1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
import warnings
from itertools import product
import numpy as np
import pandas as pd
import pytest
from pandas.errors import OutOfBoundsDatetime
from xarray import DataArray, Dataset, Variable, coding, decode_cf
from xarray.coding.times import (
cftime_to_nptime,
decode_cf_datetime,
encode_cf_datetime,
to_timedelta_unboxed,
)
from xarray.coding.variables import SerializationWarning
from xarray.conventions import _update_bounds_attributes, cf_encoder
from xarray.core.common import contains_cftime_datetimes
from xarray.testing import assert_equal
from . import arm_xfail, assert_array_equal, has_cftime, requires_cftime, requires_dask
_NON_STANDARD_CALENDARS_SET = {
"noleap",
"365_day",
"360_day",
"julian",
"all_leap",
"366_day",
}
_ALL_CALENDARS = sorted(
_NON_STANDARD_CALENDARS_SET.union(coding.times._STANDARD_CALENDARS)
)
_NON_STANDARD_CALENDARS = sorted(_NON_STANDARD_CALENDARS_SET)
_STANDARD_CALENDARS = sorted(coding.times._STANDARD_CALENDARS)
_CF_DATETIME_NUM_DATES_UNITS = [
(np.arange(10), "days since 2000-01-01"),
(np.arange(10).astype("float64"), "days since 2000-01-01"),
(np.arange(10).astype("float32"), "days since 2000-01-01"),
(np.arange(10).reshape(2, 5), "days since 2000-01-01"),
(12300 + np.arange(5), "hours since 1680-01-01 00:00:00"),
# here we add a couple minor formatting errors to test
# the robustness of the parsing algorithm.
(12300 + np.arange(5), "hour since 1680-01-01 00:00:00"),
(12300 + np.arange(5), "Hour since 1680-01-01 00:00:00"),
(12300 + np.arange(5), " Hour since 1680-01-01 00:00:00 "),
(10, "days since 2000-01-01"),
([10], "daYs since 2000-01-01"),
([[10]], "days since 2000-01-01"),
([10, 10], "days since 2000-01-01"),
(np.array(10), "days since 2000-01-01"),
(0, "days since 1000-01-01"),
([0], "days since 1000-01-01"),
([[0]], "days since 1000-01-01"),
(np.arange(2), "days since 1000-01-01"),
(np.arange(0, 100000, 20000), "days since 1900-01-01"),
(np.arange(0, 100000, 20000), "days since 1-01-01"),
(17093352.0, "hours since 1-1-1 00:00:0.0"),
([0.5, 1.5], "hours since 1900-01-01T00:00:00"),
(0, "milliseconds since 2000-01-01T00:00:00"),
(0, "microseconds since 2000-01-01T00:00:00"),
(np.int32(788961600), "seconds since 1981-01-01"), # GH2002
(12300 + np.arange(5), "hour since 1680-01-01 00:00:00.500000"),
]
_CF_DATETIME_TESTS = [
num_dates_units + (calendar,)
for num_dates_units, calendar in product(
_CF_DATETIME_NUM_DATES_UNITS, _STANDARD_CALENDARS
)
]
def _all_cftime_date_types():
import cftime
return {
"noleap": cftime.DatetimeNoLeap,
"365_day": cftime.DatetimeNoLeap,
"360_day": cftime.Datetime360Day,
"julian": cftime.DatetimeJulian,
"all_leap": cftime.DatetimeAllLeap,
"366_day": cftime.DatetimeAllLeap,
"gregorian": cftime.DatetimeGregorian,
"proleptic_gregorian": cftime.DatetimeProlepticGregorian,
}
@requires_cftime
@pytest.mark.filterwarnings("ignore:Ambiguous reference date string")
@pytest.mark.parametrize(["num_dates", "units", "calendar"], _CF_DATETIME_TESTS)
def test_cf_datetime(num_dates, units, calendar):
import cftime
expected = cftime.num2date(
num_dates, units, calendar, only_use_cftime_datetimes=True
)
min_y = np.ravel(np.atleast_1d(expected))[np.nanargmin(num_dates)].year
max_y = np.ravel(np.atleast_1d(expected))[np.nanargmax(num_dates)].year
if min_y >= 1678 and max_y < 2262:
expected = cftime_to_nptime(expected)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = coding.times.decode_cf_datetime(num_dates, units, calendar)
abs_diff = np.asarray(abs(actual - expected)).ravel()
abs_diff = pd.to_timedelta(abs_diff.tolist()).to_numpy()
