1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
from datetime import datetime
from itertools import product
import numpy as np
import pytest
from xarray import DataArray, Dataset, combine_by_coords, combine_nested, concat
from xarray.core import dtypes
from xarray.core.combine import (
_check_shape_tile_ids,
_combine_all_along_first_dim,
_combine_nd,
_infer_concat_order_from_coords,
_infer_concat_order_from_positions,
_new_tile_id,
)
from . import assert_equal, assert_identical, raises_regex, requires_cftime
from .test_dataset import create_test_data
def assert_combined_tile_ids_equal(dict1, dict2):
assert len(dict1) == len(dict2)
for k, v in dict1.items():
assert k in dict2.keys()
assert_equal(dict1[k], dict2[k])
class TestTileIDsFromNestedList:
def test_1d(self):
ds = create_test_data
input = [ds(0), ds(1)]
expected = {(0,): ds(0), (1,): ds(1)}
actual = _infer_concat_order_from_positions(input)
assert_combined_tile_ids_equal(expected, actual)
def test_2d(self):
ds = create_test_data
input = [[ds(0), ds(1)], [ds(2), ds(3)], [ds(4), ds(5)]]
expected = {
(0, 0): ds(0),
(0, 1): ds(1),
(1, 0): ds(2),
(1, 1): ds(3),
(2, 0): ds(4),
(2, 1): ds(5),
}
actual = _infer_concat_order_from_positions(input)
assert_combined_tile_ids_equal(expected, actual)
def test_3d(self):
ds = create_test_data
input = [
[[ds(0), ds(1)], [ds(2), ds(3)], [ds(4), ds(5)]],
[[ds(6), ds(7)], [ds(8), ds(9)], [ds(10), ds(11)]],
]
expected = {
(0, 0, 0): ds(0),
(0, 0, 1): ds(1),
(0, 1, 0): ds(2),
(0, 1, 1): ds(3),
(0, 2, 0): ds(4),
(0, 2, 1): ds(5),
(1, 0, 0): ds(6),
(1, 0, 1): ds(7),
(1, 1, 0): ds(8),
(1, 1, 1): ds(9),
(1, 2, 0): ds(10),
(1, 2, 1): ds(11),
}
actual = _infer_concat_order_from_positions(input)
assert_combined_tile_ids_equal(expected, actual)
def test_single_dataset(self):
ds = create_test_data(0)
input = [ds]
expected = {(0,): ds}
actual = _infer_concat_order_from_positions(input)
assert_combined_tile_ids_equal(expected, actual)
def test_redundant_nesting(self):
ds = create_test_data
input = [[ds(0)], [ds(1)]]
expected = {(0, 0): ds(0), (1, 0): ds(1)}
actual = _infer_concat_order_from_positions(input)
assert_combined_tile_ids_equal(expected, actual)
def test_ignore_empty_list(self):
ds = create_test_data(0)
input = [ds, []]
expected = {(0,): ds}
actual = _infer_concat_order_from_positions(input)
assert_combined_tile_ids_equal(expected, actual)
def test_uneven_depth_input(self):
# Auto_combine won't work on ragged input
# but this is just to increase test coverage
ds = create_test_data
input = [ds(0), [ds(1), ds(2)]]
expected = {(0,): ds(0), (1, 0): ds(1), (1, 1): ds(2)}
actual = _infer_concat_order_from_positions(input)
assert_combined_tile_ids_equal(expected, actual)
def test_uneven_length_input(self):
# Auto_combine won't work on ragged input
# but this is just to increase test coverage
ds = create_test_data
input = [[ds(0)], [ds(1), ds(2)]]
expected = {(0, 0): ds(0), (1, 0): ds(1), (1, 1): ds(2)}
actual = _infer_concat_order_from_positions(input)
assert_combined_tile_ids_equal(expected, actual)
def test_infer_from_datasets(self):
ds = create_test_data
input = [ds(0), ds(1)]
expected = {(0,): ds(0), (1,): ds(1)}
actual = _infer_concat_order_from_positions(input)
assert_combined_tile_ids_equal(expected, actual)
class TestTileIDsFromCoords:
def test_1d(self):
ds0 = Dataset({"x": [0, 1]})
