1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
|
import datetime as dt
import warnings
from textwrap import dedent
import numpy as np
import pandas as pd
import pytest
from numpy import array, nan
from xarray import DataArray, Dataset, cftime_range, concat
from xarray.core import dtypes, duck_array_ops
from xarray.core.duck_array_ops import (
array_notnull_equiv,
concatenate,
count,
first,
gradient,
last,
least_squares,
mean,
np_timedelta64_to_float,
pd_timedelta_to_float,
py_timedelta_to_float,
rolling_window,
stack,
timedelta_to_numeric,
where,
)
from xarray.core.pycompat import dask_array_type
from xarray.testing import assert_allclose, assert_equal
from . import (
arm_xfail,
assert_array_equal,
has_dask,
has_scipy,
raises_regex,
requires_cftime,
requires_dask,
)
class TestOps:
@pytest.fixture(autouse=True)
def setUp(self):
self.x = array(
[
[[nan, nan, 2.0, nan], [nan, 5.0, 6.0, nan], [8.0, 9.0, 10.0, nan]],
[
[nan, 13.0, 14.0, 15.0],
[nan, 17.0, 18.0, nan],
[nan, 21.0, nan, nan],
],
]
)
def test_first(self):
expected_results = [
array([[nan, 13, 2, 15], [nan, 5, 6, nan], [8, 9, 10, nan]]),
array([[8, 5, 2, nan], [nan, 13, 14, 15]]),
array([[2, 5, 8], [13, 17, 21]]),
]
for axis, expected in zip([0, 1, 2, -3, -2, -1], 2 * expected_results):
actual = first(self.x, axis)
assert_array_equal(expected, actual)
expected = self.x[0]
actual = first(self.x, axis=0, skipna=False)
assert_array_equal(expected, actual)
expected = self.x[..., 0]
actual = first(self.x, axis=-1, skipna=False)
assert_array_equal(expected, actual)
with raises_regex(IndexError, "out of bounds"):
first(self.x, 3)
def test_last(self):
expected_results = [
array([[nan, 13, 14, 15], [nan, 17, 18, nan], [8, 21, 10, nan]]),
array([[8, 9, 10, nan], [nan, 21, 18, 15]]),
array([[2, 6, 10], [15, 18, 21]]),
]
for axis, expected in zip([0, 1, 2, -3, -2, -1], 2 * expected_results):
actual = last(self.x, axis)
assert_array_equal(expected, actual)
expected = self.x[-1]
actual = last(self.x, axis=0, skipna=False)
assert_array_equal(expected, actual)
expected = self.x[..., -1]
actual = last(self.x, axis=-1, skipna=False)
assert_array_equal(expected, actual)
with raises_regex(IndexError, "out of bounds"):
last(self.x, 3)
def test_count(self):
assert 12 == count(self.x)
expected = array([[1, 2, 3], [3, 2, 1]])
assert_array_equal(expected, count(self.x, axis=-1))
assert 1 == count(np.datetime64("2000-01-01"))
def test_where_type_promotion(self):
result = where([True, False], [1, 2], ["a", "b"])
assert_array_equal(result, np.array([1, "b"], dtype=object))
result = where([True, False], np.array([1, 2], np.float32), np.nan)
assert result.dtype == np.float32
assert_array_equal(result, np.array([1, np.nan], dtype=np.float32))
def test_stack_type_promotion(self):
result = stack([1, "b"])
assert_array_equal(result, np.array([1, "b"], dtype=object))
def test_concatenate_type_promotion(self):
result = concatenate([[1], ["b"]])
assert_array_equal(result, np.array([1, "b"], dtype=object))
@pytest.mark.filterwarnings("error")
def test_all_nan_arrays(self):
assert np.isnan(mean([np.nan, np.nan]))
def test_cumsum_1d():
inputs = np.array([0, 1, 2, 3])
expected = np.array([0, 1, 3, 6])
actual = duck_array_ops.cumsum(inputs)
assert_array_equal(expected, actual)