# once we no longer support versions of netCDF4 older than 1.1.5,
# we could do this check with near microsecond accuracy:
# https://github.com/Unidata/netcdf4-python/issues/355
assert (abs_diff <= np.timedelta64(1, "s")).all()
encoded, _, _ = coding.times.encode_cf_datetime(actual, units, calendar)
assert_array_equal(num_dates, np.around(encoded, 1))
if hasattr(num_dates, "ndim") and num_dates.ndim == 1 and "1000" not in units:
# verify that wrapping with a pandas.Index works
# note that it *does not* currently work to put
# non-datetime64 compatible dates into a pandas.Index
encoded, _, _ = coding.times.encode_cf_datetime(
pd.Index(actual), units, calendar
)
assert_array_equal(num_dates, np.around(encoded, 1))
@requires_cftime
def test_decode_cf_datetime_overflow():
# checks for
# https://github.com/pydata/pandas/issues/14068
# https://github.com/pydata/xarray/issues/975
from cftime import DatetimeGregorian
datetime = DatetimeGregorian
units = "days since 2000-01-01 00:00:00"
# date after 2262 and before 1678
days = (-117608, 95795)
expected = (datetime(1677, 12, 31), datetime(2262, 4, 12))
for i, day in enumerate(days):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
result = coding.times.decode_cf_datetime(day, units)
assert result == expected[i]
def test_decode_cf_datetime_non_standard_units():
expected = pd.date_range(periods=100, start="1970-01-01", freq="h")
# netCDFs from madis.noaa.gov use this format for their time units
# they cannot be parsed by cftime, but pd.Timestamp works
units = "hours since 1-1-1970"
actual = coding.times.decode_cf_datetime(np.arange(100), units)
assert_array_equal(actual, expected)
@requires_cftime
def test_decode_cf_datetime_non_iso_strings():
# datetime strings that are _almost_ ISO compliant but not quite,
# but which cftime.num2date can still parse correctly
expected = pd.date_range(periods=100, start="2000-01-01", freq="h")
cases = [
(np.arange(100), "hours since 2000-01-01 0"),
(np.arange(100), "hours since 2000-1-1 0"),
(np.arange(100), "hours since 2000-01-01 0:00"),
]
for num_dates, units in cases:
actual = coding.times.decode_cf_datetime(num_dates, units)
abs_diff = abs(actual - expected.values)
# once we no longer support versions of netCDF4 older than 1.1.5,
# we could do this check with near microsecond accuracy:
# https://github.com/Unidata/netcdf4-python/issues/355
assert (abs_diff <= np.timedelta64(1, "s")).all()
@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_decode_standard_calendar_inside_timestamp_range(calendar):
import cftime
units = "days since 0001-01-01"
times = pd.date_range("2001-04-01-00", end="2001-04-30-23", freq="H")
time = cftime.date2num(times.to_pydatetime(), units, calendar=calendar)
expected = times.values
expected_dtype = np.dtype("M8[ns]")
actual = coding.times.decode_cf_datetime(time, units, calendar=calendar)
assert actual.dtype == expected_dtype
abs_diff = abs(actual - expected)
# once we no longer support versions of netCDF4 older than 1.1.5,
# we could do this check with near microsecond accuracy:
# https://github.com/Unidata/netcdf4-python/issues/355
assert (abs_diff <= np.timedelta64(1, "s")).all()
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_non_standard_calendar_inside_timestamp_range(calendar):
import cftime
units = "days since 0001-01-01"
times = pd.date_range("2001-04-01-00", end="2001-04-30-23", freq="H")
non_standard_time = cftime.date2num(times.to_pydatetime(), units, calendar=calendar)
expected = cftime.num2date(
non_standard_time, units, calendar=calendar, only_use_cftime_datetimes=True
)
expected_dtype = np.dtype("O")
actual = coding.times.decode_cf_datetime(
