1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
"""Testing functions exposed to the user API"""
import functools
from typing import Hashable, Set, Union
import numpy as np
import pandas as pd
from xarray.core import duck_array_ops, formatting, utils
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.indexes import default_indexes
from xarray.core.variable import IndexVariable, Variable
__all__ = (
"assert_allclose",
"assert_chunks_equal",
"assert_duckarray_equal",
"assert_duckarray_allclose",
"assert_equal",
"assert_identical",
)
def _decode_string_data(data):
if data.dtype.kind == "S":
return np.core.defchararray.decode(data, "utf-8", "replace")
return data
def _data_allclose_or_equiv(arr1, arr2, rtol=1e-05, atol=1e-08, decode_bytes=True):
if any(arr.dtype.kind == "S" for arr in [arr1, arr2]) and decode_bytes:
arr1 = _decode_string_data(arr1)
arr2 = _decode_string_data(arr2)
exact_dtypes = ["M", "m", "O", "S", "U"]
if any(arr.dtype.kind in exact_dtypes for arr in [arr1, arr2]):
return duck_array_ops.array_equiv(arr1, arr2)
else:
return duck_array_ops.allclose_or_equiv(arr1, arr2, rtol=rtol, atol=atol)
def assert_equal(a, b):
"""Like :py:func:`numpy.testing.assert_array_equal`, but for xarray
objects.
Raises an AssertionError if two objects are not equal. This will match
data values, dimensions and coordinates, but not names or attributes
(except for Dataset objects for which the variable names must match).
Arrays with NaN in the same location are considered equal.
Parameters
----------
a : xarray.Dataset, xarray.DataArray or xarray.Variable
The first object to compare.
b : xarray.Dataset, xarray.DataArray or xarray.Variable
The second object to compare.
See also
--------
assert_identical, assert_allclose, Dataset.equals, DataArray.equals,
numpy.testing.assert_array_equal
"""
__tracebackhide__ = True
assert type(a) == type(b)
if isinstance(a, (Variable, DataArray)):
assert a.equals(b), formatting.diff_array_repr(a, b, "equals")
elif isinstance(a, Dataset):
assert a.equals(b), formatting.diff_dataset_repr(a, b, "equals")
else:
raise TypeError("{} not supported by assertion comparison".format(type(a)))
def assert_identical(a, b):
"""Like :py:func:`xarray.testing.assert_equal`, but also matches the
objects' names and attributes.
Raises an AssertionError if two objects are not identical.
Parameters
----------
a : xarray.Dataset, xarray.DataArray or xarray.Variable
The first object to compare.
b : xarray.Dataset, xarray.DataArray or xarray.Variable
The second object to compare.
See also
--------
assert_equal, assert_allclose, Dataset.equals, DataArray.equals
"""
__tracebackhide__ = True
assert type(a) == type(b)
if isinstance(a, Variable):
assert a.identical(b), formatting.diff_array_repr(a, b, "identical")
elif isinstance(a, DataArray):
assert a.name == b.name
assert a.identical(b), formatting.diff_array_repr(a, b, "identical")
elif isinstance(a, (Dataset, Variable)):
assert a.identical(b), formatting.diff_dataset_repr(a, b, "identical")
else:
raise TypeError("{} not supported by assertion comparison".format(type(a)))
def assert_allclose(a, b, rtol=1e-05, atol=1e-08, decode_bytes=True):
"""Like :py:func:`numpy.testing.assert_allclose`, but for xarray objects.
Raises an AssertionError if two objects are not equal up to desired
tolerance.
Parameters
----------
a : xarray.Dataset, xarray.DataArray or xarray.Variable
The first object to compare.
b : xarray.Dataset, xarray.DataArray or xarray.Variable
The second object to compare.
rtol : float, optional
Relative tolerance.
atol : float, optional
Absolute tolerance.
decode_bytes : bool, optional
Whether byte dtypes should be decoded to strings as UTF-8 or not.