actual = duck_array_ops.cumsum(inputs, axis=0)
assert_array_equal(expected, actual)
actual = duck_array_ops.cumsum(inputs, axis=-1)
assert_array_equal(expected, actual)
actual = duck_array_ops.cumsum(inputs, axis=(0,))
assert_array_equal(expected, actual)
actual = duck_array_ops.cumsum(inputs, axis=())
assert_array_equal(inputs, actual)
def test_cumsum_2d():
inputs = np.array([[1, 2], [3, 4]])
expected = np.array([[1, 3], [4, 10]])
actual = duck_array_ops.cumsum(inputs)
assert_array_equal(expected, actual)
actual = duck_array_ops.cumsum(inputs, axis=(0, 1))
assert_array_equal(expected, actual)
actual = duck_array_ops.cumsum(inputs, axis=())
assert_array_equal(inputs, actual)
def test_cumprod_2d():
inputs = np.array([[1, 2], [3, 4]])
expected = np.array([[1, 2], [3, 2 * 3 * 4]])
actual = duck_array_ops.cumprod(inputs)
assert_array_equal(expected, actual)
actual = duck_array_ops.cumprod(inputs, axis=(0, 1))
assert_array_equal(expected, actual)
actual = duck_array_ops.cumprod(inputs, axis=())
assert_array_equal(inputs, actual)
class TestArrayNotNullEquiv:
@pytest.mark.parametrize(
"arr1, arr2",
[
(np.array([1, 2, 3]), np.array([1, 2, 3])),
(np.array([1, 2, np.nan]), np.array([1, np.nan, 3])),
(np.array([np.nan, 2, np.nan]), np.array([1, np.nan, np.nan])),
],
)
def test_equal(self, arr1, arr2):
assert array_notnull_equiv(arr1, arr2)
def test_some_not_equal(self):
a = np.array([1, 2, 4])
b = np.array([1, np.nan, 3])
assert not array_notnull_equiv(a, b)
def test_wrong_shape(self):
a = np.array([[1, np.nan, np.nan, 4]])
b = np.array([[1, 2], [np.nan, 4]])
assert not array_notnull_equiv(a, b)
@pytest.mark.parametrize(
"val1, val2, val3, null",
[
(
np.datetime64("2000"),
np.datetime64("2001"),
np.datetime64("2002"),
np.datetime64("NaT"),
),
(1.0, 2.0, 3.0, np.nan),
("foo", "bar", "baz", None),
("foo", "bar", "baz", np.nan),
],
)
def test_types(self, val1, val2, val3, null):
dtype = object if isinstance(val1, str) else None
arr1 = np.array([val1, null, val3, null], dtype=dtype)
arr2 = np.array([val1, val2, null, null], dtype=dtype)
assert array_notnull_equiv(arr1, arr2)
def construct_dataarray(dim_num, dtype, contains_nan, dask):
# dimnum <= 3
rng = np.random.RandomState(0)
shapes = [16, 8, 4][:dim_num]
dims = ("x", "y", "z")[:dim_num]
if np.issubdtype(dtype, np.floating):
array = rng.randn(*shapes).astype(dtype)
elif np.issubdtype(dtype, np.integer):
array = rng.randint(0, 10, size=shapes).astype(dtype)
elif np.issubdtype(dtype, np.bool_):
array = rng.randint(0, 1, size=shapes).astype(dtype)
elif dtype == str:
array = rng.choice(["a", "b", "c", "d"], size=shapes)
else:
raise ValueError
if contains_nan:
inds = rng.choice(range(array.size), int(array.size * 0.2))
dtype, fill_value = dtypes.maybe_promote(array.dtype)
array = array.astype(dtype)
array.flat[inds] = fill_value
da = DataArray(array, dims=dims, coords={"x": np.arange(16)}, name="da")
if dask and has_dask:
chunks = {d: 4 for d in dims}
da = da.chunk(chunks)
return da
def from_series_or_scalar(se):
if isinstance(se, pd.Series):
return DataArray.from_series(se)
else: # scalar case
return DataArray(se)
def series_reduce(da, func, dim, **kwargs):
"""convert DataArray to pd.Series, apply pd.func, then convert back to
a DataArray. Multiple dims cannot be specified."""