ds1 = Dataset({"x": [2, 3]})
expected = {(0,): ds0, (1,): ds1}
actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0])
assert_combined_tile_ids_equal(expected, actual)
assert concat_dims == ["x"]
def test_2d(self):
ds0 = Dataset({"x": [0, 1], "y": [10, 20, 30]})
ds1 = Dataset({"x": [2, 3], "y": [10, 20, 30]})
ds2 = Dataset({"x": [0, 1], "y": [40, 50, 60]})
ds3 = Dataset({"x": [2, 3], "y": [40, 50, 60]})
ds4 = Dataset({"x": [0, 1], "y": [70, 80, 90]})
ds5 = Dataset({"x": [2, 3], "y": [70, 80, 90]})
expected = {
(0, 0): ds0,
(1, 0): ds1,
(0, 1): ds2,
(1, 1): ds3,
(0, 2): ds4,
(1, 2): ds5,
}
actual, concat_dims = _infer_concat_order_from_coords(
[ds1, ds0, ds3, ds5, ds2, ds4]
)
assert_combined_tile_ids_equal(expected, actual)
assert concat_dims == ["x", "y"]
def test_no_dimension_coords(self):
ds0 = Dataset({"foo": ("x", [0, 1])})
ds1 = Dataset({"foo": ("x", [2, 3])})
with raises_regex(ValueError, "Could not find any dimension"):
_infer_concat_order_from_coords([ds1, ds0])
def test_coord_not_monotonic(self):
ds0 = Dataset({"x": [0, 1]})
ds1 = Dataset({"x": [3, 2]})
with raises_regex(
ValueError,
"Coordinate variable x is neither monotonically increasing nor",
):
_infer_concat_order_from_coords([ds1, ds0])
def test_coord_monotonically_decreasing(self):
ds0 = Dataset({"x": [3, 2]})
ds1 = Dataset({"x": [1, 0]})
expected = {(0,): ds0, (1,): ds1}
actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0])
assert_combined_tile_ids_equal(expected, actual)
assert concat_dims == ["x"]
def test_no_concatenation_needed(self):
ds = Dataset({"foo": ("x", [0, 1])})
expected = {(): ds}
actual, concat_dims = _infer_concat_order_from_coords([ds])
assert_combined_tile_ids_equal(expected, actual)
assert concat_dims == []
def test_2d_plus_bystander_dim(self):
ds0 = Dataset({"x": [0, 1], "y": [10, 20, 30], "t": [0.1, 0.2]})
ds1 = Dataset({"x": [2, 3], "y": [10, 20, 30], "t": [0.1, 0.2]})
ds2 = Dataset({"x": [0, 1], "y": [40, 50, 60], "t": [0.1, 0.2]})
ds3 = Dataset({"x": [2, 3], "y": [40, 50, 60], "t": [0.1, 0.2]})
expected = {(0, 0): ds0, (1, 0): ds1, (0, 1): ds2, (1, 1): ds3}
actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0, ds3, ds2])
assert_combined_tile_ids_equal(expected, actual)
assert concat_dims == ["x", "y"]
def test_string_coords(self):
ds0 = Dataset({"person": ["Alice", "Bob"]})
ds1 = Dataset({"person": ["Caroline", "Daniel"]})
expected = {(0,): ds0, (1,): ds1}
actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0])
assert_combined_tile_ids_equal(expected, actual)
assert concat_dims == ["person"]
# Decided against natural sorting of string coords GH #2616
def test_lexicographic_sort_string_coords(self):
ds0 = Dataset({"simulation": ["run8", "run9"]})
ds1 = Dataset({"simulation": ["run10", "run11"]})
expected = {(0,): ds1, (1,): ds0}
actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0])
assert_combined_tile_ids_equal(expected, actual)
assert concat_dims == ["simulation"]
def test_datetime_coords(self):
ds0 = Dataset({"time": [datetime(2000, 3, 6), datetime(2001, 3, 7)]})
ds1 = Dataset({"time": [datetime(1999, 1, 1), datetime(1999, 2, 4)]})
expected = {(0,): ds1, (1,): ds0}
actual, concat_dims = _infer_concat_order_from_coords([ds0, ds1])
assert_combined_tile_ids_equal(expected, actual)
assert concat_dims == ["time"]
@pytest.fixture(scope="module")
def create_combined_ids():