This is useful for testing serialization methods on Python 3 that
return saved strings as bytes.
See also
--------
assert_identical, assert_equal, numpy.testing.assert_allclose
"""
__tracebackhide__ = True
assert type(a) == type(b)
equiv = functools.partial(
_data_allclose_or_equiv, rtol=rtol, atol=atol, decode_bytes=decode_bytes
)
equiv.__name__ = "allclose"
def compat_variable(a, b):
a = getattr(a, "variable", a)
b = getattr(b, "variable", b)
return a.dims == b.dims and (a._data is b._data or equiv(a.data, b.data))
if isinstance(a, Variable):
allclose = compat_variable(a, b)
assert allclose, formatting.diff_array_repr(a, b, compat=equiv)
elif isinstance(a, DataArray):
allclose = utils.dict_equiv(
a.coords, b.coords, compat=compat_variable
) and compat_variable(a.variable, b.variable)
assert allclose, formatting.diff_array_repr(a, b, compat=equiv)
elif isinstance(a, Dataset):
allclose = a._coord_names == b._coord_names and utils.dict_equiv(
a.variables, b.variables, compat=compat_variable
)
assert allclose, formatting.diff_dataset_repr(a, b, compat=equiv)
else:
raise TypeError("{} not supported by assertion comparison".format(type(a)))
def _format_message(x, y, err_msg, verbose):
diff = x - y
abs_diff = max(abs(diff))
rel_diff = "not implemented"
n_diff = int(np.count_nonzero(diff))
n_total = diff.size
fraction = f"{n_diff} / {n_total}"
percentage = float(n_diff / n_total * 100)
parts = [
"Arrays are not equal",
err_msg,
f"Mismatched elements: {fraction} ({percentage:.0f}%)",
f"Max absolute difference: {abs_diff}",
f"Max relative difference: {rel_diff}",
]
if verbose:
parts += [
f" x: {x!r}",
f" y: {y!r}",
]
return "\n".join(parts)
def assert_duckarray_allclose(
actual, desired, rtol=1e-07, atol=0, err_msg="", verbose=True
):
""" Like `np.testing.assert_allclose`, but for duckarrays. """
__tracebackhide__ = True
allclose = duck_array_ops.allclose_or_equiv(actual, desired, rtol=rtol, atol=atol)
assert allclose, _format_message(actual, desired, err_msg=err_msg, verbose=verbose)
def assert_duckarray_equal(x, y, err_msg="", verbose=True):
""" Like `np.testing.assert_array_equal`, but for duckarrays """
__tracebackhide__ = True
if not utils.is_duck_array(x) and not utils.is_scalar(x):
x = np.asarray(x)
if not utils.is_duck_array(y) and not utils.is_scalar(y):
y = np.asarray(y)
if (utils.is_duck_array(x) and utils.is_scalar(y)) or (
utils.is_scalar(x) and utils.is_duck_array(y)
):
equiv = (x == y).all()
else:
equiv = duck_array_ops.array_equiv(x, y)
assert equiv, _format_message(x, y, err_msg=err_msg, verbose=verbose)
def assert_chunks_equal(a, b):
"""
Assert that chunksizes along chunked dimensions are equal.
Parameters
----------
a : xarray.Dataset or xarray.DataArray
The first object to compare.
b : xarray.Dataset or xarray.DataArray
The second object to compare.
"""
if isinstance(a, DataArray) != isinstance(b, DataArray):
raise TypeError("a and b have mismatched types")
left = a.unify_chunks()
right = b.unify_chunks()
assert left.chunks == right.chunks
def _assert_indexes_invariants_checks(indexes, possible_coord_variables, dims):
assert isinstance(indexes, dict), indexes
assert all(isinstance(v, pd.Index) for v in indexes.values()), {
k: type(v) for k, v in indexes.items()
}
index_vars = {
k for k, v in possible_coord_variables.items() if isinstance(v, IndexVariable)
}
assert indexes.keys() <= index_vars, (set(indexes), index_vars)