non_standard_time, units, calendar=calendar
)
assert actual.dtype == expected_dtype
abs_diff = abs(actual - expected)
# once we no longer support versions of netCDF4 older than 1.1.5,
# we could do this check with near microsecond accuracy:
# https://github.com/Unidata/netcdf4-python/issues/355
assert (abs_diff <= np.timedelta64(1, "s")).all()
@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_dates_outside_timestamp_range(calendar):
from datetime import datetime
import cftime
units = "days since 0001-01-01"
times = [datetime(1, 4, 1, h) for h in range(1, 5)]
time = cftime.date2num(times, units, calendar=calendar)
expected = cftime.num2date(
time, units, calendar=calendar, only_use_cftime_datetimes=True
)
expected_date_type = type(expected[0])
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = coding.times.decode_cf_datetime(time, units, calendar=calendar)
assert all(isinstance(value, expected_date_type) for value in actual)
abs_diff = abs(actual - expected)
# once we no longer support versions of netCDF4 older than 1.1.5,
# we could do this check with near microsecond accuracy:
# https://github.com/Unidata/netcdf4-python/issues/355
assert (abs_diff <= np.timedelta64(1, "s")).all()
@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_decode_standard_calendar_single_element_inside_timestamp_range(calendar):
units = "days since 0001-01-01"
for num_time in [735368, [735368], [[735368]]]:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = coding.times.decode_cf_datetime(num_time, units, calendar=calendar)
assert actual.dtype == np.dtype("M8[ns]")
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_non_standard_calendar_single_element_inside_timestamp_range(calendar):
units = "days since 0001-01-01"
for num_time in [735368, [735368], [[735368]]]:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = coding.times.decode_cf_datetime(num_time, units, calendar=calendar)
assert actual.dtype == np.dtype("O")
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_single_element_outside_timestamp_range(calendar):
import cftime
units = "days since 0001-01-01"
for days in [1, 1470376]:
for num_time in [days, [days], [[days]]]:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = coding.times.decode_cf_datetime(
num_time, units, calendar=calendar
)
expected = cftime.num2date(
days, units, calendar, only_use_cftime_datetimes=True
)
assert isinstance(actual.item(), type(expected))
@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_decode_standard_calendar_multidim_time_inside_timestamp_range(calendar):
import cftime
units = "days since 0001-01-01"
times1 = pd.date_range("2001-04-01", end="2001-04-05", freq="D")
times2 = pd.date_range("2001-05-01", end="2001-05-05", freq="D")
time1 = cftime.date2num(times1.to_pydatetime(), units, calendar=calendar)
time2 = cftime.date2num(times2.to_pydatetime(), units, calendar=calendar)
mdim_time = np.empty((len(time1), 2))
mdim_time[:, 0] = time1
mdim_time[:, 1] = time2
expected1 = times1.values
expected2 = times2.values
actual = coding.times.decode_cf_datetime(mdim_time, units, calendar=calendar)
assert actual.dtype == np.dtype("M8[ns]")
abs_diff1 = abs(actual[:, 0] - expected1)
abs_diff2 = abs(actual[:, 1] - expected2)
# once we no longer support versions of netCDF4 older than 1.1.5,
# we could do this check with near microsecond accuracy:
# https://github.com/Unidata/netcdf4-python/issues/355
assert (abs_diff1 <= np.timedelta64(1, "s")).all()
assert (abs_diff2 <= np.timedelta64(1, "s")).all()
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_nonstandard_calendar_multidim_time_inside_timestamp_range(calendar):