return _create_combined_ids
def _create_combined_ids(shape):
tile_ids = _create_tile_ids(shape)
nums = range(len(tile_ids))
return {tile_id: create_test_data(num) for tile_id, num in zip(tile_ids, nums)}
def _create_tile_ids(shape):
tile_ids = product(*(range(i) for i in shape))
return list(tile_ids)
class TestNewTileIDs:
@pytest.mark.parametrize(
"old_id, new_id",
[((3, 0, 1), (0, 1)), ((0, 0), (0,)), ((1,), ()), ((0,), ()), ((1, 0), (0,))],
)
def test_new_tile_id(self, old_id, new_id):
ds = create_test_data
assert _new_tile_id((old_id, ds)) == new_id
def test_get_new_tile_ids(self, create_combined_ids):
shape = (1, 2, 3)
combined_ids = create_combined_ids(shape)
expected_tile_ids = sorted(combined_ids.keys())
actual_tile_ids = _create_tile_ids(shape)
assert expected_tile_ids == actual_tile_ids
class TestCombineND:
@pytest.mark.parametrize("concat_dim", ["dim1", "new_dim"])
def test_concat_once(self, create_combined_ids, concat_dim):
shape = (2,)
combined_ids = create_combined_ids(shape)
ds = create_test_data
result = _combine_all_along_first_dim(
combined_ids,
dim=concat_dim,
data_vars="all",
coords="different",
compat="no_conflicts",
)
expected_ds = concat([ds(0), ds(1)], dim=concat_dim)
assert_combined_tile_ids_equal(result, {(): expected_ds})
def test_concat_only_first_dim(self, create_combined_ids):
shape = (2, 3)
combined_ids = create_combined_ids(shape)
result = _combine_all_along_first_dim(
combined_ids,
dim="dim1",
data_vars="all",
coords="different",
compat="no_conflicts",
)
ds = create_test_data
partway1 = concat([ds(0), ds(3)], dim="dim1")
partway2 = concat([ds(1), ds(4)], dim="dim1")
partway3 = concat([ds(2), ds(5)], dim="dim1")
expected_datasets = [partway1, partway2, partway3]
expected = {(i,): ds for i, ds in enumerate(expected_datasets)}
assert_combined_tile_ids_equal(result, expected)
@pytest.mark.parametrize("concat_dim", ["dim1", "new_dim"])
def test_concat_twice(self, create_combined_ids, concat_dim):
shape = (2, 3)
combined_ids = create_combined_ids(shape)
result = _combine_nd(combined_ids, concat_dims=["dim1", concat_dim])
ds = create_test_data
partway1 = concat([ds(0), ds(3)], dim="dim1")
partway2 = concat([ds(1), ds(4)], dim="dim1")
partway3 = concat([ds(2), ds(5)], dim="dim1")
expected = concat([partway1, partway2, partway3], dim=concat_dim)
assert_equal(result, expected)
class TestCheckShapeTileIDs:
def test_check_depths(self):
ds = create_test_data(0)
combined_tile_ids = {(0,): ds, (0, 1): ds}
with raises_regex(ValueError, "sub-lists do not have consistent depths"):
_check_shape_tile_ids(combined_tile_ids)
def test_check_lengths(self):
ds = create_test_data(0)
combined_tile_ids = {(0, 0): ds, (0, 1): ds, (0, 2): ds, (1, 0): ds, (1, 1): ds}
with raises_regex(ValueError, "sub-lists do not have consistent lengths"):
_check_shape_tile_ids(combined_tile_ids)
class TestNestedCombine:
def test_nested_concat(self):
objs = [Dataset({"x": [0]}), Dataset({"x": [1]})]
expected = Dataset({"x": [0, 1]})
actual = combine_nested(objs, concat_dim="x")
assert_identical(expected, actual)
actual = combine_nested(objs, concat_dim=["x"])
assert_identical(expected, actual)
actual = combine_nested([actual], concat_dim=None)
assert_identical(expected, actual)
actual = combine_nested([actual], concat_dim="x")
assert_identical(expected, actual)
