the values of x and/or y coordinate arrays
containing pd.Interval with their mid-points or - for step plots - double
points which double the length.
"""
# Is it a step plot? (see matplotlib.Axes.step)
if kwargs.get("drawstyle", "").startswith("steps-"):
remove_drawstyle = False
# Convert intervals to double points
if _valid_other_type(np.array([xval, yval]), [pd.Interval]):
raise TypeError("Can't step plot intervals against intervals.")
if _valid_other_type(xval, [pd.Interval]):
xval, yval = _interval_to_double_bound_points(xval, yval)
remove_drawstyle = True
if _valid_other_type(yval, [pd.Interval]):
yval, xval = _interval_to_double_bound_points(yval, xval)
remove_drawstyle = True
# Remove steps-* to be sure that matplotlib is not confused
if remove_drawstyle:
del kwargs["drawstyle"]
# Is it another kind of plot?
else:
# Convert intervals to mid points and adjust labels
if _valid_other_type(xval, [pd.Interval]):
xval = _interval_to_mid_points(xval)
xlabel += "_center"
if _valid_other_type(yval, [pd.Interval]):
yval = _interval_to_mid_points(yval)
ylabel += "_center"
# return converted arguments
return xval, yval, xlabel, ylabel, kwargs
def _resolve_intervals_2dplot(val, func_name):
"""
Helper function to replace the values of a coordinate array containing
pd.Interval with their mid-points or - for pcolormesh - boundaries which
increases length by 1.
"""
label_extra = ""
if _valid_other_type(val, [pd.Interval]):
if func_name == "pcolormesh":
val = _interval_to_bound_points(val)
else:
val = _interval_to_mid_points(val)
label_extra = "_center"
return val, label_extra
def _valid_other_type(x, types):
"""
Do all elements of x have a type from types?
"""
return all(any(isinstance(el, t) for t in types) for el in np.ravel(x))
def _valid_numpy_subdtype(x, numpy_types):
"""
Is any dtype from numpy_types superior to the dtype of x?
"""
# If any of the types given in numpy_types is understood as numpy.generic,
# all possible x will be considered valid. This is probably unwanted.
for t in numpy_types:
assert not np.issubdtype(np.generic, t)
return any(np.issubdtype(x.dtype, t) for t in numpy_types)
def _ensure_plottable(*args):
"""
Raise exception if there is anything in args that can't be plotted on an
axis by matplotlib.
"""
numpy_types = [np.floating, np.integer, np.timedelta64, np.datetime64, np.bool_]
other_types = [datetime]
try:
import cftime
cftime_datetime = [cftime.datetime]
except ImportError:
cftime_datetime = []
other_types = other_types + cftime_datetime
for x in args:
if not (
_valid_numpy_subdtype(np.array(x), numpy_types)
or _valid_other_type(np.array(x), other_types)
):
raise TypeError(
"Plotting requires coordinates to be numeric, boolean, "
"or dates of type numpy.datetime64, "
"datetime.datetime, cftime.datetime or "
f"pandas.Interval. Received data of type {np.array(x).dtype} instead."
)
if (
_valid_other_type(np.array(x), cftime_datetime)
and not nc_time_axis_available
):
raise ImportError(
"Plotting of arrays of cftime.datetime "
"objects or arrays indexed by "
"cftime.datetime objects requires the "
"optional `nc-time-axis` (v1.2.0 or later) "
"package."
)
def _is_numeric(arr):
numpy_types = [np.floating, np.integer]
return _valid_numpy_subdtype(arr, numpy_types)
def _add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params):
cbar_kwargs.setdefault("extend", cmap_params["extend"])
if cbar_ax is None:
cbar_kwargs.setdefault("ax", ax)
else:
cbar_kwargs.setdefault("cax", cbar_ax)
# dont pass extend as kwarg if it is in the mappable
if hasattr(primitive, "extend"):
cbar_kwargs.pop("extend")
fig = ax.get_figure()
cbar = fig.colorbar(primitive, **cbar_kwargs)
return cbar
def _rescale_imshow_rgb(darray, vmin, vmax, robust):
assert robust or vmin is not None or vmax is not None
# Calculate vmin and vmax automatically for `robust=True`
if robust:
if vmax is None:
vmax = np.nanpercentile(darray, 100 - ROBUST_PERCENTILE)
if vmin is None:
vmin = np.nanpercentile(darray, ROBUST_PERCENTILE)
# If not robust and one bound is None, calculate the default other bound
# and check that an interval between them exists.
elif vmax is None:
vmax = 255 if np.issubdtype(darray.dtype, np.integer) else 1
if vmax < vmin:
raise ValueError(
"vmin=%r is less than the default vmax (%r) - you must supply "
"a vmax > vmin in this case." % (vmin, vmax)
)
elif vmin is None:
vmin = 0
if vmin > vmax:
raise ValueError(
"vmax=%r is less than the default vmin (0) - you must supply "
"a vmin < vmax in this case." % vmax
)