import cftime
units = "days since 0001-01-01"
times1 = pd.date_range("2001-04-01", end="2001-04-05", freq="D")
times2 = pd.date_range("2001-05-01", end="2001-05-05", freq="D")
time1 = cftime.date2num(times1.to_pydatetime(), units, calendar=calendar)
time2 = cftime.date2num(times2.to_pydatetime(), units, calendar=calendar)
mdim_time = np.empty((len(time1), 2))
mdim_time[:, 0] = time1
mdim_time[:, 1] = time2
if cftime.__name__ == "cftime":
expected1 = cftime.num2date(
time1, units, calendar, only_use_cftime_datetimes=True
)
expected2 = cftime.num2date(
time2, units, calendar, only_use_cftime_datetimes=True
)
else:
expected1 = cftime.num2date(time1, units, calendar)
expected2 = cftime.num2date(time2, units, calendar)
expected_dtype = np.dtype("O")
actual = coding.times.decode_cf_datetime(mdim_time, units, calendar=calendar)
assert actual.dtype == expected_dtype
abs_diff1 = abs(actual[:, 0] - expected1)
abs_diff2 = abs(actual[:, 1] - expected2)
# once we no longer support versions of netCDF4 older than 1.1.5,
# we could do this check with near microsecond accuracy:
# https://github.com/Unidata/netcdf4-python/issues/355
assert (abs_diff1 <= np.timedelta64(1, "s")).all()
assert (abs_diff2 <= np.timedelta64(1, "s")).all()
@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_multidim_time_outside_timestamp_range(calendar):
from datetime import datetime
import cftime
units = "days since 0001-01-01"
times1 = [datetime(1, 4, day) for day in range(1, 6)]
times2 = [datetime(1, 5, day) for day in range(1, 6)]
time1 = cftime.date2num(times1, units, calendar=calendar)
time2 = cftime.date2num(times2, units, calendar=calendar)
mdim_time = np.empty((len(time1), 2))
mdim_time[:, 0] = time1
mdim_time[:, 1] = time2
expected1 = cftime.num2date(time1, units, calendar, only_use_cftime_datetimes=True)
expected2 = cftime.num2date(time2, units, calendar, only_use_cftime_datetimes=True)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = coding.times.decode_cf_datetime(mdim_time, units, calendar=calendar)
assert actual.dtype == np.dtype("O")
abs_diff1 = abs(actual[:, 0] - expected1)
abs_diff2 = abs(actual[:, 1] - expected2)
# once we no longer support versions of netCDF4 older than 1.1.5,
# we could do this check with near microsecond accuracy:
# https://github.com/Unidata/netcdf4-python/issues/355
assert (abs_diff1 <= np.timedelta64(1, "s")).all()
assert (abs_diff2 <= np.timedelta64(1, "s")).all()
@requires_cftime
@pytest.mark.parametrize(
("calendar", "num_time"),
[("360_day", 720058.0), ("all_leap", 732059.0), ("366_day", 732059.0)],
)
def test_decode_non_standard_calendar_single_element(calendar, num_time):
import cftime
units = "days since 0001-01-01"
actual = coding.times.decode_cf_datetime(num_time, units, calendar=calendar)
expected = np.asarray(
cftime.num2date(num_time, units, calendar, only_use_cftime_datetimes=True)
)
assert actual.dtype == np.dtype("O")
assert expected == actual
@requires_cftime
def test_decode_360_day_calendar():
import cftime
calendar = "360_day"
# ensure leap year doesn't matter
for year in [2010, 2011, 2012, 2013, 2014]:
units = f"days since {year}-01-01"
num_times = np.arange(100)
expected = cftime.num2date(
num_times, units, calendar, only_use_cftime_datetimes=True
)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
actual = coding.times.decode_cf_datetime(
num_times, units, calendar=calendar
)
assert len(w) == 0
assert actual.dtype == np.dtype("O")
assert_array_equal(actual, expected)
@requires_cftime
def test_decode_abbreviation():
"""Test making sure we properly fall back to cftime on abbreviated units."""