objs = [Dataset({"x": [0, 1]}), Dataset({"x": [2]})]
actual = combine_nested(objs, concat_dim="x")
expected = Dataset({"x": [0, 1, 2]})
assert_identical(expected, actual)
# ensure combine_nested handles non-sorted variables
objs = [
Dataset({"x": ("a", [0]), "y": ("a", [0])}),
Dataset({"y": ("a", [1]), "x": ("a", [1])}),
]
actual = combine_nested(objs, concat_dim="a")
expected = Dataset({"x": ("a", [0, 1]), "y": ("a", [0, 1])})
assert_identical(expected, actual)
objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1]})]
actual = combine_nested(objs, concat_dim="x")
expected = Dataset({"x": [0, 1], "y": [0]})
assert_identical(expected, actual)
@pytest.mark.parametrize(
"join, expected",
[
("outer", Dataset({"x": [0, 1], "y": [0, 1]})),
("inner", Dataset({"x": [0, 1], "y": []})),
("left", Dataset({"x": [0, 1], "y": [0]})),
("right", Dataset({"x": [0, 1], "y": [1]})),
],
)
def test_combine_nested_join(self, join, expected):
objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1], "y": [1]})]
actual = combine_nested(objs, concat_dim="x", join=join)
assert_identical(expected, actual)
def test_combine_nested_join_exact(self):
objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1], "y": [1]})]
with raises_regex(ValueError, "indexes along dimension"):
combine_nested(objs, concat_dim="x", join="exact")
def test_empty_input(self):
assert_identical(Dataset(), combine_nested([], concat_dim="x"))
# Fails because of concat's weird treatment of dimension coords, see #2975
@pytest.mark.xfail
def test_nested_concat_too_many_dims_at_once(self):
objs = [Dataset({"x": [0], "y": [1]}), Dataset({"y": [0], "x": [1]})]
with pytest.raises(ValueError, match="not equal across datasets"):
combine_nested(objs, concat_dim="x", coords="minimal")
def test_nested_concat_along_new_dim(self):
objs = [
Dataset({"a": ("x", [10]), "x": [0]}),
Dataset({"a": ("x", [20]), "x": [0]}),
]
expected = Dataset({"a": (("t", "x"), [[10], [20]]), "x": [0]})
actual = combine_nested(objs, concat_dim="t")
assert_identical(expected, actual)
# Same but with a DataArray as new dim, see GH #1988 and #2647
dim = DataArray([100, 150], name="baz", dims="baz")
expected = Dataset(
{"a": (("baz", "x"), [[10], [20]]), "x": [0], "baz": [100, 150]}
)
actual = combine_nested(objs, concat_dim=dim)
assert_identical(expected, actual)
def test_nested_merge(self):
data = Dataset({"x": 0})
actual = combine_nested([data, data, data], concat_dim=None)
assert_identical(data, actual)
ds1 = Dataset({"a": ("x", [1, 2]), "x": [0, 1]})
ds2 = Dataset({"a": ("x", [2, 3]), "x": [1, 2]})
expected = Dataset({"a": ("x", [1, 2, 3]), "x": [0, 1, 2]})
actual = combine_nested([ds1, ds2], concat_dim=None)
assert_identical(expected, actual)
actual = combine_nested([ds1, ds2], concat_dim=[None])
assert_identical(expected, actual)
tmp1 = Dataset({"x": 0})
tmp2 = Dataset({"x": np.nan})
actual = combine_nested([tmp1, tmp2], concat_dim=None)
assert_identical(tmp1, actual)
actual = combine_nested([tmp1, tmp2], concat_dim=[None])
assert_identical(tmp1, actual)
# Single object, with a concat_dim explicitly provided
# Test the issue reported in GH #1988
objs = [Dataset({"x": 0, "y": 1})]
dim = DataArray([100], name="baz", dims="baz")
actual = combine_nested(objs, concat_dim=[dim])
expected = Dataset({"x": ("baz", [0]), "y": ("baz", [1])}, {"baz": [100]})
assert_identical(expected, actual)
