File: test_concat.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (593 lines) | stat: -rw-r--r-- 22,913 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
from copy import deepcopy

import numpy as np
import pandas as pd
import pytest

from xarray import DataArray, Dataset, Variable, concat
from xarray.core import dtypes, merge

from . import (
    InaccessibleArray,
    assert_array_equal,
    assert_equal,
    assert_identical,
    raises_regex,
    requires_dask,
)
from .test_dataset import create_test_data


def test_concat_compat():
    ds1 = Dataset(
        {
            "has_x_y": (("y", "x"), [[1, 2]]),
            "has_x": ("x", [1, 2]),
            "no_x_y": ("z", [1, 2]),
        },
        coords={"x": [0, 1], "y": [0], "z": [-1, -2]},
    )
    ds2 = Dataset(
        {
            "has_x_y": (("y", "x"), [[3, 4]]),
            "has_x": ("x", [1, 2]),
            "no_x_y": (("q", "z"), [[1, 2]]),
        },
        coords={"x": [0, 1], "y": [1], "z": [-1, -2], "q": [0]},
    )

    result = concat([ds1, ds2], dim="y", data_vars="minimal", compat="broadcast_equals")
    assert_equal(ds2.no_x_y, result.no_x_y.transpose())

    for var in ["has_x", "no_x_y"]:
        assert "y" not in result[var].dims and "y" not in result[var].coords
    with raises_regex(ValueError, "coordinates in some datasets but not others"):
        concat([ds1, ds2], dim="q")
    with raises_regex(ValueError, "'q' is not present in all datasets"):
        concat([ds2, ds1], dim="q")


class TestConcatDataset:
    @pytest.fixture
    def data(self):
        return create_test_data().drop_dims("dim3")

    def rectify_dim_order(self, data, dataset):
        # return a new dataset with all variable dimensions transposed into
        # the order in which they are found in `data`
        return Dataset(
            {k: v.transpose(*data[k].dims) for k, v in dataset.data_vars.items()},
            dataset.coords,
            attrs=dataset.attrs,
        )

    @pytest.mark.parametrize("coords", ["different", "minimal"])
    @pytest.mark.parametrize("dim", ["dim1", "dim2"])
    def test_concat_simple(self, data, dim, coords):
        datasets = [g for _, g in data.groupby(dim, squeeze=False)]
        assert_identical(data, concat(datasets, dim, coords=coords))

    def test_concat_merge_variables_present_in_some_datasets(self, data):
        # coordinates present in some datasets but not others
        ds1 = Dataset(data_vars={"a": ("y", [0.1])}, coords={"x": 0.1})
        ds2 = Dataset(data_vars={"a": ("y", [0.2])}, coords={"z": 0.2})
        actual = concat([ds1, ds2], dim="y", coords="minimal")
        expected = Dataset({"a": ("y", [0.1, 0.2])}, coords={"x": 0.1, "z": 0.2})
        assert_identical(expected, actual)

        # data variables present in some datasets but not others
        split_data = [data.isel(dim1=slice(3)), data.isel(dim1=slice(3, None))]
        data0, data1 = deepcopy(split_data)
        data1["foo"] = ("bar", np.random.randn(10))
        actual = concat([data0, data1], "dim1")
        expected = data.copy().assign(foo=data1.foo)
        assert_identical(expected, actual)

    def test_concat_2(self, data):
        dim = "dim2"
        datasets = [g for _, g in data.groupby(dim, squeeze=True)]
        concat_over = [k for k, v in data.coords.items() if dim in v.dims and k != dim]
        actual = concat(datasets, data[dim], coords=concat_over)
        assert_identical(data, self.rectify_dim_order(data, actual))