import cftime
val = np.array([1586628000000.0])
units = "msecs since 1970-01-01T00:00:00Z"
actual = coding.times.decode_cf_datetime(val, units)
expected = coding.times.cftime_to_nptime(cftime.num2date(val, units))
assert_array_equal(actual, expected)
@arm_xfail
@requires_cftime
@pytest.mark.parametrize(
["num_dates", "units", "expected_list"],
[
([np.nan], "days since 2000-01-01", ["NaT"]),
([np.nan, 0], "days since 2000-01-01", ["NaT", "2000-01-01T00:00:00Z"]),
(
[np.nan, 0, 1],
"days since 2000-01-01",
["NaT", "2000-01-01T00:00:00Z", "2000-01-02T00:00:00Z"],
),
],
)
def test_cf_datetime_nan(num_dates, units, expected_list):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "All-NaN")
actual = coding.times.decode_cf_datetime(num_dates, units)
# use pandas because numpy will deprecate timezone-aware conversions
expected = pd.to_datetime(expected_list).to_numpy(dtype="datetime64[ns]")
assert_array_equal(expected, actual)
@requires_cftime
def test_decoded_cf_datetime_array_2d():
# regression test for GH1229
variable = Variable(
("x", "y"), np.array([[0, 1], [2, 3]]), {"units": "days since 2000-01-01"}
)
result = coding.times.CFDatetimeCoder().decode(variable)
assert result.dtype == "datetime64[ns]"
expected = pd.date_range("2000-01-01", periods=4).values.reshape(2, 2)
assert_array_equal(np.asarray(result), expected)
@pytest.mark.parametrize(
["dates", "expected"],
[
(pd.date_range("1900-01-01", periods=5), "days since 1900-01-01 00:00:00"),
(
pd.date_range("1900-01-01 12:00:00", freq="H", periods=2),
"hours since 1900-01-01 12:00:00",
),
(
pd.to_datetime(["1900-01-01", "1900-01-02", "NaT"]),
"days since 1900-01-01 00:00:00",
),
(
pd.to_datetime(["1900-01-01", "1900-01-02T00:00:00.005"]),
"seconds since 1900-01-01 00:00:00",
),
(pd.to_datetime(["NaT", "1900-01-01"]), "days since 1900-01-01 00:00:00"),
(pd.to_datetime(["NaT"]), "days since 1970-01-01 00:00:00"),
],
)
def test_infer_datetime_units(dates, expected):
assert expected == coding.times.infer_datetime_units(dates)
_CFTIME_DATETIME_UNITS_TESTS = [
([(1900, 1, 1), (1900, 1, 1)], "days since 1900-01-01 00:00:00.000000"),
(
[(1900, 1, 1), (1900, 1, 2), (1900, 1, 2, 0, 0, 1)],
"seconds since 1900-01-01 00:00:00.000000",
),
(
[(1900, 1, 1), (1900, 1, 8), (1900, 1, 16)],
"days since 1900-01-01 00:00:00.000000",
),
]
@requires_cftime
@pytest.mark.parametrize(
"calendar", _NON_STANDARD_CALENDARS + ["gregorian", "proleptic_gregorian"]
)
@pytest.mark.parametrize(("date_args", "expected"), _CFTIME_DATETIME_UNITS_TESTS)
def test_infer_cftime_datetime_units(calendar, date_args, expected):
date_type = _all_cftime_date_types()[calendar]
dates = [date_type(*args) for args in date_args]
assert expected == coding.times.infer_datetime_units(dates)
@pytest.mark.parametrize(
["timedeltas", "units", "numbers"],
[
("1D", "days", np.int64(1)),
(["1D", "2D", "3D"], "days", np.array([1, 2, 3], "int64")),
("1h", "hours", np.int64(1)),
("1ms", "milliseconds", np.int64(1)),
("1us", "microseconds", np.int64(1)),
(["NaT", "0s", "1s"], None, [np.nan, 0, 1]),
(["30m", "60m"], "hours", [0.5, 1.0]),
("NaT", "days", np.nan),
(["NaT", "NaT"], "days", [np.nan, np.nan]),
],
)
def test_cf_timedelta(timedeltas, units, numbers):
if timedeltas == "NaT":
timedeltas = np.timedelta64("NaT", "ns")
else:
timedeltas = to_timedelta_unboxed(timedeltas)
numbers = np.array(numbers)
expected = numbers
actual, _ = coding.times.encode_cf_timedelta(timedeltas, units)
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
if units is not None:
expected = timedeltas
actual = coding.times.decode_cf_timedelta(numbers, units)
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
expected = np.timedelta64("NaT", "ns")
