File: test_cftimeindex_resample.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (149 lines) | stat: -rw-r--r-- 4,241 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import datetime

import numpy as np
import pandas as pd
import pytest

import xarray as xr
from xarray.core.resample_cftime import CFTimeGrouper

pytest.importorskip("cftime")


# Create a list of pairs of similar-length initial and resample frequencies
# that cover:
# - Resampling from shorter to longer frequencies
# - Resampling from longer to shorter frequencies
# - Resampling from one initial frequency to another.
# These are used to test the cftime version of resample against pandas
# with a standard calendar.
FREQS = [
    ("8003D", "4001D"),
    ("8003D", "16006D"),
    ("8003D", "21AS"),
    ("6H", "3H"),
    ("6H", "12H"),
    ("6H", "400T"),
    ("3D", "D"),
    ("3D", "6D"),
    ("11D", "MS"),
    ("3MS", "MS"),
    ("3MS", "6MS"),
    ("3MS", "85D"),
    ("7M", "3M"),
    ("7M", "14M"),
    ("7M", "2QS-APR"),
    ("43QS-AUG", "21QS-AUG"),
    ("43QS-AUG", "86QS-AUG"),
    ("43QS-AUG", "11A-JUN"),
    ("11Q-JUN", "5Q-JUN"),
    ("11Q-JUN", "22Q-JUN"),
    ("11Q-JUN", "51MS"),
    ("3AS-MAR", "AS-MAR"),
    ("3AS-MAR", "6AS-MAR"),
    ("3AS-MAR", "14Q-FEB"),
    ("7A-MAY", "3A-MAY"),
    ("7A-MAY", "14A-MAY"),
    ("7A-MAY", "85M"),
]


def da(index):
    return xr.DataArray(
        np.arange(100.0, 100.0 + index.size), coords=[index], dims=["time"]
    )


@pytest.mark.parametrize("freqs", FREQS, ids=lambda x: "{}->{}".format(*x))
@pytest.mark.parametrize("closed", [None, "left", "right"])
@pytest.mark.parametrize("label", [None, "left", "right"])
@pytest.mark.parametrize("base", [24, 31])
def test_resample(freqs, closed, label, base):
    initial_freq, resample_freq = freqs
    start = "2000-01-01T12:07:01"
    index_kwargs = dict(start=start, periods=5, freq=initial_freq)
    datetime_index = pd.date_range(**index_kwargs)
    cftime_index = xr.cftime_range(**index_kwargs)

    loffset = "12H"
    try:
        da_datetime = (
            da(datetime_index)
            .resample(
                time=resample_freq,
                closed=closed,
                label=label,
                base=base,
                loffset=loffset,
            )
            .mean()
        )
    except ValueError:
        with pytest.raises(ValueError):
            da(cftime_index).resample(
                time=resample_freq,
                closed=closed,
                label=label,
                base=base,
                loffset=loffset,
            ).mean()
    else:
        da_cftime = (
            da(cftime_index)
            .resample(
                time=resample_freq,
                closed=closed,
                label=label,
                base=base,
                loffset=loffset,
            )
            .mean()
        )
        da_cftime["time"] = da_cftime.indexes["time"].to_datetimeindex()
        xr.testing.assert_identical(da_cftime, da_datetime)


@pytest.mark.parametrize(
    ("freq", "expected"),
    [
        ("S", "left"),
        ("T", "left"),
        ("H", "left"),
        ("D", "left"),
        ("M", "right"),
        ("MS", "left"),
        ("Q", "right"),
        ("QS", "left"),
        ("A", "right"),
        ("AS", "left"),
    ],
)
def test_closed_label_defaults(freq, expected):
    assert CFTimeGrouper(freq=freq).closed == expected
    assert CFTimeGrouper(freq=freq).label == expected


@pytest.mark.filterwarnings("ignore:Converting a CFTimeIndex")
@pytest.mark.parametrize(
    "calendar", ["gregorian", "noleap", "all_leap", "360_day", "julian"]
)
def test_calendars(calendar):
    # Limited testing for non-standard calendars
    freq, closed, label, base = "8001T", None, None, 17
    loffset = datetime.timedelta(hours=12)
    xr_index = xr.cftime_range(
        start="2004-01-01T12:07:01", periods=7, freq="3D", calendar=calendar
    )
    pd_index = pd.date_range(start="2004-01-01T12:07:01", periods=7, freq="3D")
    da_cftime = (
        da(xr_index)
        .resample(time=freq, closed=closed, label=label, base=base, loffset=loffset)
        .mean()
    )
    da_datetime = (
        da(pd_index)
        .resample(time=freq, closed=closed, label=label, base=base, loffset=loffset)
        .mean()
    )
    da_cftime["time"] = da_cftime.indexes["time"].to_datetimeindex()
    xr.testing.assert_identical(da_cftime, da_datetime)