if dim is None or da.ndim == 1:
se = da.to_series()
return from_series_or_scalar(getattr(se, func)(**kwargs))
else:
da1 = []
dims = list(da.dims)
dims.remove(dim)
d = dims[0]
for i in range(len(da[d])):
da1.append(series_reduce(da.isel(**{d: i}), func, dim, **kwargs))
if d in da.coords:
return concat(da1, dim=da[d])
return concat(da1, dim=d)
def assert_dask_array(da, dask):
if dask and da.ndim > 0:
assert isinstance(da.data, dask_array_type)
@arm_xfail
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
@pytest.mark.parametrize("dask", [False, True] if has_dask else [False])
def test_datetime_mean(dask):
# Note: only testing numpy, as dask is broken upstream
da = DataArray(
np.array(["2010-01-01", "NaT", "2010-01-03", "NaT", "NaT"], dtype="M8"),
dims=["time"],
)
if dask:
# Trigger use case where a chunk is full of NaT
da = da.chunk({"time": 3})
expect = DataArray(np.array("2010-01-02", dtype="M8"))
expect_nat = DataArray(np.array("NaT", dtype="M8"))
actual = da.mean()
if dask:
assert actual.chunks is not None
assert_equal(actual, expect)
actual = da.mean(skipna=False)
if dask:
assert actual.chunks is not None
assert_equal(actual, expect_nat)
# tests for 1d array full of NaT
assert_equal(da[[1]].mean(), expect_nat)
assert_equal(da[[1]].mean(skipna=False), expect_nat)
# tests for a 0d array
assert_equal(da[0].mean(), da[0])
assert_equal(da[0].mean(skipna=False), da[0])
assert_equal(da[1].mean(), expect_nat)
assert_equal(da[1].mean(skipna=False), expect_nat)
@requires_cftime
def test_cftime_datetime_mean():
times = cftime_range("2000", periods=4)
da = DataArray(times, dims=["time"])
assert da.isel(time=0).mean() == da.isel(time=0)
expected = DataArray(times.date_type(2000, 1, 2, 12))
result = da.mean()
assert_equal(result, expected)
da_2d = DataArray(times.values.reshape(2, 2))
result = da_2d.mean()
assert_equal(result, expected)
@requires_cftime
def test_cftime_datetime_mean_long_time_period():
import cftime
times = np.array(
[
[
cftime.DatetimeNoLeap(400, 12, 31, 0, 0, 0, 0),
cftime.DatetimeNoLeap(520, 12, 31, 0, 0, 0, 0),
],
[
cftime.DatetimeNoLeap(520, 12, 31, 0, 0, 0, 0),
cftime.DatetimeNoLeap(640, 12, 31, 0, 0, 0, 0),
],
[
cftime.DatetimeNoLeap(640, 12, 31, 0, 0, 0, 0),
cftime.DatetimeNoLeap(760, 12, 31, 0, 0, 0, 0),
],
]
)
da = DataArray(times, dims=["time", "d2"])
result = da.mean("d2")
expected = DataArray(
[
cftime.DatetimeNoLeap(460, 12, 31, 0, 0, 0, 0),
cftime.DatetimeNoLeap(580, 12, 31, 0, 0, 0, 0),
cftime.DatetimeNoLeap(700, 12, 31, 0, 0, 0, 0),
],
dims=["time"],
)
assert_equal(result, expected)
@requires_cftime
@requires_dask
def test_cftime_datetime_mean_dask_error():
times = cftime_range("2000", periods=4)
da = DataArray(times, dims=["time"]).chunk()
with pytest.raises(NotImplementedError):
da.mean()
@pytest.mark.parametrize("dim_num", [1, 2])
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["sum", "min", "max", "mean", "var"])
# TODO test cumsum, cumprod
@pytest.mark.parametrize("skipna", [False, True])
@pytest.mark.parametrize("aggdim", [None, "x"])
def test_reduce(dim_num, dtype, dask, func, skipna, aggdim):
if aggdim == "y" and dim_num < 2:
pytest.skip("dim not in this test")
if dtype == np.bool_ and func == "mean":
pytest.skip("numpy does not support this")
if dask and not has_dask:
pytest.skip("requires dask")
if dask and skipna is False and dtype in [np.bool_]:
pytest.skip("dask does not compute object-typed array")
rtol = 1e-04 if dtype == np.float32 else 1e-05
da = construct_dataarray(dim_num, dtype, contains_nan=True, dask=dask)
axis = None if aggdim is None else da.get_axis_num(aggdim)
# TODO: remove these after resolving
# https://github.com/dask/dask/issues/3245
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Mean of empty slice")
warnings.filterwarnings("ignore", "All-NaN slice")
warnings.filterwarnings("ignore", "invalid value encountered in")
if da.dtype.kind == "O" and skipna:
# Numpy < 1.13 does not handle object-type array.
try:
if skipna:
expected = getattr(np, f"nan{func}")(da.values, axis=axis)
else:
expected = getattr(np, func)(da.values, axis=axis)
actual = getattr(da, func)(skipna=skipna, dim=aggdim)
assert_dask_array(actual, dask)
np.testing.assert_allclose(
actual.values, np.array(expected), rtol=1.0e-4, equal_nan=True
)
except (TypeError, AttributeError, ZeroDivisionError):
# TODO currently, numpy does not support some methods such as
# nanmean for object dtype
pass
actual = getattr(da, func)(skipna=skipna, dim=aggdim)
# for dask case, make sure the result is the same for numpy backend
expected = getattr(da.compute(), func)(skipna=skipna, dim=aggdim)
assert_allclose(actual, expected, rtol=rtol)
# make sure the compatiblility with pandas' results.
if func in ["var", "std"]:
expected = series_reduce(da, func, skipna=skipna, dim=aggdim, ddof=0)
assert_allclose(actual, expected, rtol=rtol)
# also check ddof!=0 case
actual = getattr(da, func)(skipna=skipna, dim=aggdim, ddof=5)
if dask:
assert isinstance(da.data, dask_array_type)
expected = series_reduce(da, func, skipna=skipna, dim=aggdim, ddof=5)
assert_allclose(actual, expected, rtol=rtol)
else:
expected = series_reduce(da, func, skipna=skipna, dim=aggdim)
assert_allclose(actual, expected, rtol=rtol)
# make sure the dtype argument
if func not in ["max", "min"]:
actual = getattr(da, func)(skipna=skipna, dim=aggdim, dtype=float)
assert_dask_array(actual, dask)
assert actual.dtype == float
# without nan
da = construct_dataarray(dim_num, dtype, contains_nan=False, dask=dask)
actual = getattr(da, func)(skipna=skipna)
if dask:
assert isinstance(da.data, dask_array_type)
expected = getattr(np, f"nan{func}")(da.values)
if actual.dtype == object:
assert actual.values == np.array(expected)
else:
assert np.allclose(actual.values, np.array(expected), rtol=rtol)
@pytest.mark.parametrize("dim_num", [1, 2])
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_, str])
@pytest.mark.parametrize("contains_nan", [True, False])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["min", "max"])
@pytest.mark.parametrize("skipna", [False, True])
@pytest.mark.parametrize("aggdim", ["x", "y"])
def test_argmin_max(dim_num, dtype, contains_nan, dask, func, skipna, aggdim):
# pandas-dev/pandas#16830, we do not check consistency with pandas but
# just make sure da[da.argmin()] == da.min()
if aggdim == "y" and dim_num < 2:
pytest.skip("dim not in this test")
if dask and not has_dask:
pytest.skip("requires dask")
if contains_nan:
if not skipna:
pytest.skip("numpy's argmin (not nanargmin) does not handle object-dtype")
if skipna and np.dtype(dtype).kind in "iufc":
pytest.skip("numpy's nanargmin raises ValueError for all nan axis")
da = construct_dataarray(dim_num, dtype, contains_nan=contains_nan, dask=dask)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "All-NaN slice")
actual = da.isel(
**{aggdim: getattr(da, "arg" + func)(dim=aggdim, skipna=skipna).compute()}
)
expected = getattr(da, func)(dim=aggdim, skipna=skipna)
assert_allclose(
actual.drop_vars(list(actual.coords)),
expected.drop_vars(list(expected.coords)),
)
def test_argmin_max_error():
da = construct_dataarray(2, np.bool_, contains_nan=True, dask=False)
