1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
import contextlib
import warnings
import numpy as np
import pandas as pd
import pytest
from xarray import (
Dataset,
SerializationWarning,
Variable,
coding,
conventions,
open_dataset,
)
from xarray.backends.common import WritableCFDataStore
from xarray.backends.memory import InMemoryDataStore
from xarray.conventions import decode_cf
from xarray.testing import assert_identical
from . import (
assert_array_equal,
raises_regex,
requires_cftime,
requires_dask,
requires_netCDF4,
)
from .test_backends import CFEncodedBase
class TestBoolTypeArray:
def test_booltype_array(self):
x = np.array([1, 0, 1, 1, 0], dtype="i1")
bx = conventions.BoolTypeArray(x)
assert bx.dtype == bool
assert_array_equal(bx, np.array([True, False, True, True, False], dtype=bool))
class TestNativeEndiannessArray:
def test(self):
x = np.arange(5, dtype=">i8")
expected = np.arange(5, dtype="int64")
a = conventions.NativeEndiannessArray(x)
assert a.dtype == expected.dtype
assert a.dtype == expected[:].dtype
assert_array_equal(a, expected)
def test_decode_cf_with_conflicting_fill_missing_value():
expected = Variable(["t"], [np.nan, np.nan, 2], {"units": "foobar"})
var = Variable(
["t"], np.arange(3), {"units": "foobar", "missing_value": 0, "_FillValue": 1}
)
with warnings.catch_warnings(record=True) as w:
actual = conventions.decode_cf_variable("t", var)
assert_identical(actual, expected)
assert "has multiple fill" in str(w[0].message)
expected = Variable(["t"], np.arange(10), {"units": "foobar"})
var = Variable(
["t"],
np.arange(10),
{"units": "foobar", "missing_value": np.nan, "_FillValue": np.nan},
)
actual = conventions.decode_cf_variable("t", var)
assert_identical(actual, expected)
var = Variable(
["t"],
np.arange(10),
{
"units": "foobar",
"missing_value": np.float32(np.nan),
"_FillValue": np.float32(np.nan),
},
)
actual = conventions.decode_cf_variable("t", var)
assert_identical(actual, expected)
@requires_cftime
class TestEncodeCFVariable:
def test_incompatible_attributes(self):
invalid_vars = [
Variable(
["t"], pd.date_range("2000-01-01", periods=3), {"units": "foobar"}
),
Variable(["t"], pd.to_timedelta(["1 day"]), {"units": "foobar"}),
Variable(["t"], [0, 1, 2], {"add_offset": 0}, {"add_offset": 2}),
Variable(["t"], [0, 1, 2], {"_FillValue": 0}, {"_FillValue": 2}),
]
for var in invalid_vars:
with pytest.raises(ValueError):
conventions.encode_cf_variable(var)
def test_missing_fillvalue(self):
v = Variable(["x"], np.array([np.nan, 1, 2, 3]))
v.encoding = {"dtype": "int16"}
with pytest.warns(Warning, match="floating point data as an integer"):
conventions.encode_cf_variable(v)
def test_multidimensional_coordinates(self):
# regression test for GH1763
# Set up test case with coordinates that have overlapping (but not
# identical) dimensions.
zeros1 = np.zeros((1, 5, 3))
zeros2 = np.zeros((1, 6, 3))
zeros3 = np.zeros((1, 5, 4))
orig = Dataset(
{
"lon1": (["x1", "y1"], zeros1.squeeze(0), {}),
"lon2": (["x2", "y1"], zeros2.squeeze(0), {}),
"lon3": (["x1", "y2"], zeros3.squeeze(0), {}),
"lat1": (["x1", "y1"], zeros1.squeeze(0), {}),
"lat2": (["x2", "y1"], zeros2.squeeze(0), {}),
"lat3": (["x1", "y2"], zeros3.squeeze(0), {}),
"foo1": (["time", "x1", "y1"], zeros1, {"coordinates": "lon1 lat1"}),
"foo2": (["time", "x2", "y1"], zeros2, {"coordinates": "lon2 lat2"}),
"foo3": (["time", "x1", "y2"], zeros3, {"coordinates": "lon3 lat3"}),
"time": ("time", [0.0], {"units": "hours since 2017-01-01"}),
}
)
orig = conventions.decode_cf(orig)
# Encode the coordinates, as they would be in a netCDF output file.
enc, attrs = conventions.encode_dataset_coordinates(orig)
