File: test_formatting.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (465 lines) | stat: -rw-r--r-- 15,528 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import sys
from textwrap import dedent

import numpy as np
import pandas as pd
import pytest

import xarray as xr
from xarray.core import formatting
from xarray.core.npcompat import IS_NEP18_ACTIVE

from . import raises_regex


class TestFormatting:
    def test_get_indexer_at_least_n_items(self):
        cases = [
            ((20,), (slice(10),), (slice(-10, None),)),
            ((3, 20), (0, slice(10)), (-1, slice(-10, None))),
            ((2, 10), (0, slice(10)), (-1, slice(-10, None))),
            ((2, 5), (slice(2), slice(None)), (slice(-2, None), slice(None))),
            ((1, 2, 5), (0, slice(2), slice(None)), (-1, slice(-2, None), slice(None))),
            ((2, 3, 5), (0, slice(2), slice(None)), (-1, slice(-2, None), slice(None))),
            (
                (1, 10, 1),
                (0, slice(10), slice(None)),
                (-1, slice(-10, None), slice(None)),
            ),
            (
                (2, 5, 1),
                (slice(2), slice(None), slice(None)),
                (slice(-2, None), slice(None), slice(None)),
            ),
            ((2, 5, 3), (0, slice(4), slice(None)), (-1, slice(-4, None), slice(None))),
            (
                (2, 3, 3),
                (slice(2), slice(None), slice(None)),
                (slice(-2, None), slice(None), slice(None)),
            ),
        ]
        for shape, start_expected, end_expected in cases:
            actual = formatting._get_indexer_at_least_n_items(shape, 10, from_end=False)
            assert start_expected == actual
            actual = formatting._get_indexer_at_least_n_items(shape, 10, from_end=True)
            assert end_expected == actual

    def test_first_n_items(self):
        array = np.arange(100).reshape(10, 5, 2)
        for n in [3, 10, 13, 100, 200]:
            actual = formatting.first_n_items(array, n)
            expected = array.flat[:n]
            assert (expected == actual).all()

        with raises_regex(ValueError, "at least one item"):
            formatting.first_n_items(array, 0)

    def test_last_n_items(self):
        array = np.arange(100).reshape(10, 5, 2)
        for n in [3, 10, 13, 100, 200]:
            actual = formatting.last_n_items(array, n)
            expected = array.flat[-n:]
            assert (expected == actual).all()

        with raises_regex(ValueError, "at least one item"):
            formatting.first_n_items(array, 0)

    def test_last_item(self):
        array = np.arange(100)

        reshape = ((10, 10), (1, 100), (2, 2, 5, 5))
        expected = np.array([99])

        for r in reshape:
            result = formatting.last_item(array.reshape(r))
            assert result == expected

    def test_format_item(self):
        cases = [
            (pd.Timestamp("2000-01-01T12"), "2000-01-01T12:00:00"),
            (pd.Timestamp("2000-01-01"), "2000-01-01"),
            (pd.Timestamp("NaT"), "NaT"),
            (pd.Timedelta("10 days 1 hour"), "10 days 01:00:00"),
            (pd.Timedelta("-3 days"), "-3 days +00:00:00"),
            (pd.Timedelta("3 hours"), "0 days 03:00:00"),
            (pd.Timedelta("NaT"), "NaT"),
            ("foo", "'foo'"),
            (b"foo", "b'foo'"),
            (1, "1"),
            (1.0, "1.0"),
            (np.float16(1.1234), "1.123"),
            (np.float32(1.0111111), "1.011"),
            (np.float64(22.222222), "22.22"),
        ]
        for item, expected in cases:
            actual = formatting.format_item(item)
            assert expected == actual

    def test_format_items(self):
        cases = [
            (np.arange(4) * np.timedelta64(1, "D"), "0 days 1 days 2 days 3 days"),
            (
                np.arange(4) * np.timedelta64(3, "h"),
                "00:00:00 03:00:00 06:00:00 09:00:00",
            ),
            (
                np.arange(4) * np.timedelta64(500, "ms"),
                "00:00:00 00:00:00.500000 00:00:01 00:00:01.500000",
            ),
            (pd.to_timedelta(["NaT", "0s", "1s", "NaT"]), "NaT 00:00:00 00:00:01 NaT"),
            (
                pd.to_timedelta(["1 day 1 hour", "1 day", "0 hours"]),
                "1 days 01:00:00 1 days 00:00:00 0 days 00:00:00",
            ),
            ([1, 2, 3], "1 2 3"),
        ]
        for item, expected in cases:
            actual = " ".join(formatting.format_items(item))
            assert expected == actual

    def test_format_array_flat(self):
        actual = formatting.format_array_flat(np.arange(100), 2)
        expected = "..."
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100), 9)
        expected = "0 ... 99"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100), 10)
        expected = "0 1 ... 99"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100), 13)
        expected = "0 1 ... 98 99"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100), 15)
        expected = "0 1 2 ... 98 99"
        assert expected == actual

