File: test_duck_array_ops.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (833 lines) | stat: -rw-r--r-- 29,208 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
import datetime as dt
import warnings
from textwrap import dedent

import numpy as np
import pandas as pd
import pytest
from numpy import array, nan

from xarray import DataArray, Dataset, cftime_range, concat
from xarray.core import dtypes, duck_array_ops
from xarray.core.duck_array_ops import (
    array_notnull_equiv,
    concatenate,
    count,
    first,
    gradient,
    last,
    least_squares,
    mean,
    np_timedelta64_to_float,
    pd_timedelta_to_float,
    py_timedelta_to_float,
    rolling_window,
    stack,
    timedelta_to_numeric,
    where,
)
from xarray.core.pycompat import dask_array_type
from xarray.testing import assert_allclose, assert_equal

from . import (
    arm_xfail,
    assert_array_equal,
    has_dask,
    has_scipy,
    raises_regex,
    requires_cftime,
    requires_dask,
)


class TestOps:
    @pytest.fixture(autouse=True)
    def setUp(self):
        self.x = array(
            [
                [[nan, nan, 2.0, nan], [nan, 5.0, 6.0, nan], [8.0, 9.0, 10.0, nan]],
                [
                    [nan, 13.0, 14.0, 15.0],
                    [nan, 17.0, 18.0, nan],
                    [nan, 21.0, nan, nan],
                ],
            ]
        )

    def test_first(self):
        expected_results = [
            array([[nan, 13, 2, 15], [nan, 5, 6, nan], [8, 9, 10, nan]]),
            array([[8, 5, 2, nan], [nan, 13, 14, 15]]),
            array([[2, 5, 8], [13, 17, 21]]),
        ]
        for axis, expected in zip([0, 1, 2, -3, -2, -1], 2 * expected_results):
            actual = first(self.x, axis)
            assert_array_equal(expected, actual)

        expected = self.x[0]
        actual = first(self.x, axis=0, skipna=False)
        assert_array_equal(expected, actual)

        expected = self.x[..., 0]
        actual = first(self.x, axis=-1, skipna=False)
        assert_array_equal(expected, actual)

        with raises_regex(IndexError, "out of bounds"):
            first(self.x, 3)

    def test_last(self):
        expected_results = [
            array([[nan, 13, 14, 15], [nan, 17, 18, nan], [8, 21, 10, nan]]),
            array([[8, 9, 10, nan], [nan, 21, 18, 15]]),
            array([[2, 6, 10], [15, 18, 21]]),
        ]
        for axis, expected in zip([0, 1, 2, -3, -2, -1], 2 * expected_results):
            actual = last(self.x, axis)
            assert_array_equal(expected, actual)

        expected = self.x[-1]
        actual = last(self.x, axis=0, skipna=False)
        assert_array_equal(expected, actual)

        expected = self.x[..., -1]
        actual = last(self.x, axis=-1, skipna=False)
        assert_array_equal(expected, actual)

        with raises_regex(IndexError, "out of bounds"):
            last(self.x, 3)

    def test_count(self):
        assert 12 == count(self.x)

        expected = array([[1, 2, 3], [3, 2, 1]])
        assert_array_equal(expected, count(self.x, axis=-1))

        assert 1 == count(np.datetime64("2000-01-01"))

    def test_where_type_promotion(self):
        result = where([True, False], [1, 2], ["a", "b"])
        assert_array_equal(result, np.array([1, "b"], dtype=object))

        result = where([True, False], np.array([1, 2], np.float32), np.nan)
        assert result.dtype == np.float32
        assert_array_equal(result, np.array([1, np.nan], dtype=np.float32))

    def test_stack_type_promotion(self):
        result = stack([1, "b"])
        assert_array_equal(result, np.array([1, "b"], dtype=object))

    def test_concatenate_type_promotion(self):
        result = concatenate([[1], ["b"]])
        assert_array_equal(result, np.array([1, "b"], dtype=object))