    @pytest.mark.parametrize("coords", ["different", "minimal", "all"])
    @pytest.mark.parametrize("dim", ["dim1", "dim2"])
    def test_concat_coords_kwarg(self, data, dim, coords):
        data = data.copy(deep=True)
        # make sure the coords argument behaves as expected
        data.coords["extra"] = ("dim4", np.arange(3))
        datasets = [g for _, g in data.groupby(dim, squeeze=True)]

        actual = concat(datasets, data[dim], coords=coords)
        if coords == "all":
            expected = np.array([data["extra"].values for _ in range(data.dims[dim])])
            assert_array_equal(actual["extra"].values, expected)

        else:
            assert_equal(data["extra"], actual["extra"])

    def test_concat(self, data):
        split_data = [
            data.isel(dim1=slice(3)),
            data.isel(dim1=3),
            data.isel(dim1=slice(4, None)),
        ]
        assert_identical(data, concat(split_data, "dim1"))

    def test_concat_dim_precedence(self, data):
        # verify that the dim argument takes precedence over
        # concatenating dataset variables of the same name
        dim = (2 * data["dim1"]).rename("dim1")
        datasets = [g for _, g in data.groupby("dim1", squeeze=False)]
        expected = data.copy()
        expected["dim1"] = dim
        assert_identical(expected, concat(datasets, dim))

    def test_concat_data_vars(self):
        data = Dataset({"foo": ("x", np.random.randn(10))})
        objs = [data.isel(x=slice(5)), data.isel(x=slice(5, None))]
        for data_vars in ["minimal", "different", "all", [], ["foo"]]:
            actual = concat(objs, dim="x", data_vars=data_vars)
            assert_identical(data, actual)

    def test_concat_coords(self):
        data = Dataset({"foo": ("x", np.random.randn(10))})
        expected = data.assign_coords(c=("x", [0] * 5 + [1] * 5))
        objs = [
            data.isel(x=slice(5)).assign_coords(c=0),
            data.isel(x=slice(5, None)).assign_coords(c=1),
        ]
        for coords in ["different", "all", ["c"]]:
            actual = concat(objs, dim="x", coords=coords)
            assert_identical(expected, actual)
        for coords in ["minimal", []]:
            with raises_regex(merge.MergeError, "conflicting values"):
                concat(objs, dim="x", coords=coords)

    def test_concat_constant_index(self):
        # GH425
        ds1 = Dataset({"foo": 1.5}, {"y": 1})
        ds2 = Dataset({"foo": 2.5}, {"y": 1})
        expected = Dataset({"foo": ("y", [1.5, 2.5]), "y": [1, 1]})
        for mode in ["different", "all", ["foo"]]:
            actual = concat([ds1, ds2], "y", data_vars=mode)
            assert_identical(expected, actual)
        with raises_regex(merge.MergeError, "conflicting values"):
            # previously dim="y", and raised error which makes no sense.
            # "foo" has dimension "y" so minimal should concatenate it?
            concat([ds1, ds2], "new_dim", data_vars="minimal")

    def test_concat_size0(self):
        data = create_test_data()
        split_data = [data.isel(dim1=slice(0, 0)), data]
        actual = concat(split_data, "dim1")
        assert_identical(data, actual)

        actual = concat(split_data[::-1], "dim1")
        assert_identical(data, actual)

    def test_concat_autoalign(self):
        ds1 = Dataset({"foo": DataArray([1, 2], coords=[("x", [1, 2])])})
        ds2 = Dataset({"foo": DataArray([1, 2], coords=[("x", [1, 3])])})
        actual = concat([ds1, ds2], "y")
        expected = Dataset(
            {
                "foo": DataArray(
                    [[1, 2, np.nan], [1, np.nan, 2]],
                    dims=["y", "x"],
                    coords={"x": [1, 2, 3]},
                )
            }
        )
        assert_identical(expected, actual)

    def test_concat_errors(self):
        data = create_test_data()
        split_data = [data.isel(dim1=slice(3)), data.isel(dim1=slice(3, None))]

        with raises_regex(ValueError, "must supply at least one"):
            concat([], "dim1")

        with raises_regex(ValueError, "Cannot specify both .*='different'"):
            concat(
                [data, data], dim="concat_dim", data_vars="different", compat="override"
            )

        with raises_regex(ValueError, "must supply at least one"):
            concat([], "dim1")

        with raises_regex(ValueError, "are not coordinates"):
            concat([data, data], "new_dim", coords=["not_found"])

        with raises_regex(ValueError, "global attributes not"):
            data0, data1 = deepcopy(split_data)
            data1.attrs["foo"] = "bar"
            concat([data0, data1], "dim1", compat="identical")
        assert_identical(data, concat([data0, data1], "dim1", compat="equals"))