# Just making sure that auto_combine is doing what is
# expected for non-scalar values, too.
objs = [Dataset({"x": ("z", [0, 1]), "y": ("z", [1, 2])})]
dim = DataArray([100], name="baz", dims="baz")
actual = combine_nested(objs, concat_dim=[dim])
expected = Dataset(
{"x": (("baz", "z"), [[0, 1]]), "y": (("baz", "z"), [[1, 2]])},
{"baz": [100]},
)
assert_identical(expected, actual)
def test_concat_multiple_dims(self):
objs = [
[Dataset({"a": (("x", "y"), [[0]])}), Dataset({"a": (("x", "y"), [[1]])})],
[Dataset({"a": (("x", "y"), [[2]])}), Dataset({"a": (("x", "y"), [[3]])})],
]
actual = combine_nested(objs, concat_dim=["x", "y"])
expected = Dataset({"a": (("x", "y"), [[0, 1], [2, 3]])})
assert_identical(expected, actual)
def test_concat_name_symmetry(self):
"""Inspired by the discussion on GH issue #2777"""
da1 = DataArray(name="a", data=[[0]], dims=["x", "y"])
da2 = DataArray(name="b", data=[[1]], dims=["x", "y"])
da3 = DataArray(name="a", data=[[2]], dims=["x", "y"])
da4 = DataArray(name="b", data=[[3]], dims=["x", "y"])
x_first = combine_nested([[da1, da2], [da3, da4]], concat_dim=["x", "y"])
y_first = combine_nested([[da1, da3], [da2, da4]], concat_dim=["y", "x"])
assert_identical(x_first, y_first)
def test_concat_one_dim_merge_another(self):
data = create_test_data()
data1 = data.copy(deep=True)
data2 = data.copy(deep=True)
objs = [
[data1.var1.isel(dim2=slice(4)), data2.var1.isel(dim2=slice(4, 9))],
[data1.var2.isel(dim2=slice(4)), data2.var2.isel(dim2=slice(4, 9))],
]
expected = data[["var1", "var2"]]
actual = combine_nested(objs, concat_dim=[None, "dim2"])
assert expected.identical(actual)
def test_auto_combine_2d(self):
ds = create_test_data
partway1 = concat([ds(0), ds(3)], dim="dim1")
partway2 = concat([ds(1), ds(4)], dim="dim1")
partway3 = concat([ds(2), ds(5)], dim="dim1")
expected = concat([partway1, partway2, partway3], dim="dim2")
datasets = [[ds(0), ds(1), ds(2)], [ds(3), ds(4), ds(5)]]
result = combine_nested(datasets, concat_dim=["dim1", "dim2"])
assert_equal(result, expected)
def test_auto_combine_2d_combine_attrs_kwarg(self):
ds = create_test_data
partway1 = concat([ds(0), ds(3)], dim="dim1")
partway2 = concat([ds(1), ds(4)], dim="dim1")
partway3 = concat([ds(2), ds(5)], dim="dim1")
expected = concat([partway1, partway2, partway3], dim="dim2")
expected_dict = {}
expected_dict["drop"] = expected.copy(deep=True)
expected_dict["drop"].attrs = {}
expected_dict["no_conflicts"] = expected.copy(deep=True)
expected_dict["no_conflicts"].attrs = {
"a": 1,
"b": 2,
"c": 3,
"d": 4,
"e": 5,
"f": 6,
}
expected_dict["override"] = expected.copy(deep=True)
expected_dict["override"].attrs = {"a": 1}
datasets = [[ds(0), ds(1), ds(2)], [ds(3), ds(4), ds(5)]]
datasets[0][0].attrs = {"a": 1}
datasets[0][1].attrs = {"a": 1, "b": 2}
datasets[0][2].attrs = {"a": 1, "c": 3}
datasets[1][0].attrs = {"a": 1, "d": 4}
datasets[1][1].attrs = {"a": 1, "e": 5}
datasets[1][2].attrs = {"a": 1, "f": 6}
with raises_regex(ValueError, "combine_attrs='identical'"):
result = combine_nested(
datasets, concat_dim=["dim1", "dim2"], combine_attrs="identical"
)
for combine_attrs in expected_dict:
result = combine_nested(
datasets, concat_dim=["dim1", "dim2"], combine_attrs=combine_attrs
)
assert_identical(result, expected_dict[combine_attrs])
def test_combine_nested_missing_data_new_dim(self):