da[0] = np.nan
with pytest.raises(ValueError):
da.argmin(dim="y")
@pytest.mark.parametrize(
"array",
[
np.array([np.datetime64("2000-01-01"), np.datetime64("NaT")]),
np.array([np.timedelta64(1, "h"), np.timedelta64("NaT")]),
np.array([0.0, np.nan]),
np.array([1j, np.nan]),
np.array(["foo", np.nan], dtype=object),
],
)
def test_isnull(array):
expected = np.array([False, True])
actual = duck_array_ops.isnull(array)
np.testing.assert_equal(expected, actual)
@requires_dask
def test_isnull_with_dask():
da = construct_dataarray(2, np.float32, contains_nan=True, dask=True)
assert isinstance(da.isnull().data, dask_array_type)
assert_equal(da.isnull().load(), da.load().isnull())
@pytest.mark.skipif(not has_dask, reason="This is for dask.")
@pytest.mark.parametrize("axis", [0, -1])
@pytest.mark.parametrize("window", [3, 8, 11])
@pytest.mark.parametrize("center", [True, False])
def test_dask_rolling(axis, window, center):
import dask.array as da
x = np.array(np.random.randn(100, 40), dtype=float)
dx = da.from_array(x, chunks=[(6, 30, 30, 20, 14), 8])
expected = rolling_window(
x, axis=axis, window=window, center=center, fill_value=np.nan
)
actual = rolling_window(
dx, axis=axis, window=window, center=center, fill_value=np.nan
)
assert isinstance(actual, da.Array)
assert_array_equal(actual, expected)
assert actual.shape == expected.shape
# we need to take care of window size if chunk size is small
# window/2 should be smaller than the smallest chunk size.
with pytest.raises(ValueError):
rolling_window(dx, axis=axis, window=100, center=center, fill_value=np.nan)
@pytest.mark.skipif(not has_dask, reason="This is for dask.")
@pytest.mark.parametrize("axis", [0, -1, 1])
@pytest.mark.parametrize("edge_order", [1, 2])
def test_dask_gradient(axis, edge_order):
import dask.array as da
array = np.array(np.random.randn(100, 5, 40))
x = np.exp(np.linspace(0, 1, array.shape[axis]))
darray = da.from_array(array, chunks=[(6, 30, 30, 20, 14), 5, 8])
expected = gradient(array, x, axis=axis, edge_order=edge_order)
actual = gradient(darray, x, axis=axis, edge_order=edge_order)
assert isinstance(actual, da.Array)
assert_array_equal(actual, expected)
@pytest.mark.parametrize("dim_num", [1, 2])
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["sum", "prod"])
@pytest.mark.parametrize("aggdim", [None, "x"])
@pytest.mark.parametrize("contains_nan", [True, False])
@pytest.mark.parametrize("skipna", [True, False, None])
def test_min_count(dim_num, dtype, dask, func, aggdim, contains_nan, skipna):
if dask and not has_dask:
pytest.skip("requires dask")
da = construct_dataarray(dim_num, dtype, contains_nan=contains_nan, dask=dask)
min_count = 3
actual = getattr(da, func)(dim=aggdim, skipna=skipna, min_count=min_count)
expected = series_reduce(da, func, skipna=skipna, dim=aggdim, min_count=min_count)
assert_allclose(actual, expected)
assert_dask_array(actual, dask)
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["sum", "prod"])
def test_min_count_nd(dtype, dask, func):
if dask and not has_dask:
pytest.skip("requires dask")
min_count = 3
dim_num = 3
da = construct_dataarray(dim_num, dtype, contains_nan=True, dask=dask)
actual = getattr(da, func)(dim=["x", "y", "z"], skipna=True, min_count=min_count)