    @pytest.mark.filterwarnings("error")
    def test_all_nan_arrays(self):
        assert np.isnan(mean([np.nan, np.nan]))


def test_cumsum_1d():
    inputs = np.array([0, 1, 2, 3])
    expected = np.array([0, 1, 3, 6])
    actual = duck_array_ops.cumsum(inputs)
    assert_array_equal(expected, actual)

    actual = duck_array_ops.cumsum(inputs, axis=0)
    assert_array_equal(expected, actual)

    actual = duck_array_ops.cumsum(inputs, axis=-1)
    assert_array_equal(expected, actual)

    actual = duck_array_ops.cumsum(inputs, axis=(0,))
    assert_array_equal(expected, actual)

    actual = duck_array_ops.cumsum(inputs, axis=())
    assert_array_equal(inputs, actual)


def test_cumsum_2d():
    inputs = np.array([[1, 2], [3, 4]])

    expected = np.array([[1, 3], [4, 10]])
    actual = duck_array_ops.cumsum(inputs)
    assert_array_equal(expected, actual)

    actual = duck_array_ops.cumsum(inputs, axis=(0, 1))
    assert_array_equal(expected, actual)

    actual = duck_array_ops.cumsum(inputs, axis=())
    assert_array_equal(inputs, actual)


def test_cumprod_2d():
    inputs = np.array([[1, 2], [3, 4]])

    expected = np.array([[1, 2], [3, 2 * 3 * 4]])
    actual = duck_array_ops.cumprod(inputs)
    assert_array_equal(expected, actual)

    actual = duck_array_ops.cumprod(inputs, axis=(0, 1))
    assert_array_equal(expected, actual)

    actual = duck_array_ops.cumprod(inputs, axis=())
    assert_array_equal(inputs, actual)


class TestArrayNotNullEquiv:
    @pytest.mark.parametrize(
        "arr1, arr2",
        [
            (np.array([1, 2, 3]), np.array([1, 2, 3])),
            (np.array([1, 2, np.nan]), np.array([1, np.nan, 3])),
            (np.array([np.nan, 2, np.nan]), np.array([1, np.nan, np.nan])),
        ],
    )
    def test_equal(self, arr1, arr2):
        assert array_notnull_equiv(arr1, arr2)

    def test_some_not_equal(self):
        a = np.array([1, 2, 4])
        b = np.array([1, np.nan, 3])
        assert not array_notnull_equiv(a, b)

    def test_wrong_shape(self):
        a = np.array([[1, np.nan, np.nan, 4]])
        b = np.array([[1, 2], [np.nan, 4]])
        assert not array_notnull_equiv(a, b)

    @pytest.mark.parametrize(
        "val1, val2, val3, null",
        [
            (
                np.datetime64("2000"),
                np.datetime64("2001"),
                np.datetime64("2002"),
                np.datetime64("NaT"),
            ),
            (1.0, 2.0, 3.0, np.nan),
            ("foo", "bar", "baz", None),
            ("foo", "bar", "baz", np.nan),
        ],
    )
    def test_types(self, val1, val2, val3, null):
        dtype = object if isinstance(val1, str) else None
        arr1 = np.array([val1, null, val3, null], dtype=dtype)
        arr2 = np.array([val1, val2, null, null], dtype=dtype)
        assert array_notnull_equiv(arr1, arr2)


def construct_dataarray(dim_num, dtype, contains_nan, dask):
    # dimnum <= 3
    rng = np.random.RandomState(0)
    shapes = [16, 8, 4][:dim_num]
    dims = ("x", "y", "z")[:dim_num]

    if np.issubdtype(dtype, np.floating):
        array = rng.randn(*shapes).astype(dtype)
    elif np.issubdtype(dtype, np.integer):
        array = rng.randint(0, 10, size=shapes).astype(dtype)
    elif np.issubdtype(dtype, np.bool_):
        array = rng.randint(0, 1, size=shapes).astype(dtype)
    elif dtype == str:
        array = rng.choice(["a", "b", "c", "d"], size=shapes)
    else:
        raise ValueError

    if contains_nan:
        inds = rng.choice(range(array.size), int(array.size * 0.2))
        dtype, fill_value = dtypes.maybe_promote(array.dtype)
        array = array.astype(dtype)
        array.flat[inds] = fill_value

    da = DataArray(array, dims=dims, coords={"x": np.arange(16)}, name="da")

    if dask and has_dask:
        chunks = {d: 4 for d in dims}
        da = da.chunk(chunks)

    return da


def from_series_or_scalar(se):
    if isinstance(se, pd.Series):
        return DataArray.from_series(se)
    else:  # scalar case
        return DataArray(se)