actual = coding.times.decode_cf_timedelta(np.array(np.nan), "days")
assert_array_equal(expected, actual)
def test_cf_timedelta_2d():
timedeltas = ["1D", "2D", "3D"]
units = "days"
numbers = np.atleast_2d([1, 2, 3])
timedeltas = np.atleast_2d(to_timedelta_unboxed(timedeltas))
expected = timedeltas
actual = coding.times.decode_cf_timedelta(numbers, units)
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
@pytest.mark.parametrize(
["deltas", "expected"],
[
(pd.to_timedelta(["1 day", "2 days"]), "days"),
(pd.to_timedelta(["1h", "1 day 1 hour"]), "hours"),
(pd.to_timedelta(["1m", "2m", np.nan]), "minutes"),
(pd.to_timedelta(["1m3s", "1m4s"]), "seconds"),
],
)
def test_infer_timedelta_units(deltas, expected):
assert expected == coding.times.infer_timedelta_units(deltas)
@requires_cftime
@pytest.mark.parametrize(
["date_args", "expected"],
[
((1, 2, 3, 4, 5, 6), "0001-02-03 04:05:06.000000"),
((10, 2, 3, 4, 5, 6), "0010-02-03 04:05:06.000000"),
((100, 2, 3, 4, 5, 6), "0100-02-03 04:05:06.000000"),
((1000, 2, 3, 4, 5, 6), "1000-02-03 04:05:06.000000"),
],
)
def test_format_cftime_datetime(date_args, expected):
date_types = _all_cftime_date_types()
for date_type in date_types.values():
result = coding.times.format_cftime_datetime(date_type(*date_args))
assert result == expected
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_cf(calendar):
days = [1.0, 2.0, 3.0]
da = DataArray(days, coords=[days], dims=["time"], name="test")
ds = da.to_dataset()
for v in ["test", "time"]:
ds[v].attrs["units"] = "days since 2001-01-01"
ds[v].attrs["calendar"] = calendar
if not has_cftime and calendar not in _STANDARD_CALENDARS:
with pytest.raises(ValueError):
ds = decode_cf(ds)
else:
ds = decode_cf(ds)
if calendar not in _STANDARD_CALENDARS:
assert ds.test.dtype == np.dtype("O")
else:
assert ds.test.dtype == np.dtype("M8[ns]")
def test_decode_cf_time_bounds():
da = DataArray(
np.arange(6, dtype="int64").reshape((3, 2)),
coords={"time": [1, 2, 3]},
dims=("time", "nbnd"),
name="time_bnds",
)
attrs = {
"units": "days since 2001-01",
"calendar": "standard",
"bounds": "time_bnds",
}
ds = da.to_dataset()
ds["time"].attrs.update(attrs)
_update_bounds_attributes(ds.variables)
assert ds.variables["time_bnds"].attrs == {
"units": "days since 2001-01",
"calendar": "standard",
}
dsc = decode_cf(ds)
assert dsc.time_bnds.dtype == np.dtype("M8[ns]")
dsc = decode_cf(ds, decode_times=False)
assert dsc.time_bnds.dtype == np.dtype("int64")
# Do not overwrite existing attrs
ds = da.to_dataset()
ds["time"].attrs.update(attrs)
bnd_attr = {"units": "hours since 2001-01", "calendar": "noleap"}
ds["time_bnds"].attrs.update(bnd_attr)
_update_bounds_attributes(ds.variables)
assert ds.variables["time_bnds"].attrs == bnd_attr
# If bounds variable not available do not complain
ds = da.to_dataset()
ds["time"].attrs.update(attrs)
ds["time"].attrs["bounds"] = "fake_var"
_update_bounds_attributes(ds.variables)
@requires_cftime
def test_encode_time_bounds():
time = pd.date_range("2000-01-16", periods=1)
time_bounds = pd.date_range("2000-01-01", periods=2, freq="MS")
ds = Dataset(dict(time=time, time_bounds=time_bounds))
ds.time.attrs = {"bounds": "time_bounds"}
ds.time.encoding = {"calendar": "noleap", "units": "days since 2000-01-01"}
expected = {}
# expected['time'] = Variable(data=np.array([15]), dims=['time'])
expected["time_bounds"] = Variable(data=np.array([0, 31]), dims=["time_bounds"])
encoded, _ = cf_encoder(ds.variables, ds.attrs)
assert_equal(encoded["time_bounds"], expected["time_bounds"])
assert "calendar" not in encoded["time_bounds"].attrs
assert "units" not in encoded["time_bounds"].attrs