# Your data includes "time" and "station" dimensions, and each year's
# data has a different set of stations.
datasets = [
Dataset({"a": ("x", [2, 3]), "x": [1, 2]}),
Dataset({"a": ("x", [1, 2]), "x": [0, 1]}),
]
expected = Dataset(
{"a": (("t", "x"), [[np.nan, 2, 3], [1, 2, np.nan]])}, {"x": [0, 1, 2]}
)
actual = combine_nested(datasets, concat_dim="t")
assert_identical(expected, actual)
def test_invalid_hypercube_input(self):
ds = create_test_data
datasets = [[ds(0), ds(1), ds(2)], [ds(3), ds(4)]]
with raises_regex(ValueError, "sub-lists do not have consistent lengths"):
combine_nested(datasets, concat_dim=["dim1", "dim2"])
datasets = [[ds(0), ds(1)], [[ds(3), ds(4)]]]
with raises_regex(ValueError, "sub-lists do not have consistent depths"):
combine_nested(datasets, concat_dim=["dim1", "dim2"])
datasets = [[ds(0), ds(1)], [ds(3), ds(4)]]
with raises_regex(ValueError, "concat_dims has length"):
combine_nested(datasets, concat_dim=["dim1"])
def test_merge_one_dim_concat_another(self):
objs = [
[Dataset({"foo": ("x", [0, 1])}), Dataset({"bar": ("x", [10, 20])})],
[Dataset({"foo": ("x", [2, 3])}), Dataset({"bar": ("x", [30, 40])})],
]
expected = Dataset({"foo": ("x", [0, 1, 2, 3]), "bar": ("x", [10, 20, 30, 40])})
actual = combine_nested(objs, concat_dim=["x", None], compat="equals")
assert_identical(expected, actual)
# Proving it works symmetrically
objs = [
[Dataset({"foo": ("x", [0, 1])}), Dataset({"foo": ("x", [2, 3])})],
[Dataset({"bar": ("x", [10, 20])}), Dataset({"bar": ("x", [30, 40])})],
]
actual = combine_nested(objs, concat_dim=[None, "x"], compat="equals")
assert_identical(expected, actual)
def test_combine_concat_over_redundant_nesting(self):
objs = [[Dataset({"x": [0]}), Dataset({"x": [1]})]]
actual = combine_nested(objs, concat_dim=[None, "x"])
expected = Dataset({"x": [0, 1]})
assert_identical(expected, actual)
objs = [[Dataset({"x": [0]})], [Dataset({"x": [1]})]]
actual = combine_nested(objs, concat_dim=["x", None])
expected = Dataset({"x": [0, 1]})
assert_identical(expected, actual)
objs = [[Dataset({"x": [0]})]]
actual = combine_nested(objs, concat_dim=[None, None])
expected = Dataset({"x": [0]})
assert_identical(expected, actual)
@pytest.mark.parametrize("fill_value", [dtypes.NA, 2, 2.0, {"a": 2, "b": 1}])
def test_combine_nested_fill_value(self, fill_value):
datasets = [
Dataset({"a": ("x", [2, 3]), "b": ("x", [-2, 1]), "x": [1, 2]}),
Dataset({"a": ("x", [1, 2]), "b": ("x", [3, -1]), "x": [0, 1]}),
]
if fill_value == dtypes.NA:
# if we supply the default, we expect the missing value for a
# float array
fill_value_a = fill_value_b = np.nan
elif isinstance(fill_value, dict):
fill_value_a = fill_value["a"]
fill_value_b = fill_value["b"]
else:
fill_value_a = fill_value_b = fill_value
expected = Dataset(
{
"a": (("t", "x"), [[fill_value_a, 2, 3], [1, 2, fill_value_a]]),
"b": (("t", "x"), [[fill_value_b, -2, 1], [3, -1, fill_value_b]]),
},
{"x": [0, 1, 2]},
)
actual = combine_nested(datasets, concat_dim="t", fill_value=fill_value)
assert_identical(expected, actual)
class TestCombineAuto:
def test_combine_by_coords(self):
objs = [Dataset({"x": [0]}), Dataset({"x": [1]})]
actual = combine_by_coords(objs)
expected = Dataset({"x": [0, 1]})
assert_identical(expected, actual)
actual = combine_by_coords([actual])
assert_identical(expected, actual)
objs = [Dataset({"x": [0, 1]}), Dataset({"x": [2]})]
actual = combine_by_coords(objs)
expected = Dataset({"x": [0, 1, 2]})
assert_identical(expected, actual)
# ensure auto_combine handles non-sorted variables
objs = [
Dataset({"x": ("a", [0]), "y": ("a", [0]), "a": [0]}),