# Supplying all dims is equivalent to supplying `...` or `None`
expected = getattr(da, func)(dim=..., skipna=True, min_count=min_count)
assert_allclose(actual, expected)
assert_dask_array(actual, dask)
@pytest.mark.parametrize("func", ["sum", "prod"])
def test_min_count_dataset(func):
da = construct_dataarray(2, dtype=float, contains_nan=True, dask=False)
ds = Dataset({"var1": da}, coords={"scalar": 0})
actual = getattr(ds, func)(dim="x", skipna=True, min_count=3)["var1"]
expected = getattr(ds["var1"], func)(dim="x", skipna=True, min_count=3)
assert_allclose(actual, expected)
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("skipna", [False, True])
@pytest.mark.parametrize("func", ["sum", "prod"])
def test_multiple_dims(dtype, dask, skipna, func):
if dask and not has_dask:
pytest.skip("requires dask")
da = construct_dataarray(3, dtype, contains_nan=True, dask=dask)
actual = getattr(da, func)(("x", "y"), skipna=skipna)
expected = getattr(getattr(da, func)("x", skipna=skipna), func)("y", skipna=skipna)
assert_allclose(actual, expected)
def test_docs():
# with min_count
actual = DataArray.sum.__doc__
expected = dedent(
"""\
Reduce this DataArray's data by applying `sum` along some dimension(s).
Parameters
----------
dim : str or sequence of str, optional
Dimension(s) over which to apply `sum`.
axis : int or sequence of int, optional
Axis(es) over which to apply `sum`. Only one of the 'dim'
and 'axis' arguments can be supplied. If neither are supplied, then
`sum` is calculated over axes.
skipna : bool, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
min_count : int, default: None
The required number of valid values to perform the operation.
If fewer than min_count non-NA values are present the result will
be NA. New in version 0.10.8: Added with the default being None.
keep_attrs : bool, optional
If True, the attributes (`attrs`) will be copied from the original
object to the new one. If False (default), the new object will be
returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to the appropriate array
function for calculating `sum` on this object's data.
Returns
-------
reduced : DataArray
New DataArray object with `sum` applied to its data and the
indicated dimension(s) removed.
"""
)
assert actual == expected
# without min_count
actual = DataArray.std.__doc__
expected = dedent(
"""\
Reduce this DataArray's data by applying `std` along some dimension(s).
Parameters
----------
dim : str or sequence of str, optional
Dimension(s) over which to apply `std`.
axis : int or sequence of int, optional
Axis(es) over which to apply `std`. Only one of the 'dim'
and 'axis' arguments can be supplied. If neither are supplied, then
`std` is calculated over axes.
skipna : bool, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
keep_attrs : bool, optional
If True, the attributes (`attrs`) will be copied from the original
object to the new one. If False (default), the new object will be
returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to the appropriate array
function for calculating `std` on this object's data.
Returns
-------
reduced : DataArray
New DataArray object with `std` applied to its data and the
indicated dimension(s) removed.