# Note: when we support non-default indexes, these checks should be opt-in
# only!
defaults = default_indexes(possible_coord_variables, dims)
assert indexes.keys() == defaults.keys(), (set(indexes), set(defaults))
assert all(v.equals(defaults[k]) for k, v in indexes.items()), (indexes, defaults)
def _assert_variable_invariants(var: Variable, name: Hashable = None):
if name is None:
name_or_empty: tuple = ()
else:
name_or_empty = (name,)
assert isinstance(var._dims, tuple), name_or_empty + (var._dims,)
assert len(var._dims) == len(var._data.shape), name_or_empty + (
var._dims,
var._data.shape,
)
assert isinstance(var._encoding, (type(None), dict)), name_or_empty + (
var._encoding,
)
assert isinstance(var._attrs, (type(None), dict)), name_or_empty + (var._attrs,)
def _assert_dataarray_invariants(da: DataArray):
assert isinstance(da._variable, Variable), da._variable
_assert_variable_invariants(da._variable)
assert isinstance(da._coords, dict), da._coords
assert all(isinstance(v, Variable) for v in da._coords.values()), da._coords
assert all(set(v.dims) <= set(da.dims) for v in da._coords.values()), (
da.dims,
{k: v.dims for k, v in da._coords.items()},
)
assert all(
isinstance(v, IndexVariable) for (k, v) in da._coords.items() if v.dims == (k,)
), {k: type(v) for k, v in da._coords.items()}
for k, v in da._coords.items():
_assert_variable_invariants(v, k)
if da._indexes is not None:
_assert_indexes_invariants_checks(da._indexes, da._coords, da.dims)
def _assert_dataset_invariants(ds: Dataset):
assert isinstance(ds._variables, dict), type(ds._variables)
assert all(isinstance(v, Variable) for v in ds._variables.values()), ds._variables
for k, v in ds._variables.items():
_assert_variable_invariants(v, k)
assert isinstance(ds._coord_names, set), ds._coord_names
assert ds._coord_names <= ds._variables.keys(), (
ds._coord_names,
set(ds._variables),
)
assert type(ds._dims) is dict, ds._dims
assert all(isinstance(v, int) for v in ds._dims.values()), ds._dims
var_dims: Set[Hashable] = set()
for v in ds._variables.values():
var_dims.update(v.dims)
assert ds._dims.keys() == var_dims, (set(ds._dims), var_dims)
assert all(
ds._dims[k] == v.sizes[k] for v in ds._variables.values() for k in v.sizes
), (ds._dims, {k: v.sizes for k, v in ds._variables.items()})
assert all(
isinstance(v, IndexVariable)
for (k, v) in ds._variables.items()
if v.dims == (k,)
), {k: type(v) for k, v in ds._variables.items() if v.dims == (k,)}
assert all(v.dims == (k,) for (k, v) in ds._variables.items() if k in ds._dims), {
k: v.dims for k, v in ds._variables.items() if k in ds._dims
}
if ds._indexes is not None:
_assert_indexes_invariants_checks(ds._indexes, ds._variables, ds._dims)
assert isinstance(ds._encoding, (type(None), dict))
assert isinstance(ds._attrs, (type(None), dict))
def _assert_internal_invariants(xarray_obj: Union[DataArray, Dataset, Variable]):
"""Validate that an xarray object satisfies its own internal invariants.
This exists for the benefit of xarray's own test suite, but may be useful
in external projects if they (ill-advisedly) create objects using xarray's
private APIs.
"""
if isinstance(xarray_obj, Variable):
_assert_variable_invariants(xarray_obj)
elif isinstance(xarray_obj, DataArray):
_assert_dataarray_invariants(xarray_obj)
elif isinstance(xarray_obj, Dataset):
_assert_dataset_invariants(xarray_obj)
else:
raise TypeError(
"{} is not a supported type for xarray invariant checks".format(
type(xarray_obj)
)
)
|