Dataset({"x": ("a", [1]), "y": ("a", [1]), "a": [1]}),
]
actual = combine_by_coords(objs)
expected = Dataset({"x": ("a", [0, 1]), "y": ("a", [0, 1]), "a": [0, 1]})
assert_identical(expected, actual)
objs = [Dataset({"x": [0], "y": [0]}), Dataset({"y": [1], "x": [1]})]
actual = combine_by_coords(objs)
expected = Dataset({"x": [0, 1], "y": [0, 1]})
assert_equal(actual, expected)
objs = [Dataset({"x": 0}), Dataset({"x": 1})]
with raises_regex(ValueError, "Could not find any dimension coordinates"):
combine_by_coords(objs)
objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [0]})]
with raises_regex(ValueError, "Every dimension needs a coordinate"):
combine_by_coords(objs)
def test_empty_input(self):
assert_identical(Dataset(), combine_by_coords([]))
@pytest.mark.parametrize(
"join, expected",
[
("outer", Dataset({"x": [0, 1], "y": [0, 1]})),
("inner", Dataset({"x": [0, 1], "y": []})),
("left", Dataset({"x": [0, 1], "y": [0]})),
("right", Dataset({"x": [0, 1], "y": [1]})),
],
)
def test_combine_coords_join(self, join, expected):
objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1], "y": [1]})]
actual = combine_nested(objs, concat_dim="x", join=join)
assert_identical(expected, actual)
def test_combine_coords_join_exact(self):
objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1], "y": [1]})]
with raises_regex(ValueError, "indexes along dimension"):
combine_nested(objs, concat_dim="x", join="exact")
@pytest.mark.parametrize(
"combine_attrs, expected",
[
("drop", Dataset({"x": [0, 1], "y": [0, 1]}, attrs={})),
(
"no_conflicts",
Dataset({"x": [0, 1], "y": [0, 1]}, attrs={"a": 1, "b": 2}),
),
("override", Dataset({"x": [0, 1], "y": [0, 1]}, attrs={"a": 1})),
],
)
def test_combine_coords_combine_attrs(self, combine_attrs, expected):
objs = [
Dataset({"x": [0], "y": [0]}, attrs={"a": 1}),
Dataset({"x": [1], "y": [1]}, attrs={"a": 1, "b": 2}),
]
actual = combine_nested(
objs, concat_dim="x", join="outer", combine_attrs=combine_attrs
)
assert_identical(expected, actual)
if combine_attrs == "no_conflicts":
objs[1].attrs["a"] = 2
with raises_regex(ValueError, "combine_attrs='no_conflicts'"):
actual = combine_nested(
objs, concat_dim="x", join="outer", combine_attrs=combine_attrs
)
def test_combine_coords_combine_attrs_identical(self):
objs = [
Dataset({"x": [0], "y": [0]}, attrs={"a": 1}),
Dataset({"x": [1], "y": [1]}, attrs={"a": 1}),
]
expected = Dataset({"x": [0, 1], "y": [0, 1]}, attrs={"a": 1})
actual = combine_nested(
objs, concat_dim="x", join="outer", combine_attrs="identical"
)
assert_identical(expected, actual)
objs[1].attrs["b"] = 2
with raises_regex(ValueError, "combine_attrs='identical'"):
actual = combine_nested(
objs, concat_dim="x", join="outer", combine_attrs="identical"
)
def test_infer_order_from_coords(self):
data = create_test_data()
objs = [data.isel(dim2=slice(4, 9)), data.isel(dim2=slice(4))]
actual = combine_by_coords(objs)
expected = data
assert expected.broadcast_equals(actual)
def test_combine_leaving_bystander_dimensions(self):
# Check non-monotonic bystander dimension coord doesn't raise
# ValueError on combine (https://github.com/pydata/xarray/issues/3150)
ycoord = ["a", "c", "b"]
data = np.random.rand(7, 3)
ds1 = Dataset(
data_vars=dict(data=(["x", "y"], data[:3, :])),
coords=dict(x=[1, 2, 3], y=ycoord),
)
ds2 = Dataset(
data_vars=dict(data=(["x", "y"], data[3:, :])),
coords=dict(x=[4, 5, 6, 7], y=ycoord),
)
expected = Dataset(
data_vars=dict(data=(["x", "y"], data)),
coords=dict(x=[1, 2, 3, 4, 5, 6, 7], y=ycoord),
)
actual = combine_by_coords((ds1, ds2))
assert_identical(expected, actual)
def test_combine_by_coords_previously_failed(self):