        # NB: Probably not ideal; an alternative would be cutting after the
        # first ellipsis
        actual = formatting.format_array_flat(np.arange(100.0), 11)
        expected = "0.0 ... ..."
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100.0), 12)
        expected = "0.0 ... 99.0"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(3), 5)
        expected = "0 1 2"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(4.0), 11)
        expected = "0.0 ... 3.0"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(0), 0)
        expected = ""
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(1), 1)
        expected = "0"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(2), 3)
        expected = "0 1"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(4), 7)
        expected = "0 1 2 3"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(5), 7)
        expected = "0 ... 4"
        assert expected == actual

        long_str = [" ".join(["hello world" for _ in range(100)])]
        actual = formatting.format_array_flat(np.asarray([long_str]), 21)
        expected = "'hello world hello..."
        assert expected == actual

    def test_pretty_print(self):
        assert formatting.pretty_print("abcdefghij", 8) == "abcde..."
        assert formatting.pretty_print("ß", 1) == "ß"

    def test_maybe_truncate(self):
        assert formatting.maybe_truncate("ß", 10) == "ß"

    def test_format_timestamp_out_of_bounds(self):
        from datetime import datetime

        date = datetime(1300, 12, 1)
        expected = "1300-12-01"
        result = formatting.format_timestamp(date)
        assert result == expected

        date = datetime(2300, 12, 1)
        expected = "2300-12-01"
        result = formatting.format_timestamp(date)
        assert result == expected

    def test_attribute_repr(self):
        short = formatting.summarize_attr("key", "Short string")
        long = formatting.summarize_attr("key", 100 * "Very long string ")
        newlines = formatting.summarize_attr("key", "\n\n\n")
        tabs = formatting.summarize_attr("key", "\t\t\t")
        assert short == "    key: Short string"
        assert len(long) <= 80
        assert long.endswith("...")
        assert "\n" not in newlines
        assert "\t" not in tabs

    def test_diff_array_repr(self):
        da_a = xr.DataArray(
            np.array([[1, 2, 3], [4, 5, 6]], dtype="int64"),
            dims=("x", "y"),
            coords={
                "x": np.array(["a", "b"], dtype="U1"),
                "y": np.array([1, 2, 3], dtype="int64"),
            },
            attrs={"units": "m", "description": "desc"},
        )

        da_b = xr.DataArray(
            np.array([1, 2], dtype="int64"),
            dims="x",
            coords={
                "x": np.array(["a", "c"], dtype="U1"),
                "label": ("x", np.array([1, 2], dtype="int64")),
            },
            attrs={"units": "kg"},
        )

        byteorder = "<" if sys.byteorder == "little" else ">"
        expected = dedent(
            """\
        Left and right DataArray objects are not identical
        Differing dimensions:
            (x: 2, y: 3) != (x: 2)
        Differing values:
        L
            array([[1, 2, 3],
                   [4, 5, 6]], dtype=int64)
        R
            array([1, 2], dtype=int64)
        Differing coordinates:
        L * x        (x) %cU1 'a' 'b'
        R * x        (x) %cU1 'a' 'c'
        Coordinates only on the left object:
          * y        (y) int64 1 2 3
        Coordinates only on the right object:
            label    (x) int64 1 2
        Differing attributes:
        L   units: m
        R   units: kg
        Attributes only on the left object:
            description: desc"""
            % (byteorder, byteorder)
        )

        actual = formatting.diff_array_repr(da_a, da_b, "identical")
        try:
            assert actual == expected
        except AssertionError:
            # depending on platform, dtype may not be shown in numpy array repr
            assert actual == expected.replace(", dtype=int64", "")

        va = xr.Variable(
            "x", np.array([1, 2, 3], dtype="int64"), {"title": "test Variable"}
        )
        vb = xr.Variable(("x", "y"), np.array([[1, 2, 3], [4, 5, 6]], dtype="int64"))

        expected = dedent(
            """\
        Left and right Variable objects are not equal
        Differing dimensions:
            (x: 3) != (x: 2, y: 3)
        Differing values:
        L
            array([1, 2, 3], dtype=int64)
        R
            array([[1, 2, 3],
                   [4, 5, 6]], dtype=int64)"""
        )

        actual = formatting.diff_array_repr(va, vb, "equals")
        try:
            assert actual == expected
        except AssertionError:
            assert actual == expected.replace(", dtype=int64", "")