def series_reduce(da, func, dim, **kwargs):
    """convert DataArray to pd.Series, apply pd.func, then convert back to
    a DataArray. Multiple dims cannot be specified."""
    if dim is None or da.ndim == 1:
        se = da.to_series()
        return from_series_or_scalar(getattr(se, func)(**kwargs))
    else:
        da1 = []
        dims = list(da.dims)
        dims.remove(dim)
        d = dims[0]
        for i in range(len(da[d])):
            da1.append(series_reduce(da.isel(**{d: i}), func, dim, **kwargs))

        if d in da.coords:
            return concat(da1, dim=da[d])
        return concat(da1, dim=d)


def assert_dask_array(da, dask):
    if dask and da.ndim > 0:
        assert isinstance(da.data, dask_array_type)


@arm_xfail
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
@pytest.mark.parametrize("dask", [False, True] if has_dask else [False])
def test_datetime_mean(dask):
    # Note: only testing numpy, as dask is broken upstream
    da = DataArray(
        np.array(["2010-01-01", "NaT", "2010-01-03", "NaT", "NaT"], dtype="M8"),
        dims=["time"],
    )
    if dask:
        # Trigger use case where a chunk is full of NaT
        da = da.chunk({"time": 3})

    expect = DataArray(np.array("2010-01-02", dtype="M8"))
    expect_nat = DataArray(np.array("NaT", dtype="M8"))

    actual = da.mean()
    if dask:
        assert actual.chunks is not None
    assert_equal(actual, expect)

    actual = da.mean(skipna=False)
    if dask:
        assert actual.chunks is not None
    assert_equal(actual, expect_nat)

    # tests for 1d array full of NaT
    assert_equal(da[[1]].mean(), expect_nat)
    assert_equal(da[[1]].mean(skipna=False), expect_nat)

    # tests for a 0d array
    assert_equal(da[0].mean(), da[0])
    assert_equal(da[0].mean(skipna=False), da[0])
    assert_equal(da[1].mean(), expect_nat)
    assert_equal(da[1].mean(skipna=False), expect_nat)


@requires_cftime
def test_cftime_datetime_mean():
    times = cftime_range("2000", periods=4)
    da = DataArray(times, dims=["time"])

    assert da.isel(time=0).mean() == da.isel(time=0)

    expected = DataArray(times.date_type(2000, 1, 2, 12))
    result = da.mean()
    assert_equal(result, expected)

    da_2d = DataArray(times.values.reshape(2, 2))
    result = da_2d.mean()
    assert_equal(result, expected)


@requires_cftime
def test_cftime_datetime_mean_long_time_period():
    import cftime

    times = np.array(
        [
            [
                cftime.DatetimeNoLeap(400, 12, 31, 0, 0, 0, 0),
                cftime.DatetimeNoLeap(520, 12, 31, 0, 0, 0, 0),
            ],
            [
                cftime.DatetimeNoLeap(520, 12, 31, 0, 0, 0, 0),
                cftime.DatetimeNoLeap(640, 12, 31, 0, 0, 0, 0),
            ],
            [
                cftime.DatetimeNoLeap(640, 12, 31, 0, 0, 0, 0),
                cftime.DatetimeNoLeap(760, 12, 31, 0, 0, 0, 0),
            ],
        ]
    )

    da = DataArray(times, dims=["time", "d2"])
    result = da.mean("d2")
    expected = DataArray(
        [
            cftime.DatetimeNoLeap(460, 12, 31, 0, 0, 0, 0),
            cftime.DatetimeNoLeap(580, 12, 31, 0, 0, 0, 0),
            cftime.DatetimeNoLeap(700, 12, 31, 0, 0, 0, 0),
        ],
        dims=["time"],
    )
    assert_equal(result, expected)


@requires_cftime
@requires_dask
def test_cftime_datetime_mean_dask_error():
    times = cftime_range("2000", periods=4)
    da = DataArray(times, dims=["time"]).chunk()
    with pytest.raises(NotImplementedError):
        da.mean()