# Scale interval [vmin .. vmax] to [0 .. 1], with darray as 64-bit float
# to avoid precision loss, integer over/underflow, etc with extreme inputs.
# After scaling, downcast to 32-bit float. This substantially reduces
# memory usage after we hand `darray` off to matplotlib.
darray = ((darray.astype("f8") - vmin) / (vmax - vmin)).astype("f4")
return np.minimum(np.maximum(darray, 0), 1)
def _update_axes(
ax,
xincrease,
yincrease,
xscale=None,
yscale=None,
xticks=None,
yticks=None,
xlim=None,
ylim=None,
):
"""
Update axes with provided parameters
"""
if xincrease is None:
pass
elif xincrease and ax.xaxis_inverted():
ax.invert_xaxis()
elif not xincrease and not ax.xaxis_inverted():
ax.invert_xaxis()
if yincrease is None:
pass
elif yincrease and ax.yaxis_inverted():
ax.invert_yaxis()
elif not yincrease and not ax.yaxis_inverted():
ax.invert_yaxis()
# The default xscale, yscale needs to be None.
# If we set a scale it resets the axes formatters,
# This means that set_xscale('linear') on a datetime axis
# will remove the date labels. So only set the scale when explicitly
# asked to. https://github.com/matplotlib/matplotlib/issues/8740
if xscale is not None:
ax.set_xscale(xscale)
if yscale is not None:
ax.set_yscale(yscale)
if xticks is not None:
ax.set_xticks(xticks)
if yticks is not None:
ax.set_yticks(yticks)
if xlim is not None:
ax.set_xlim(xlim)
if ylim is not None:
ax.set_ylim(ylim)
def _is_monotonic(coord, axis=0):
"""
>>> _is_monotonic(np.array([0, 1, 2]))
True
>>> _is_monotonic(np.array([2, 1, 0]))
True
>>> _is_monotonic(np.array([0, 2, 1]))
False
"""
if coord.shape[axis] < 3:
return True
else:
n = coord.shape[axis]
delta_pos = coord.take(np.arange(1, n), axis=axis) >= coord.take(
np.arange(0, n - 1), axis=axis
)
delta_neg = coord.take(np.arange(1, n), axis=axis) <= coord.take(
np.arange(0, n - 1), axis=axis
)
return np.all(delta_pos) or np.all(delta_neg)
def _infer_interval_breaks(coord, axis=0, check_monotonic=False):
"""
>>> _infer_interval_breaks(np.arange(5))
array([-0.5, 0.5, 1.5, 2.5, 3.5, 4.5])
>>> _infer_interval_breaks([[0, 1], [3, 4]], axis=1)
array([[-0.5, 0.5, 1.5],
[ 2.5, 3.5, 4.5]])
"""
coord = np.asarray(coord)
if check_monotonic and not _is_monotonic(coord, axis=axis):
raise ValueError(
"The input coordinate is not sorted in increasing "
"order along axis %d. This can lead to unexpected "
"results. Consider calling the `sortby` method on "
"the input DataArray. To plot data with categorical "
"axes, consider using the `heatmap` function from "
"the `seaborn` statistical plotting library." % axis
)
deltas = 0.5 * np.diff(coord, axis=axis)
if deltas.size == 0:
deltas = np.array(0.0)
first = np.take(coord, [0], axis=axis) - np.take(deltas, [0], axis=axis)
last = np.take(coord, [-1], axis=axis) + np.take(deltas, [-1], axis=axis)
trim_last = tuple(
slice(None, -1) if n == axis else slice(None) for n in range(coord.ndim)
)
return np.concatenate([first, coord[trim_last] + deltas, last], axis=axis)
def _process_cmap_cbar_kwargs(
func,
data,
cmap=None,
colors=None,
cbar_kwargs: Union[Iterable[Tuple[str, Any]], Mapping[str, Any]] = None,
levels=None,
_is_facetgrid=False,
**kwargs,
):
"""
Parameters
==========
func : plotting function
data : ndarray,
Data values
Returns
=======
cmap_params
cbar_kwargs
"""
cbar_kwargs = {} if cbar_kwargs is None else dict(cbar_kwargs)
if "contour" in func.__name__ and levels is None:
levels = 7 # this is the matplotlib default
# colors is mutually exclusive with cmap
if cmap and colors:
raise ValueError("Can't specify both cmap and colors.")
# colors is only valid when levels is supplied or the plot is of type
# contour or contourf
if colors and (("contour" not in func.__name__) and (levels is None)):
raise ValueError("Can only specify colors with contour or levels")
# we should not be getting a list of colors in cmap anymore
# is there a better way to do this test?
if isinstance(cmap, (list, tuple)):
raise ValueError(
"Specifying a list of colors in cmap is deprecated. "
"Use colors keyword instead."
)
cmap_kwargs = {
"plot_data": data,
"levels": levels,
"cmap": colors if colors else cmap,
"filled": func.__name__ != "contour",
}
cmap_args = getfullargspec(_determine_cmap_params).args
cmap_kwargs.update((a, kwargs[a]) for a in cmap_args if a in kwargs)
if not _is_facetgrid:
cmap_params = _determine_cmap_params(**cmap_kwargs)
else:
cmap_params = {
k: cmap_kwargs[k]
for k in ["vmin", "vmax", "cmap", "extend", "levels", "norm"]
}
return cmap_params, cbar_kwargs
|