# if time_bounds attrs are same as time attrs, it doesn't matter
ds.time_bounds.encoding = {"calendar": "noleap", "units": "days since 2000-01-01"}
encoded, _ = cf_encoder({k: ds[k] for k in ds.variables}, ds.attrs)
assert_equal(encoded["time_bounds"], expected["time_bounds"])
assert "calendar" not in encoded["time_bounds"].attrs
assert "units" not in encoded["time_bounds"].attrs
# for CF-noncompliant case of time_bounds attrs being different from
# time attrs; preserve them for faithful roundtrip
ds.time_bounds.encoding = {"calendar": "noleap", "units": "days since 1849-01-01"}
encoded, _ = cf_encoder({k: ds[k] for k in ds.variables}, ds.attrs)
with pytest.raises(AssertionError):
assert_equal(encoded["time_bounds"], expected["time_bounds"])
assert "calendar" not in encoded["time_bounds"].attrs
assert encoded["time_bounds"].attrs["units"] == ds.time_bounds.encoding["units"]
ds.time.encoding = {}
with pytest.warns(UserWarning):
cf_encoder(ds.variables, ds.attrs)
@pytest.fixture(params=_ALL_CALENDARS)
def calendar(request):
return request.param
@pytest.fixture()
def times(calendar):
import cftime
return cftime.num2date(
np.arange(4),
units="hours since 2000-01-01",
calendar=calendar,
only_use_cftime_datetimes=True,
)
@pytest.fixture()
def data(times):
data = np.random.rand(2, 2, 4)
lons = np.linspace(0, 11, 2)
lats = np.linspace(0, 20, 2)
return DataArray(
data, coords=[lons, lats, times], dims=["lon", "lat", "time"], name="data"
)
@pytest.fixture()
def times_3d(times):
lons = np.linspace(0, 11, 2)
lats = np.linspace(0, 20, 2)
times_arr = np.random.choice(times, size=(2, 2, 4))
return DataArray(
times_arr, coords=[lons, lats, times], dims=["lon", "lat", "time"], name="data"
)
@requires_cftime
def test_contains_cftime_datetimes_1d(data):
assert contains_cftime_datetimes(data.time)
@requires_cftime
@requires_dask
def test_contains_cftime_datetimes_dask_1d(data):
assert contains_cftime_datetimes(data.time.chunk())
@requires_cftime
def test_contains_cftime_datetimes_3d(times_3d):
assert contains_cftime_datetimes(times_3d)
@requires_cftime
@requires_dask
def test_contains_cftime_datetimes_dask_3d(times_3d):
assert contains_cftime_datetimes(times_3d.chunk())
@pytest.mark.parametrize("non_cftime_data", [DataArray([]), DataArray([1, 2])])
def test_contains_cftime_datetimes_non_cftimes(non_cftime_data):
assert not contains_cftime_datetimes(non_cftime_data)
@requires_dask
@pytest.mark.parametrize("non_cftime_data", [DataArray([]), DataArray([1, 2])])
def test_contains_cftime_datetimes_non_cftimes_dask(non_cftime_data):
assert not contains_cftime_datetimes(non_cftime_data.chunk())
@requires_cftime
@pytest.mark.parametrize("shape", [(24,), (8, 3), (2, 4, 3)])
def test_encode_cf_datetime_overflow(shape):
# Test for fix to GH 2272
dates = pd.date_range("2100", periods=24).values.reshape(shape)
units = "days since 1800-01-01"
calendar = "standard"
num, _, _ = encode_cf_datetime(dates, units, calendar)
roundtrip = decode_cf_datetime(num, units, calendar)
np.testing.assert_array_equal(dates, roundtrip)
def test_encode_cf_datetime_pandas_min():
# GH 2623
dates = pd.date_range("2000", periods=3)
num, units, calendar = encode_cf_datetime(dates)
expected_num = np.array([0.0, 1.0, 2.0])
expected_units = "days since 2000-01-01 00:00:00"
expected_calendar = "proleptic_gregorian"
np.testing.assert_array_equal(num, expected_num)
assert units == expected_units
assert calendar == expected_calendar
@requires_cftime
def test_time_units_with_timezone_roundtrip(calendar):
# Regression test for GH 2649
expected_units = "days since 2000-01-01T00:00:00-05:00"
expected_num_dates = np.array([1, 2, 3])
dates = decode_cf_datetime(expected_num_dates, expected_units, calendar)