@pytest.mark.parametrize("dim_num", [1, 2])
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["sum", "min", "max", "mean", "var"])
# TODO test cumsum, cumprod
@pytest.mark.parametrize("skipna", [False, True])
@pytest.mark.parametrize("aggdim", [None, "x"])
def test_reduce(dim_num, dtype, dask, func, skipna, aggdim):

    if aggdim == "y" and dim_num < 2:
        pytest.skip("dim not in this test")

    if dtype == np.bool_ and func == "mean":
        pytest.skip("numpy does not support this")

    if dask and not has_dask:
        pytest.skip("requires dask")

    if dask and skipna is False and dtype in [np.bool_]:
        pytest.skip("dask does not compute object-typed array")

    rtol = 1e-04 if dtype == np.float32 else 1e-05

    da = construct_dataarray(dim_num, dtype, contains_nan=True, dask=dask)
    axis = None if aggdim is None else da.get_axis_num(aggdim)

    # TODO: remove these after resolving
    # https://github.com/dask/dask/issues/3245
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "Mean of empty slice")
        warnings.filterwarnings("ignore", "All-NaN slice")
        warnings.filterwarnings("ignore", "invalid value encountered in")

        if da.dtype.kind == "O" and skipna:
            # Numpy < 1.13 does not handle object-type array.
            try:
                if skipna:
                    expected = getattr(np, f"nan{func}")(da.values, axis=axis)
                else:
                    expected = getattr(np, func)(da.values, axis=axis)

                actual = getattr(da, func)(skipna=skipna, dim=aggdim)
                assert_dask_array(actual, dask)
                np.testing.assert_allclose(
                    actual.values, np.array(expected), rtol=1.0e-4, equal_nan=True
                )
            except (TypeError, AttributeError, ZeroDivisionError):
                # TODO currently, numpy does not support some methods such as
                # nanmean for object dtype
                pass

        actual = getattr(da, func)(skipna=skipna, dim=aggdim)

        # for dask case, make sure the result is the same for numpy backend
        expected = getattr(da.compute(), func)(skipna=skipna, dim=aggdim)
        assert_allclose(actual, expected, rtol=rtol)

        # make sure the compatiblility with pandas' results.
        if func in ["var", "std"]:
            expected = series_reduce(da, func, skipna=skipna, dim=aggdim, ddof=0)
            assert_allclose(actual, expected, rtol=rtol)
            # also check ddof!=0 case
            actual = getattr(da, func)(skipna=skipna, dim=aggdim, ddof=5)
            if dask:
                assert isinstance(da.data, dask_array_type)
            expected = series_reduce(da, func, skipna=skipna, dim=aggdim, ddof=5)
            assert_allclose(actual, expected, rtol=rtol)
        else:
            expected = series_reduce(da, func, skipna=skipna, dim=aggdim)
            assert_allclose(actual, expected, rtol=rtol)

        # make sure the dtype argument
        if func not in ["max", "min"]:
            actual = getattr(da, func)(skipna=skipna, dim=aggdim, dtype=float)
            assert_dask_array(actual, dask)
            assert actual.dtype == float

        # without nan
        da = construct_dataarray(dim_num, dtype, contains_nan=False, dask=dask)
        actual = getattr(da, func)(skipna=skipna)
        if dask:
            assert isinstance(da.data, dask_array_type)
        expected = getattr(np, f"nan{func}")(da.values)
        if actual.dtype == object:
            assert actual.values == np.array(expected)
        else:
            assert np.allclose(actual.values, np.array(expected), rtol=rtol)


@pytest.mark.parametrize("dim_num", [1, 2])
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_, str])
@pytest.mark.parametrize("contains_nan", [True, False])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["min", "max"])
@pytest.mark.parametrize("skipna", [False, True])
@pytest.mark.parametrize("aggdim", ["x", "y"])
def test_argmin_max(dim_num, dtype, contains_nan, dask, func, skipna, aggdim):
    # pandas-dev/pandas#16830, we do not check consistency with pandas but
    # just make sure da[da.argmin()] == da.min()

    if aggdim == "y" and dim_num < 2:
        pytest.skip("dim not in this test")

    if dask and not has_dask:
        pytest.skip("requires dask")

    if contains_nan:
        if not skipna:
            pytest.skip("numpy's argmin (not nanargmin) does not handle object-dtype")
        if skipna and np.dtype(dtype).kind in "iufc":
            pytest.skip("numpy's nanargmin raises ValueError for all nan axis")
    da = construct_dataarray(dim_num, dtype, contains_nan=contains_nan, dask=dask)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "All-NaN slice")

        actual = da.isel(
            **{aggdim: getattr(da, "arg" + func)(dim=aggdim, skipna=skipna).compute()}
        )
        expected = getattr(da, func)(dim=aggdim, skipna=skipna)
        assert_allclose(
            actual.drop_vars(list(actual.coords)),
            expected.drop_vars(list(expected.coords)),
        )


def test_argmin_max_error():
    da = construct_dataarray(2, np.bool_, contains_nan=True, dask=False)
    da[0] = np.nan
    with pytest.raises(ValueError):
        da.argmin(dim="y")