# In the above scenario, one file is missing, containing the data for
# one year's data for one variable.
datasets = [
Dataset({"a": ("x", [0]), "x": [0]}),
Dataset({"b": ("x", [0]), "x": [0]}),
Dataset({"a": ("x", [1]), "x": [1]}),
]
expected = Dataset({"a": ("x", [0, 1]), "b": ("x", [0, np.nan])}, {"x": [0, 1]})
actual = combine_by_coords(datasets)
assert_identical(expected, actual)
def test_combine_by_coords_still_fails(self):
# concat can't handle new variables (yet):
# https://github.com/pydata/xarray/issues/508
datasets = [Dataset({"x": 0}, {"y": 0}), Dataset({"x": 1}, {"y": 1, "z": 1})]
with pytest.raises(ValueError):
combine_by_coords(datasets, "y")
def test_combine_by_coords_no_concat(self):
objs = [Dataset({"x": 0}), Dataset({"y": 1})]
actual = combine_by_coords(objs)
expected = Dataset({"x": 0, "y": 1})
assert_identical(expected, actual)
objs = [Dataset({"x": 0, "y": 1}), Dataset({"y": np.nan, "z": 2})]
actual = combine_by_coords(objs)
expected = Dataset({"x": 0, "y": 1, "z": 2})
assert_identical(expected, actual)
def test_check_for_impossible_ordering(self):
ds0 = Dataset({"x": [0, 1, 5]})
ds1 = Dataset({"x": [2, 3]})
with raises_regex(
ValueError, "does not have monotonic global indexes along dimension x"
):
combine_by_coords([ds1, ds0])
def test_combine_by_coords_incomplete_hypercube(self):
# test that this succeeds with default fill_value
x1 = Dataset({"a": (("y", "x"), [[1]])}, coords={"y": [0], "x": [0]})
x2 = Dataset({"a": (("y", "x"), [[1]])}, coords={"y": [1], "x": [0]})
x3 = Dataset({"a": (("y", "x"), [[1]])}, coords={"y": [0], "x": [1]})
actual = combine_by_coords([x1, x2, x3])
expected = Dataset(
{"a": (("y", "x"), [[1, 1], [1, np.nan]])},
coords={"y": [0, 1], "x": [0, 1]},
)
assert_identical(expected, actual)
# test that this fails if fill_value is None
with pytest.raises(ValueError):
combine_by_coords([x1, x2, x3], fill_value=None)
@requires_cftime
def test_combine_by_coords_distant_cftime_dates():
# Regression test for https://github.com/pydata/xarray/issues/3535
import cftime
time_1 = [cftime.DatetimeGregorian(4500, 12, 31)]
time_2 = [cftime.DatetimeGregorian(4600, 12, 31)]
time_3 = [cftime.DatetimeGregorian(5100, 12, 31)]
da_1 = DataArray([0], dims=["time"], coords=[time_1], name="a").to_dataset()
da_2 = DataArray([1], dims=["time"], coords=[time_2], name="a").to_dataset()
da_3 = DataArray([2], dims=["time"], coords=[time_3], name="a").to_dataset()
result = combine_by_coords([da_1, da_2, da_3])
expected_time = np.concatenate([time_1, time_2, time_3])
expected = DataArray(
[0, 1, 2], dims=["time"], coords=[expected_time], name="a"
).to_dataset()
assert_identical(result, expected)
@requires_cftime
def test_combine_by_coords_raises_for_differing_calendars():
# previously failed with uninformative StopIteration instead of TypeError
# https://github.com/pydata/xarray/issues/4495
import cftime
time_1 = [cftime.DatetimeGregorian(2000, 1, 1)]
time_2 = [cftime.DatetimeProlepticGregorian(2001, 1, 1)]
da_1 = DataArray([0], dims=["time"], coords=[time_1], name="a").to_dataset()
da_2 = DataArray([1], dims=["time"], coords=[time_2], name="a").to_dataset()
with raises_regex(TypeError, r"cannot compare .* \(different calendars\)"):
combine_by_coords([da_1, da_2])
|