# Check that dates were decoded to UTC; here the hours should all
# equal 5.
result_hours = DataArray(dates).dt.hour
expected_hours = DataArray([5, 5, 5])
assert_equal(result_hours, expected_hours)
# Check that the encoded values are accurately roundtripped.
result_num_dates, result_units, result_calendar = encode_cf_datetime(
dates, expected_units, calendar
)
if calendar in _STANDARD_CALENDARS:
np.testing.assert_array_equal(result_num_dates, expected_num_dates)
else:
# cftime datetime arithmetic is not quite exact.
np.testing.assert_allclose(result_num_dates, expected_num_dates)
assert result_units == expected_units
assert result_calendar == calendar
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_use_cftime_default_standard_calendar_in_range(calendar):
numerical_dates = [0, 1]
units = "days since 2000-01-01"
expected = pd.date_range("2000", periods=2)
with pytest.warns(None) as record:
result = decode_cf_datetime(numerical_dates, units, calendar)
np.testing.assert_array_equal(result, expected)
assert not record
@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2500])
def test_use_cftime_default_standard_calendar_out_of_range(calendar, units_year):
from cftime import num2date
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
expected = num2date(
numerical_dates, units, calendar, only_use_cftime_datetimes=True
)
with pytest.warns(SerializationWarning):
result = decode_cf_datetime(numerical_dates, units, calendar)
np.testing.assert_array_equal(result, expected)
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_default_non_standard_calendar(calendar, units_year):
from cftime import num2date
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
expected = num2date(
numerical_dates, units, calendar, only_use_cftime_datetimes=True
)
with pytest.warns(None) as record:
result = decode_cf_datetime(numerical_dates, units, calendar)
np.testing.assert_array_equal(result, expected)
assert not record
@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_true(calendar, units_year):
from cftime import num2date
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
expected = num2date(
numerical_dates, units, calendar, only_use_cftime_datetimes=True
)
with pytest.warns(None) as record:
result = decode_cf_datetime(numerical_dates, units, calendar, use_cftime=True)
np.testing.assert_array_equal(result, expected)
assert not record
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_use_cftime_false_standard_calendar_in_range(calendar):
numerical_dates = [0, 1]
units = "days since 2000-01-01"
expected = pd.date_range("2000", periods=2)
with pytest.warns(None) as record:
result = decode_cf_datetime(numerical_dates, units, calendar, use_cftime=False)
np.testing.assert_array_equal(result, expected)
assert not record
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2500])
def test_use_cftime_false_standard_calendar_out_of_range(calendar, units_year):
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
with pytest.raises(OutOfBoundsDatetime):
decode_cf_datetime(numerical_dates, units, calendar, use_cftime=False)
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_false_non_standard_calendar(calendar, units_year):
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
with pytest.raises(OutOfBoundsDatetime):
decode_cf_datetime(numerical_dates, units, calendar, use_cftime=False)
@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_ambiguous_time_warns(calendar):
# GH 4422, 4506
from cftime import num2date
# we don't decode non-standard calendards with
# pandas so expect no warning will be emitted
is_standard_calendar = calendar in coding.times._STANDARD_CALENDARS
dates = [1, 2, 3]
units = "days since 1-1-1"
expected = num2date(dates, units, calendar=calendar, only_use_cftime_datetimes=True)
exp_warn_type = SerializationWarning if is_standard_calendar else None
with pytest.warns(exp_warn_type) as record:
result = decode_cf_datetime(dates, units, calendar=calendar)
if is_standard_calendar:
relevant_warnings = [
r
for r in record.list
if str(r.message).startswith("Ambiguous reference date string: 1-1-1")
]
assert len(relevant_warnings) == 1
else:
assert not record
np.testing.assert_array_equal(result, expected)
|