@pytest.mark.parametrize(
    "array",
    [
        np.array([np.datetime64("2000-01-01"), np.datetime64("NaT")]),
        np.array([np.timedelta64(1, "h"), np.timedelta64("NaT")]),
        np.array([0.0, np.nan]),
        np.array([1j, np.nan]),
        np.array(["foo", np.nan], dtype=object),
    ],
)
def test_isnull(array):
    expected = np.array([False, True])
    actual = duck_array_ops.isnull(array)
    np.testing.assert_equal(expected, actual)


@requires_dask
def test_isnull_with_dask():
    da = construct_dataarray(2, np.float32, contains_nan=True, dask=True)
    assert isinstance(da.isnull().data, dask_array_type)
    assert_equal(da.isnull().load(), da.load().isnull())


@pytest.mark.skipif(not has_dask, reason="This is for dask.")
@pytest.mark.parametrize("axis", [0, -1])
@pytest.mark.parametrize("window", [3, 8, 11])
@pytest.mark.parametrize("center", [True, False])
def test_dask_rolling(axis, window, center):
    import dask.array as da

    x = np.array(np.random.randn(100, 40), dtype=float)
    dx = da.from_array(x, chunks=[(6, 30, 30, 20, 14), 8])

    expected = rolling_window(
        x, axis=axis, window=window, center=center, fill_value=np.nan
    )
    actual = rolling_window(
        dx, axis=axis, window=window, center=center, fill_value=np.nan
    )
    assert isinstance(actual, da.Array)
    assert_array_equal(actual, expected)
    assert actual.shape == expected.shape

    # we need to take care of window size if chunk size is small
    # window/2 should be smaller than the smallest chunk size.
    with pytest.raises(ValueError):
        rolling_window(dx, axis=axis, window=100, center=center, fill_value=np.nan)


@pytest.mark.skipif(not has_dask, reason="This is for dask.")
@pytest.mark.parametrize("axis", [0, -1, 1])
@pytest.mark.parametrize("edge_order", [1, 2])
def test_dask_gradient(axis, edge_order):
    import dask.array as da

    array = np.array(np.random.randn(100, 5, 40))
    x = np.exp(np.linspace(0, 1, array.shape[axis]))

    darray = da.from_array(array, chunks=[(6, 30, 30, 20, 14), 5, 8])
    expected = gradient(array, x, axis=axis, edge_order=edge_order)
    actual = gradient(darray, x, axis=axis, edge_order=edge_order)

    assert isinstance(actual, da.Array)
    assert_array_equal(actual, expected)


@pytest.mark.parametrize("dim_num", [1, 2])
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["sum", "prod"])
@pytest.mark.parametrize("aggdim", [None, "x"])
@pytest.mark.parametrize("contains_nan", [True, False])
@pytest.mark.parametrize("skipna", [True, False, None])
def test_min_count(dim_num, dtype, dask, func, aggdim, contains_nan, skipna):
    if dask and not has_dask:
        pytest.skip("requires dask")

    da = construct_dataarray(dim_num, dtype, contains_nan=contains_nan, dask=dask)
    min_count = 3

    actual = getattr(da, func)(dim=aggdim, skipna=skipna, min_count=min_count)
    expected = series_reduce(da, func, skipna=skipna, dim=aggdim, min_count=min_count)
    assert_allclose(actual, expected)
    assert_dask_array(actual, dask)


@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["sum", "prod"])
def test_min_count_nd(dtype, dask, func):
    if dask and not has_dask:
        pytest.skip("requires dask")

    min_count = 3
    dim_num = 3
    da = construct_dataarray(dim_num, dtype, contains_nan=True, dask=dask)
    actual = getattr(da, func)(dim=["x", "y", "z"], skipna=True, min_count=min_count)
    # Supplying all dims is equivalent to supplying `...` or `None`
    expected = getattr(da, func)(dim=..., skipna=True, min_count=min_count)

    assert_allclose(actual, expected)
    assert_dask_array(actual, dask)