        with raises_regex(ValueError, "compat.* invalid"):
            concat(split_data, "dim1", compat="foobar")

        with raises_regex(ValueError, "unexpected value for"):
            concat([data, data], "new_dim", coords="foobar")

        with raises_regex(ValueError, "coordinate in some datasets but not others"):
            concat([Dataset({"x": 0}), Dataset({"x": [1]})], dim="z")

        with raises_regex(ValueError, "coordinate in some datasets but not others"):
            concat([Dataset({"x": 0}), Dataset({}, {"x": 1})], dim="z")

    def test_concat_join_kwarg(self):
        ds1 = Dataset({"a": (("x", "y"), [[0]])}, coords={"x": [0], "y": [0]})
        ds2 = Dataset({"a": (("x", "y"), [[0]])}, coords={"x": [1], "y": [0.0001]})

        expected = {}
        expected["outer"] = Dataset(
            {"a": (("x", "y"), [[0, np.nan], [np.nan, 0]])},
            {"x": [0, 1], "y": [0, 0.0001]},
        )
        expected["inner"] = Dataset(
            {"a": (("x", "y"), [[], []])}, {"x": [0, 1], "y": []}
        )
        expected["left"] = Dataset(
            {"a": (("x", "y"), np.array([0, np.nan], ndmin=2).T)},
            coords={"x": [0, 1], "y": [0]},
        )
        expected["right"] = Dataset(
            {"a": (("x", "y"), np.array([np.nan, 0], ndmin=2).T)},
            coords={"x": [0, 1], "y": [0.0001]},
        )
        expected["override"] = Dataset(
            {"a": (("x", "y"), np.array([0, 0], ndmin=2).T)},
            coords={"x": [0, 1], "y": [0]},
        )

        with raises_regex(ValueError, "indexes along dimension 'y'"):
            actual = concat([ds1, ds2], join="exact", dim="x")

        for join in expected:
            actual = concat([ds1, ds2], join=join, dim="x")
            assert_equal(actual, expected[join])

        # regression test for #3681
        actual = concat(
            [ds1.drop_vars("x"), ds2.drop_vars("x")], join="override", dim="y"
        )
        expected = Dataset(
            {"a": (("x", "y"), np.array([0, 0], ndmin=2))}, coords={"y": [0, 0.0001]}
        )
        assert_identical(actual, expected)

    def test_concat_combine_attrs_kwarg(self):
        ds1 = Dataset({"a": ("x", [0])}, coords={"x": [0]}, attrs={"b": 42})
        ds2 = Dataset({"a": ("x", [0])}, coords={"x": [1]}, attrs={"b": 42, "c": 43})

        expected = {}
        expected["drop"] = Dataset({"a": ("x", [0, 0])}, {"x": [0, 1]})
        expected["no_conflicts"] = Dataset(
            {"a": ("x", [0, 0])}, {"x": [0, 1]}, {"b": 42, "c": 43}
        )
        expected["override"] = Dataset({"a": ("x", [0, 0])}, {"x": [0, 1]}, {"b": 42})

        with raises_regex(ValueError, "combine_attrs='identical'"):
            actual = concat([ds1, ds2], dim="x", combine_attrs="identical")
        with raises_regex(ValueError, "combine_attrs='no_conflicts'"):
            ds3 = ds2.copy(deep=True)
            ds3.attrs["b"] = 44
            actual = concat([ds1, ds3], dim="x", combine_attrs="no_conflicts")

        for combine_attrs in expected:
            actual = concat([ds1, ds2], dim="x", combine_attrs=combine_attrs)
            assert_identical(actual, expected[combine_attrs])

    def test_concat_promote_shape(self):
        # mixed dims within variables
        objs = [Dataset({}, {"x": 0}), Dataset({"x": [1]})]
        actual = concat(objs, "x")
        expected = Dataset({"x": [0, 1]})
        assert_identical(actual, expected)

        objs = [Dataset({"x": [0]}), Dataset({}, {"x": 1})]
        actual = concat(objs, "x")
        assert_identical(actual, expected)