# Make sure we have the right coordinates for each variable.
foo1_coords = enc["foo1"].attrs.get("coordinates", "")
foo2_coords = enc["foo2"].attrs.get("coordinates", "")
foo3_coords = enc["foo3"].attrs.get("coordinates", "")
assert set(foo1_coords.split()) == {"lat1", "lon1"}
assert set(foo2_coords.split()) == {"lat2", "lon2"}
assert set(foo3_coords.split()) == {"lat3", "lon3"}
# Should not have any global coordinates.
assert "coordinates" not in attrs
def test_do_not_overwrite_user_coordinates(self):
orig = Dataset(
coords={"x": [0, 1, 2], "y": ("x", [5, 6, 7]), "z": ("x", [8, 9, 10])},
data_vars={"a": ("x", [1, 2, 3]), "b": ("x", [3, 5, 6])},
)
orig["a"].encoding["coordinates"] = "y"
orig["b"].encoding["coordinates"] = "z"
enc, _ = conventions.encode_dataset_coordinates(orig)
assert enc["a"].attrs["coordinates"] == "y"
assert enc["b"].attrs["coordinates"] == "z"
orig["a"].attrs["coordinates"] = "foo"
with raises_regex(ValueError, "'coordinates' found in both attrs"):
conventions.encode_dataset_coordinates(orig)
@requires_dask
def test_string_object_warning(self):
original = Variable(("x",), np.array(["foo", "bar"], dtype=object)).chunk()
with pytest.warns(SerializationWarning, match="dask array with dtype=object"):
encoded = conventions.encode_cf_variable(original)
assert_identical(original, encoded)
@requires_cftime
class TestDecodeCF:
def test_dataset(self):
original = Dataset(
{
"t": ("t", [0, 1, 2], {"units": "days since 2000-01-01"}),
"foo": ("t", [0, 0, 0], {"coordinates": "y", "units": "bar"}),
"y": ("t", [5, 10, -999], {"_FillValue": -999}),
}
)
expected = Dataset(
{"foo": ("t", [0, 0, 0], {"units": "bar"})},
{
"t": pd.date_range("2000-01-01", periods=3),
"y": ("t", [5.0, 10.0, np.nan]),
},
)
actual = conventions.decode_cf(original)
assert_identical(expected, actual)
def test_invalid_coordinates(self):
# regression test for GH308
original = Dataset({"foo": ("t", [1, 2], {"coordinates": "invalid"})})
actual = conventions.decode_cf(original)
assert_identical(original, actual)
def test_decode_coordinates(self):
# regression test for GH610
original = Dataset(
{"foo": ("t", [1, 2], {"coordinates": "x"}), "x": ("t", [4, 5])}
)
actual = conventions.decode_cf(original)
assert actual.foo.encoding["coordinates"] == "x"
def test_0d_int32_encoding(self):
original = Variable((), np.int32(0), encoding={"dtype": "int64"})
expected = Variable((), np.int64(0))
actual = conventions.maybe_encode_nonstring_dtype(original)
assert_identical(expected, actual)
def test_decode_cf_with_multiple_missing_values(self):
original = Variable(["t"], [0, 1, 2], {"missing_value": np.array([0, 1])})
expected = Variable(["t"], [np.nan, np.nan, 2], {})
with warnings.catch_warnings(record=True) as w:
actual = conventions.decode_cf_variable("t", original)
assert_identical(expected, actual)
assert "has multiple fill" in str(w[0].message)
def test_decode_cf_with_drop_variables(self):
original = Dataset(
{
"t": ("t", [0, 1, 2], {"units": "days since 2000-01-01"}),
"x": ("x", [9, 8, 7], {"units": "km"}),
"foo": (
("t", "x"),
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
{"units": "bar"},
),
"y": ("t", [5, 10, -999], {"_FillValue": -999}),
}
)
expected = Dataset(
{
"t": pd.date_range("2000-01-01", periods=3),
"foo": (
("t", "x"),
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
{"units": "bar"},
),
"y": ("t", [5, 10, np.nan]),
}
)
actual = conventions.decode_cf(original, drop_variables=("x",))
actual2 = conventions.decode_cf(original, drop_variables="x")
assert_identical(expected, actual)
assert_identical(expected, actual2)
@pytest.mark.filterwarnings("ignore:Ambiguous reference date string")
def test_invalid_time_units_raises_eagerly(self):
ds = Dataset({"time": ("time", [0, 1], {"units": "foobar since 123"})})
with raises_regex(ValueError, "unable to decode time"):
decode_cf(ds)
@requires_cftime
def test_dataset_repr_with_netcdf4_datetimes(self):
# regression test for #347
attrs = {"units": "days since 0001-01-01", "calendar": "noleap"}