@pytest.mark.parametrize("func", ["sum", "prod"])
def test_min_count_dataset(func):
    da = construct_dataarray(2, dtype=float, contains_nan=True, dask=False)
    ds = Dataset({"var1": da}, coords={"scalar": 0})
    actual = getattr(ds, func)(dim="x", skipna=True, min_count=3)["var1"]
    expected = getattr(ds["var1"], func)(dim="x", skipna=True, min_count=3)
    assert_allclose(actual, expected)


@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("skipna", [False, True])
@pytest.mark.parametrize("func", ["sum", "prod"])
def test_multiple_dims(dtype, dask, skipna, func):
    if dask and not has_dask:
        pytest.skip("requires dask")
    da = construct_dataarray(3, dtype, contains_nan=True, dask=dask)

    actual = getattr(da, func)(("x", "y"), skipna=skipna)
    expected = getattr(getattr(da, func)("x", skipna=skipna), func)("y", skipna=skipna)
    assert_allclose(actual, expected)


def test_docs():
    # with min_count
    actual = DataArray.sum.__doc__
    expected = dedent(
        """\
        Reduce this DataArray's data by applying `sum` along some dimension(s).

        Parameters
        ----------
        dim : str or sequence of str, optional
            Dimension(s) over which to apply `sum`.
        axis : int or sequence of int, optional
            Axis(es) over which to apply `sum`. Only one of the 'dim'
            and 'axis' arguments can be supplied. If neither are supplied, then
            `sum` is calculated over axes.
        skipna : bool, optional
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for float dtypes; other dtypes either do not
            have a sentinel missing value (int) or skipna=True has not been
            implemented (object, datetime64 or timedelta64).
        min_count : int, default: None
            The required number of valid values to perform the operation.
            If fewer than min_count non-NA values are present the result will
            be NA. New in version 0.10.8: Added with the default being None.
        keep_attrs : bool, optional
            If True, the attributes (`attrs`) will be copied from the original
            object to the new one.  If False (default), the new object will be
            returned without attributes.
        **kwargs : dict
            Additional keyword arguments passed on to the appropriate array
            function for calculating `sum` on this object's data.

        Returns
        -------
        reduced : DataArray
            New DataArray object with `sum` applied to its data and the
            indicated dimension(s) removed.
        """
    )
    assert actual == expected

    # without min_count
    actual = DataArray.std.__doc__
    expected = dedent(
        """\
        Reduce this DataArray's data by applying `std` along some dimension(s).

        Parameters
        ----------
        dim : str or sequence of str, optional
            Dimension(s) over which to apply `std`.
        axis : int or sequence of int, optional
            Axis(es) over which to apply `std`. Only one of the 'dim'
            and 'axis' arguments can be supplied. If neither are supplied, then
            `std` is calculated over axes.
        skipna : bool, optional
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for float dtypes; other dtypes either do not
            have a sentinel missing value (int) or skipna=True has not been
            implemented (object, datetime64 or timedelta64).
        keep_attrs : bool, optional
            If True, the attributes (`attrs`) will be copied from the original
            object to the new one.  If False (default), the new object will be
            returned without attributes.
        **kwargs : dict
            Additional keyword arguments passed on to the appropriate array
            function for calculating `std` on this object's data.

        Returns
        -------
        reduced : DataArray
            New DataArray object with `std` applied to its data and the
            indicated dimension(s) removed.
        """
    )
    assert actual == expected


def test_datetime_to_numeric_datetime64():
    times = pd.date_range("2000", periods=5, freq="7D").values
    result = duck_array_ops.datetime_to_numeric(times, datetime_unit="h")
    expected = 24 * np.arange(0, 35, 7)
    np.testing.assert_array_equal(result, expected)

    offset = times[1]
    result = duck_array_ops.datetime_to_numeric(times, offset=offset, datetime_unit="h")
    expected = 24 * np.arange(-7, 28, 7)
    np.testing.assert_array_equal(result, expected)

    dtype = np.float32
    result = duck_array_ops.datetime_to_numeric(times, datetime_unit="h", dtype=dtype)
    expected = 24 * np.arange(0, 35, 7).astype(dtype)
    np.testing.assert_array_equal(result, expected)