        # mixed dims between variables
        objs = [Dataset({"x": [2], "y": 3}), Dataset({"x": [4], "y": 5})]
        actual = concat(objs, "x")
        expected = Dataset({"x": [2, 4], "y": ("x", [3, 5])})
        assert_identical(actual, expected)

        # mixed dims in coord variable
        objs = [Dataset({"x": [0]}, {"y": -1}), Dataset({"x": [1]}, {"y": ("x", [-2])})]
        actual = concat(objs, "x")
        expected = Dataset({"x": [0, 1]}, {"y": ("x", [-1, -2])})
        assert_identical(actual, expected)

        # scalars with mixed lengths along concat dim -- values should repeat
        objs = [Dataset({"x": [0]}, {"y": -1}), Dataset({"x": [1, 2]}, {"y": -2})]
        actual = concat(objs, "x")
        expected = Dataset({"x": [0, 1, 2]}, {"y": ("x", [-1, -2, -2])})
        assert_identical(actual, expected)

        # broadcast 1d x 1d -> 2d
        objs = [
            Dataset({"z": ("x", [-1])}, {"x": [0], "y": [0]}),
            Dataset({"z": ("y", [1])}, {"x": [1], "y": [0]}),
        ]
        actual = concat(objs, "x")
        expected = Dataset({"z": (("x", "y"), [[-1], [1]])}, {"x": [0, 1], "y": [0]})
        assert_identical(actual, expected)

    def test_concat_do_not_promote(self):
        # GH438
        objs = [
            Dataset({"y": ("t", [1])}, {"x": 1, "t": [0]}),
            Dataset({"y": ("t", [2])}, {"x": 1, "t": [0]}),
        ]
        expected = Dataset({"y": ("t", [1, 2])}, {"x": 1, "t": [0, 0]})
        actual = concat(objs, "t")
        assert_identical(expected, actual)

        objs = [
            Dataset({"y": ("t", [1])}, {"x": 1, "t": [0]}),
            Dataset({"y": ("t", [2])}, {"x": 2, "t": [0]}),
        ]
        with pytest.raises(ValueError):
            concat(objs, "t", coords="minimal")

    def test_concat_dim_is_variable(self):
        objs = [Dataset({"x": 0}), Dataset({"x": 1})]
        coord = Variable("y", [3, 4])
        expected = Dataset({"x": ("y", [0, 1]), "y": [3, 4]})
        actual = concat(objs, coord)
        assert_identical(actual, expected)

    def test_concat_multiindex(self):
        x = pd.MultiIndex.from_product([[1, 2, 3], ["a", "b"]])
        expected = Dataset({"x": x})
        actual = concat(
            [expected.isel(x=slice(2)), expected.isel(x=slice(2, None))], "x"
        )
        assert expected.equals(actual)
        assert isinstance(actual.x.to_index(), pd.MultiIndex)

    @pytest.mark.parametrize("fill_value", [dtypes.NA, 2, 2.0, {"a": 2, "b": 1}])
    def test_concat_fill_value(self, fill_value):
        datasets = [
            Dataset({"a": ("x", [2, 3]), "b": ("x", [-2, 1]), "x": [1, 2]}),
            Dataset({"a": ("x", [1, 2]), "b": ("x", [3, -1]), "x": [0, 1]}),
        ]
        if fill_value == dtypes.NA:
            # if we supply the default, we expect the missing value for a
            # float array
            fill_value_a = fill_value_b = np.nan
        elif isinstance(fill_value, dict):
            fill_value_a = fill_value["a"]
            fill_value_b = fill_value["b"]
        else:
            fill_value_a = fill_value_b = fill_value
        expected = Dataset(
            {
                "a": (("t", "x"), [[fill_value_a, 2, 3], [1, 2, fill_value_a]]),
                "b": (("t", "x"), [[fill_value_b, -2, 1], [3, -1, fill_value_b]]),
            },
            {"x": [0, 1, 2]},
        )
        actual = concat(datasets, dim="t", fill_value=fill_value)
        assert_identical(actual, expected)


class TestConcatDataArray:
    def test_concat(self):
        ds = Dataset(
            {
                "foo": (["x", "y"], np.random.random((2, 3))),
                "bar": (["x", "y"], np.random.random((2, 3))),
            },
            {"x": [0, 1]},
        )
        foo = ds["foo"]
        bar = ds["bar"]