"""
)
assert actual == expected
def test_datetime_to_numeric_datetime64():
times = pd.date_range("2000", periods=5, freq="7D").values
result = duck_array_ops.datetime_to_numeric(times, datetime_unit="h")
expected = 24 * np.arange(0, 35, 7)
np.testing.assert_array_equal(result, expected)
offset = times[1]
result = duck_array_ops.datetime_to_numeric(times, offset=offset, datetime_unit="h")
expected = 24 * np.arange(-7, 28, 7)
np.testing.assert_array_equal(result, expected)
dtype = np.float32
result = duck_array_ops.datetime_to_numeric(times, datetime_unit="h", dtype=dtype)
expected = 24 * np.arange(0, 35, 7).astype(dtype)
np.testing.assert_array_equal(result, expected)
@requires_cftime
def test_datetime_to_numeric_cftime():
times = cftime_range("2000", periods=5, freq="7D", calendar="standard").values
result = duck_array_ops.datetime_to_numeric(times, datetime_unit="h", dtype=int)
expected = 24 * np.arange(0, 35, 7)
np.testing.assert_array_equal(result, expected)
offset = times[1]
result = duck_array_ops.datetime_to_numeric(
times, offset=offset, datetime_unit="h", dtype=int
)
expected = 24 * np.arange(-7, 28, 7)
np.testing.assert_array_equal(result, expected)
dtype = np.float32
result = duck_array_ops.datetime_to_numeric(times, datetime_unit="h", dtype=dtype)
expected = 24 * np.arange(0, 35, 7).astype(dtype)
np.testing.assert_array_equal(result, expected)
@requires_cftime
def test_datetime_to_numeric_potential_overflow():
import cftime
times = pd.date_range("2000", periods=5, freq="7D").values.astype("datetime64[us]")
cftimes = cftime_range(
"2000", periods=5, freq="7D", calendar="proleptic_gregorian"
).values
offset = np.datetime64("0001-01-01")
cfoffset = cftime.DatetimeProlepticGregorian(1, 1, 1)
result = duck_array_ops.datetime_to_numeric(
times, offset=offset, datetime_unit="D", dtype=int
)
cfresult = duck_array_ops.datetime_to_numeric(
cftimes, offset=cfoffset, datetime_unit="D", dtype=int
)
expected = 730119 + np.arange(0, 35, 7)
np.testing.assert_array_equal(result, expected)
np.testing.assert_array_equal(cfresult, expected)
def test_py_timedelta_to_float():
assert py_timedelta_to_float(dt.timedelta(days=1), "ns") == 86400 * 1e9
assert py_timedelta_to_float(dt.timedelta(days=1e6), "ps") == 86400 * 1e18
assert py_timedelta_to_float(dt.timedelta(days=1e6), "ns") == 86400 * 1e15
assert py_timedelta_to_float(dt.timedelta(days=1e6), "us") == 86400 * 1e12
assert py_timedelta_to_float(dt.timedelta(days=1e6), "ms") == 86400 * 1e9
assert py_timedelta_to_float(dt.timedelta(days=1e6), "s") == 86400 * 1e6
assert py_timedelta_to_float(dt.timedelta(days=1e6), "D") == 1e6
@pytest.mark.parametrize(
"td, expected",
([np.timedelta64(1, "D"), 86400 * 1e9], [np.timedelta64(1, "ns"), 1.0]),
)
def test_np_timedelta64_to_float(td, expected):
out = np_timedelta64_to_float(td, datetime_unit="ns")
np.testing.assert_allclose(out, expected)
assert isinstance(out, float)
out = np_timedelta64_to_float(np.atleast_1d(td), datetime_unit="ns")
np.testing.assert_allclose(out, expected)
@pytest.mark.parametrize(
"td, expected", ([pd.Timedelta(1, "D"), 86400 * 1e9], [pd.Timedelta(1, "ns"), 1.0])
)
def test_pd_timedelta_to_float(td, expected):
out = pd_timedelta_to_float(td, datetime_unit="ns")
np.testing.assert_allclose(out, expected)
assert isinstance(out, float)
@pytest.mark.parametrize(
"td", [dt.timedelta(days=1), np.timedelta64(1, "D"), pd.Timedelta(1, "D"), "1 day"]
)
def test_timedelta_to_numeric(td):
# Scalar input
out = timedelta_to_numeric(td, "ns")
np.testing.assert_allclose(out, 86400 * 1e9)
assert isinstance(out, float)
@pytest.mark.parametrize("use_dask", [True, False])
@pytest.mark.parametrize("skipna", [True, False])
def test_least_squares(use_dask, skipna):
if use_dask and (not has_dask or not has_scipy):
pytest.skip("requires dask and scipy")
lhs = np.array([[1, 2], [1, 2], [3, 2]])
rhs = DataArray(np.array([3, 5, 7]), dims=("y",))
if use_dask:
rhs = rhs.chunk({"y": 1})
coeffs, residuals = least_squares(lhs, rhs.data, skipna=skipna)
np.testing.assert_allclose(coeffs, [1.5, 1.25])
np.testing.assert_allclose(residuals, [2.0])
|