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "unable to decode time")
ds = decode_cf(Dataset({"time": ("time", [0, 1], attrs)}))
assert "(time) object" in repr(ds)
attrs = {"units": "days since 1900-01-01"}
ds = decode_cf(Dataset({"time": ("time", [0, 1], attrs)}))
assert "(time) datetime64[ns]" in repr(ds)
@requires_cftime
def test_decode_cf_datetime_transition_to_invalid(self):
# manually create dataset with not-decoded date
from datetime import datetime
ds = Dataset(coords={"time": [0, 266 * 365]})
units = "days since 2000-01-01 00:00:00"
ds.time.attrs = dict(units=units)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "unable to decode time")
ds_decoded = conventions.decode_cf(ds)
expected = [datetime(2000, 1, 1, 0, 0), datetime(2265, 10, 28, 0, 0)]
assert_array_equal(ds_decoded.time.values, expected)
@requires_dask
def test_decode_cf_with_dask(self):
import dask.array as da
original = Dataset(
{
"t": ("t", [0, 1, 2], {"units": "days since 2000-01-01"}),
"foo": ("t", [0, 0, 0], {"coordinates": "y", "units": "bar"}),
"bar": ("string2", [b"a", b"b"]),
"baz": (("x"), [b"abc"], {"_Encoding": "utf-8"}),
"y": ("t", [5, 10, -999], {"_FillValue": -999}),
}
).chunk()
decoded = conventions.decode_cf(original)
print(decoded)
assert all(
isinstance(var.data, da.Array)
for name, var in decoded.variables.items()
if name not in decoded.indexes
)
assert_identical(decoded, conventions.decode_cf(original).compute())
@requires_dask
def test_decode_dask_times(self):
original = Dataset.from_dict(
{
"coords": {},
"dims": {"time": 5},
"data_vars": {
"average_T1": {
"dims": ("time",),
"attrs": {"units": "days since 1958-01-01 00:00:00"},
"data": [87659.0, 88024.0, 88389.0, 88754.0, 89119.0],
}
},
}
)
assert_identical(
conventions.decode_cf(original.chunk()),
conventions.decode_cf(original).chunk(),
)
def test_decode_cf_time_kwargs(self):
ds = Dataset.from_dict(
{
"coords": {
"timedelta": {
"data": np.array([1, 2, 3], dtype="int64"),
"dims": "timedelta",
"attrs": {"units": "days"},
},
"time": {
"data": np.array([1, 2, 3], dtype="int64"),
"dims": "time",
"attrs": {"units": "days since 2000-01-01"},
},
},
"dims": {"time": 3, "timedelta": 3},
"data_vars": {
"a": {"dims": ("time", "timedelta"), "data": np.ones((3, 3))},
},
}
)
dsc = conventions.decode_cf(ds)
assert dsc.timedelta.dtype == np.dtype("m8[ns]")
assert dsc.time.dtype == np.dtype("M8[ns]")
dsc = conventions.decode_cf(ds, decode_times=False)
assert dsc.timedelta.dtype == np.dtype("int64")
assert dsc.time.dtype == np.dtype("int64")
dsc = conventions.decode_cf(ds, decode_times=True, decode_timedelta=False)
assert dsc.timedelta.dtype == np.dtype("int64")
assert dsc.time.dtype == np.dtype("M8[ns]")
dsc = conventions.decode_cf(ds, decode_times=False, decode_timedelta=True)
assert dsc.timedelta.dtype == np.dtype("m8[ns]")
assert dsc.time.dtype == np.dtype("int64")
class CFEncodedInMemoryStore(WritableCFDataStore, InMemoryDataStore):
def encode_variable(self, var):
"""encode one variable"""
coder = coding.strings.EncodedStringCoder(allows_unicode=True)
var = coder.encode(var)
return var
@requires_netCDF4
class TestCFEncodedDataStore(CFEncodedBase):
@contextlib.contextmanager
def create_store(self):
yield CFEncodedInMemoryStore()
@contextlib.contextmanager
def roundtrip(
self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
):
if save_kwargs is None:
save_kwargs = {}
if open_kwargs is None:
open_kwargs = {}
store = CFEncodedInMemoryStore()
data.dump_to_store(store, **save_kwargs)
yield open_dataset(store, **open_kwargs)
@pytest.mark.skip("cannot roundtrip coordinates yet for CFEncodedInMemoryStore")
def test_roundtrip_coordinates(self):
pass
def test_invalid_dataarray_names_raise(self):
# only relevant for on-disk file formats
pass
def test_encoding_kwarg(self):
# we haven't bothered to raise errors yet for unexpected encodings in
# this test dummy
pass
def test_encoding_kwarg_fixed_width_string(self):
# CFEncodedInMemoryStore doesn't support explicit string encodings.
pass
|