        # from dataset array:
        expected = DataArray(
            np.array([foo.values, bar.values]),
            dims=["w", "x", "y"],
            coords={"x": [0, 1]},
        )
        actual = concat([foo, bar], "w")
        assert_equal(expected, actual)
        # from iteration:
        grouped = [g for _, g in foo.groupby("x")]
        stacked = concat(grouped, ds["x"])
        assert_identical(foo, stacked)
        # with an index as the 'dim' argument
        stacked = concat(grouped, ds.indexes["x"])
        assert_identical(foo, stacked)

        actual = concat([foo[0], foo[1]], pd.Index([0, 1])).reset_coords(drop=True)
        expected = foo[:2].rename({"x": "concat_dim"})
        assert_identical(expected, actual)

        actual = concat([foo[0], foo[1]], [0, 1]).reset_coords(drop=True)
        expected = foo[:2].rename({"x": "concat_dim"})
        assert_identical(expected, actual)

        with raises_regex(ValueError, "not identical"):
            concat([foo, bar], dim="w", compat="identical")

        with raises_regex(ValueError, "not a valid argument"):
            concat([foo, bar], dim="w", data_vars="minimal")

    def test_concat_encoding(self):
        # Regression test for GH1297
        ds = Dataset(
            {
                "foo": (["x", "y"], np.random.random((2, 3))),
                "bar": (["x", "y"], np.random.random((2, 3))),
            },
            {"x": [0, 1]},
        )
        foo = ds["foo"]
        foo.encoding = {"complevel": 5}
        ds.encoding = {"unlimited_dims": "x"}
        assert concat([foo, foo], dim="x").encoding == foo.encoding
        assert concat([ds, ds], dim="x").encoding == ds.encoding

    @requires_dask
    def test_concat_lazy(self):
        import dask.array as da

        arrays = [
            DataArray(
                da.from_array(InaccessibleArray(np.zeros((3, 3))), 3), dims=["x", "y"]
            )
            for _ in range(2)
        ]
        # should not raise
        combined = concat(arrays, dim="z")
        assert combined.shape == (2, 3, 3)
        assert combined.dims == ("z", "x", "y")

    @pytest.mark.parametrize("fill_value", [dtypes.NA, 2, 2.0])
    def test_concat_fill_value(self, fill_value):
        foo = DataArray([1, 2], coords=[("x", [1, 2])])
        bar = DataArray([1, 2], coords=[("x", [1, 3])])
        if fill_value == dtypes.NA:
            # if we supply the default, we expect the missing value for a
            # float array
            fill_value = np.nan
        expected = DataArray(
            [[1, 2, fill_value], [1, fill_value, 2]],
            dims=["y", "x"],
            coords={"x": [1, 2, 3]},
        )
        actual = concat((foo, bar), dim="y", fill_value=fill_value)
        assert_identical(actual, expected)

    def test_concat_join_kwarg(self):
        ds1 = Dataset(
            {"a": (("x", "y"), [[0]])}, coords={"x": [0], "y": [0]}
        ).to_array()
        ds2 = Dataset(
            {"a": (("x", "y"), [[0]])}, coords={"x": [1], "y": [0.0001]}
        ).to_array()

        expected = {}
        expected["outer"] = Dataset(
            {"a": (("x", "y"), [[0, np.nan], [np.nan, 0]])},
            {"x": [0, 1], "y": [0, 0.0001]},
        )
        expected["inner"] = Dataset(
            {"a": (("x", "y"), [[], []])}, {"x": [0, 1], "y": []}
        )
        expected["left"] = Dataset(
            {"a": (("x", "y"), np.array([0, np.nan], ndmin=2).T)},
            coords={"x": [0, 1], "y": [0]},
        )
        expected["right"] = Dataset(
            {"a": (("x", "y"), np.array([np.nan, 0], ndmin=2).T)},
            coords={"x": [0, 1], "y": [0.0001]},
        )
        expected["override"] = Dataset(
            {"a": (("x", "y"), np.array([0, 0], ndmin=2).T)},
            coords={"x": [0, 1], "y": [0]},
        )