    @pytest.mark.filterwarnings("error")
    def test_diff_attrs_repr_with_array(self):
        attrs_a = {"attr": np.array([0, 1])}

        attrs_b = {"attr": 1}
        expected = dedent(
            """\
            Differing attributes:
            L   attr: [0 1]
            R   attr: 1
            """
        ).strip()
        actual = formatting.diff_attrs_repr(attrs_a, attrs_b, "equals")
        assert expected == actual

        attrs_b = {"attr": np.array([-3, 5])}
        expected = dedent(
            """\
            Differing attributes:
            L   attr: [0 1]
            R   attr: [-3  5]
            """
        ).strip()
        actual = formatting.diff_attrs_repr(attrs_a, attrs_b, "equals")
        assert expected == actual

        # should not raise a warning
        attrs_b = {"attr": np.array([0, 1, 2])}
        expected = dedent(
            """\
            Differing attributes:
            L   attr: [0 1]
            R   attr: [0 1 2]
            """
        ).strip()
        actual = formatting.diff_attrs_repr(attrs_a, attrs_b, "equals")
        assert expected == actual

    def test_diff_dataset_repr(self):
        ds_a = xr.Dataset(
            data_vars={
                "var1": (("x", "y"), np.array([[1, 2, 3], [4, 5, 6]], dtype="int64")),
                "var2": ("x", np.array([3, 4], dtype="int64")),
            },
            coords={
                "x": np.array(["a", "b"], dtype="U1"),
                "y": np.array([1, 2, 3], dtype="int64"),
            },
            attrs={"units": "m", "description": "desc"},
        )

        ds_b = xr.Dataset(
            data_vars={"var1": ("x", np.array([1, 2], dtype="int64"))},
            coords={
                "x": ("x", np.array(["a", "c"], dtype="U1"), {"source": 0}),
                "label": ("x", np.array([1, 2], dtype="int64")),
            },
            attrs={"units": "kg"},
        )

        byteorder = "<" if sys.byteorder == "little" else ">"
        expected = dedent(
            """\
        Left and right Dataset objects are not identical
        Differing dimensions:
            (x: 2, y: 3) != (x: 2)
        Differing coordinates:
        L * x        (x) %cU1 'a' 'b'
        R * x        (x) %cU1 'a' 'c'
            source: 0
        Coordinates only on the left object:
          * y        (y) int64 1 2 3
        Coordinates only on the right object:
            label    (x) int64 1 2
        Differing data variables:
        L   var1     (x, y) int64 1 2 3 4 5 6
        R   var1     (x) int64 1 2
        Data variables only on the left object:
            var2     (x) int64 3 4
        Differing attributes:
        L   units: m
        R   units: kg
        Attributes only on the left object:
            description: desc"""
            % (byteorder, byteorder)
        )

        actual = formatting.diff_dataset_repr(ds_a, ds_b, "identical")
        assert actual == expected

    def test_array_repr(self):
        ds = xr.Dataset(coords={"foo": [1, 2, 3], "bar": [1, 2, 3]})
        ds[(1, 2)] = xr.DataArray([0], dims="test")
        actual = formatting.array_repr(ds[(1, 2)])
        expected = dedent(
            """\
        <xarray.DataArray (1, 2) (test: 1)>
        array([0])
        Dimensions without coordinates: test"""
        )

        assert actual == expected


@pytest.mark.skipif(not IS_NEP18_ACTIVE, reason="requires __array_function__")
def test_inline_variable_array_repr_custom_repr():
    class CustomArray:
        def __init__(self, value, attr):
            self.value = value
            self.attr = attr

        def _repr_inline_(self, width):
            formatted = f"({self.attr}) {self.value}"
            if len(formatted) > width:
                formatted = f"({self.attr}) ..."

            return formatted

        def __array_function__(self, *args, **kwargs):
            return NotImplemented

        @property
        def shape(self):
            return self.value.shape

        @property
        def dtype(self):
            return self.value.dtype

        @property
        def ndim(self):
            return self.value.ndim

    value = CustomArray(np.array([20, 40]), "m")
    variable = xr.Variable("x", value)

    max_width = 10
    actual = formatting.inline_variable_array_repr(variable, max_width=10)

    assert actual == value._repr_inline_(max_width)


def test_set_numpy_options():
    original_options = np.get_printoptions()
    with formatting.set_numpy_options(threshold=10):
        assert len(repr(np.arange(500))) < 200
    # original options are restored
    assert np.get_printoptions() == original_options


def test_short_numpy_repr():
    cases = [
        np.random.randn(500),
        np.random.randn(20, 20),
        np.random.randn(5, 10, 15),
        np.random.randn(5, 10, 15, 3),
        np.random.randn(100, 5, 1),
    ]
    # number of lines:
    # for default numpy repr: 167, 140, 254, 248, 599
    # for short_numpy_repr: 1, 7, 24, 19, 25
    for array in cases:
        num_lines = formatting.short_numpy_repr(array).count("\n") + 1
        assert num_lines < 30


def test_large_array_repr_length():

    da = xr.DataArray(np.random.randn(100, 5, 1))

    result = repr(da).splitlines()
    assert len(result) < 50