@requires_cftime
def test_datetime_to_numeric_cftime():
    times = cftime_range("2000", periods=5, freq="7D", calendar="standard").values
    result = duck_array_ops.datetime_to_numeric(times, datetime_unit="h", dtype=int)
    expected = 24 * np.arange(0, 35, 7)
    np.testing.assert_array_equal(result, expected)

    offset = times[1]
    result = duck_array_ops.datetime_to_numeric(
        times, offset=offset, datetime_unit="h", dtype=int
    )
    expected = 24 * np.arange(-7, 28, 7)
    np.testing.assert_array_equal(result, expected)

    dtype = np.float32
    result = duck_array_ops.datetime_to_numeric(times, datetime_unit="h", dtype=dtype)
    expected = 24 * np.arange(0, 35, 7).astype(dtype)
    np.testing.assert_array_equal(result, expected)


@requires_cftime
def test_datetime_to_numeric_potential_overflow():
    import cftime

    times = pd.date_range("2000", periods=5, freq="7D").values.astype("datetime64[us]")
    cftimes = cftime_range(
        "2000", periods=5, freq="7D", calendar="proleptic_gregorian"
    ).values

    offset = np.datetime64("0001-01-01")
    cfoffset = cftime.DatetimeProlepticGregorian(1, 1, 1)

    result = duck_array_ops.datetime_to_numeric(
        times, offset=offset, datetime_unit="D", dtype=int
    )
    cfresult = duck_array_ops.datetime_to_numeric(
        cftimes, offset=cfoffset, datetime_unit="D", dtype=int
    )

    expected = 730119 + np.arange(0, 35, 7)

    np.testing.assert_array_equal(result, expected)
    np.testing.assert_array_equal(cfresult, expected)


def test_py_timedelta_to_float():
    assert py_timedelta_to_float(dt.timedelta(days=1), "ns") == 86400 * 1e9
    assert py_timedelta_to_float(dt.timedelta(days=1e6), "ps") == 86400 * 1e18
    assert py_timedelta_to_float(dt.timedelta(days=1e6), "ns") == 86400 * 1e15
    assert py_timedelta_to_float(dt.timedelta(days=1e6), "us") == 86400 * 1e12
    assert py_timedelta_to_float(dt.timedelta(days=1e6), "ms") == 86400 * 1e9
    assert py_timedelta_to_float(dt.timedelta(days=1e6), "s") == 86400 * 1e6
    assert py_timedelta_to_float(dt.timedelta(days=1e6), "D") == 1e6


@pytest.mark.parametrize(
    "td, expected",
    ([np.timedelta64(1, "D"), 86400 * 1e9], [np.timedelta64(1, "ns"), 1.0]),
)
def test_np_timedelta64_to_float(td, expected):
    out = np_timedelta64_to_float(td, datetime_unit="ns")
    np.testing.assert_allclose(out, expected)
    assert isinstance(out, float)

    out = np_timedelta64_to_float(np.atleast_1d(td), datetime_unit="ns")
    np.testing.assert_allclose(out, expected)


@pytest.mark.parametrize(
    "td, expected", ([pd.Timedelta(1, "D"), 86400 * 1e9], [pd.Timedelta(1, "ns"), 1.0])
)
def test_pd_timedelta_to_float(td, expected):
    out = pd_timedelta_to_float(td, datetime_unit="ns")
    np.testing.assert_allclose(out, expected)
    assert isinstance(out, float)


@pytest.mark.parametrize(
    "td", [dt.timedelta(days=1), np.timedelta64(1, "D"), pd.Timedelta(1, "D"), "1 day"]
)
def test_timedelta_to_numeric(td):
    # Scalar input
    out = timedelta_to_numeric(td, "ns")
    np.testing.assert_allclose(out, 86400 * 1e9)
    assert isinstance(out, float)


@pytest.mark.parametrize("use_dask", [True, False])
@pytest.mark.parametrize("skipna", [True, False])
def test_least_squares(use_dask, skipna):
    if use_dask and (not has_dask or not has_scipy):
        pytest.skip("requires dask and scipy")
    lhs = np.array([[1, 2], [1, 2], [3, 2]])
    rhs = DataArray(np.array([3, 5, 7]), dims=("y",))

    if use_dask:
        rhs = rhs.chunk({"y": 1})

    coeffs, residuals = least_squares(lhs, rhs.data, skipna=skipna)

    np.testing.assert_allclose(coeffs, [1.5, 1.25])
    np.testing.assert_allclose(residuals, [2.0])