        with raises_regex(ValueError, "indexes along dimension 'y'"):
            actual = concat([ds1, ds2], join="exact", dim="x")

        for join in expected:
            actual = concat([ds1, ds2], join=join, dim="x")
            assert_equal(actual, expected[join].to_array())

    def test_concat_combine_attrs_kwarg(self):
        da1 = DataArray([0], coords=[("x", [0])], attrs={"b": 42})
        da2 = DataArray([0], coords=[("x", [1])], attrs={"b": 42, "c": 43})

        expected = {}
        expected["drop"] = DataArray([0, 0], coords=[("x", [0, 1])])
        expected["no_conflicts"] = DataArray(
            [0, 0], coords=[("x", [0, 1])], attrs={"b": 42, "c": 43}
        )
        expected["override"] = DataArray(
            [0, 0], coords=[("x", [0, 1])], attrs={"b": 42}
        )

        with raises_regex(ValueError, "combine_attrs='identical'"):
            actual = concat([da1, da2], dim="x", combine_attrs="identical")
        with raises_regex(ValueError, "combine_attrs='no_conflicts'"):
            da3 = da2.copy(deep=True)
            da3.attrs["b"] = 44
            actual = concat([da1, da3], dim="x", combine_attrs="no_conflicts")

        for combine_attrs in expected:
            actual = concat([da1, da2], dim="x", combine_attrs=combine_attrs)
            assert_identical(actual, expected[combine_attrs])


@pytest.mark.parametrize("attr1", ({"a": {"meta": [10, 20, 30]}}, {"a": [1, 2, 3]}, {}))
@pytest.mark.parametrize("attr2", ({"a": [1, 2, 3]}, {}))
def test_concat_attrs_first_variable(attr1, attr2):

    arrs = [
        DataArray([[1], [2]], dims=["x", "y"], attrs=attr1),
        DataArray([[3], [4]], dims=["x", "y"], attrs=attr2),
    ]

    concat_attrs = concat(arrs, "y").attrs
    assert concat_attrs == attr1


def test_concat_merge_single_non_dim_coord():
    da1 = DataArray([1, 2, 3], dims="x", coords={"x": [1, 2, 3], "y": 1})
    da2 = DataArray([4, 5, 6], dims="x", coords={"x": [4, 5, 6]})

    expected = DataArray(range(1, 7), dims="x", coords={"x": range(1, 7), "y": 1})

    for coords in ["different", "minimal"]:
        actual = concat([da1, da2], "x", coords=coords)
        assert_identical(actual, expected)

    with raises_regex(ValueError, "'y' is not present in all datasets."):
        concat([da1, da2], dim="x", coords="all")

    da1 = DataArray([1, 2, 3], dims="x", coords={"x": [1, 2, 3], "y": 1})
    da2 = DataArray([4, 5, 6], dims="x", coords={"x": [4, 5, 6]})
    da3 = DataArray([7, 8, 9], dims="x", coords={"x": [7, 8, 9], "y": 1})
    for coords in ["different", "all"]:
        with raises_regex(ValueError, "'y' not present in all datasets"):
            concat([da1, da2, da3], dim="x")


def test_concat_preserve_coordinate_order():
    x = np.arange(0, 5)
    y = np.arange(0, 10)
    time = np.arange(0, 4)
    data = np.zeros((4, 10, 5), dtype=bool)

    ds1 = Dataset(
        {"data": (["time", "y", "x"], data[0:2])},
        coords={"time": time[0:2], "y": y, "x": x},
    )
    ds2 = Dataset(
        {"data": (["time", "y", "x"], data[2:4])},
        coords={"time": time[2:4], "y": y, "x": x},
    )

    expected = Dataset(
        {"data": (["time", "y", "x"], data)},
        coords={"time": time, "y": y, "x": x},
    )

    actual = concat([ds1, ds2], dim="time")

    # check dimension order
    for act, exp in zip(actual.dims, expected.dims):
        assert act == exp
        assert actual.dims[act] == expected.dims[exp]

    # check coordinate order
    for act, exp in zip(actual.coords, expected.coords):
        assert act == exp
        assert_identical(actual.coords[act], expected.coords[exp])