1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
|
import itertools
import numpy as np
import pandas as pd
import pytest
from xarray import DataArray, Dataset, Variable
from xarray.core import indexing, nputils
from . import IndexerMaker, ReturnItem, assert_array_equal, raises_regex
B = IndexerMaker(indexing.BasicIndexer)
class TestIndexers:
def set_to_zero(self, x, i):
x = x.copy()
x[i] = 0
return x
def test_expanded_indexer(self):
x = np.random.randn(10, 11, 12, 13, 14)
y = np.arange(5)
arr = ReturnItem()
for i in [
arr[:],
arr[...],
arr[0, :, 10],
arr[..., 10],
arr[:5, ..., 0],
arr[..., 0, :],
arr[y],
arr[y, y],
arr[..., y, y],
arr[..., 0, 1, 2, 3, 4],
]:
j = indexing.expanded_indexer(i, x.ndim)
assert_array_equal(x[i], x[j])
assert_array_equal(self.set_to_zero(x, i), self.set_to_zero(x, j))
with raises_regex(IndexError, "too many indices"):
indexing.expanded_indexer(arr[1, 2, 3], 2)
def test_asarray_tuplesafe(self):
res = indexing._asarray_tuplesafe(("a", 1))
assert isinstance(res, np.ndarray)
assert res.ndim == 0
assert res.item() == ("a", 1)
res = indexing._asarray_tuplesafe([(0,), (1,)])
assert res.shape == (2,)
assert res[0] == (0,)
assert res[1] == (1,)
def test_stacked_multiindex_min_max(self):
data = np.random.randn(3, 23, 4)
da = DataArray(
data,
name="value",
dims=["replicate", "rsample", "exp"],
coords=dict(
replicate=[0, 1, 2], exp=["a", "b", "c", "d"], rsample=list(range(23))
),
)
da2 = da.stack(sample=("replicate", "rsample"))
s = da2.sample
assert_array_equal(da2.loc["a", s.max()], data[2, 22, 0])
assert_array_equal(da2.loc["b", s.min()], data[0, 0, 1])
def test_convert_label_indexer(self):
# TODO: add tests that aren't just for edge cases
index = pd.Index([1, 2, 3])
with raises_regex(KeyError, "not all values found"):
indexing.convert_label_indexer(index, [0])
with pytest.raises(KeyError):
indexing.convert_label_indexer(index, 0)
with raises_regex(ValueError, "does not have a MultiIndex"):
indexing.convert_label_indexer(index, {"one": 0})
mindex = pd.MultiIndex.from_product([["a", "b"], [1, 2]], names=("one", "two"))
with raises_regex(KeyError, "not all values found"):
indexing.convert_label_indexer(mindex, [0])
with pytest.raises(KeyError):
indexing.convert_label_indexer(mindex, 0)
with pytest.raises(ValueError):
indexing.convert_label_indexer(index, {"three": 0})
with pytest.raises(IndexError):
indexing.convert_label_indexer(mindex, (slice(None), 1, "no_level"))
def test_convert_label_indexer_datetime(self):
index = pd.to_datetime(["2000-01-01", "2001-01-01", "2002-01-01"])
actual = indexing.convert_label_indexer(index, "2001-01-01")
expected = (1, None)
assert actual == expected
actual = indexing.convert_label_indexer(index, index.to_numpy()[1])
assert actual == expected
def test_convert_unsorted_datetime_index_raises(self):
index = pd.to_datetime(["2001", "2000", "2002"])
with pytest.raises(KeyError):
# pandas will try to convert this into an array indexer. We should
# raise instead, so we can be sure the result of indexing with a
# slice is always a view.
indexing.convert_label_indexer(index, slice("2001", "2002"))
def test_get_dim_indexers(self):
mindex = pd.MultiIndex.from_product([["a", "b"], [1, 2]], names=("one", "two"))
mdata = DataArray(range(4), [("x", mindex)])
dim_indexers = indexing.get_dim_indexers(mdata, {"one": "a", "two": 1})
assert dim_indexers == {"x": {"one": "a", "two": 1}}
with raises_regex(ValueError, "cannot combine"):
indexing.get_dim_indexers(mdata, {"x": "a", "two": 1})
with raises_regex(ValueError, "do not exist"):
indexing.get_dim_indexers(mdata, {"y": "a"})
with raises_regex(ValueError, "do not exist"):
indexing.get_dim_indexers(mdata, {"four": 1})
def test_remap_label_indexers(self):
def test_indexer(data, x, expected_pos, expected_idx=None):
pos, idx = indexing.remap_label_indexers(data, {"x": x})
assert_array_equal(pos.get("x"), expected_pos)
assert_array_equal(idx.get("x"), expected_idx)
data = Dataset({"x": ("x", [1, 2, 3])})
mindex = pd.MultiIndex.from_product(
[["a", "b"], [1, 2], [-1, -2]], names=("one", "two", "three")
)
mdata = DataArray(range(8), [("x", mindex)])
test_indexer(data, 1, 0)
test_indexer(data, np.int32(1), 0)
test_indexer(data, Variable([], 1), 0)
test_indexer(mdata, ("a", 1, -1), 0)
test_indexer(
mdata,
("a", 1),
[True, True, False, False, False, False, False, False],
[-1, -2],
)
test_indexer(
mdata,
"a",
slice(0, 4, None),
pd.MultiIndex.from_product([[1, 2], [-1, -2]]),
)
test_indexer(
mdata,
("a",),
[True, True, True, True, False, False, False, False],
pd.MultiIndex.from_product([[1, 2], [-1, -2]]),
)
test_indexer(mdata, [("a", 1, -1), ("b", 2, -2)], [0, 7])
test_indexer(mdata, slice("a", "b"), slice(0, 8, None))
test_indexer(mdata, slice(("a", 1), ("b", 1)), slice(0, 6, None))
test_indexer(mdata, {"one": "a", "two": 1, "three": -1}, 0)
test_indexer(
mdata,
{"one": "a", "two": 1},
[True, True, False, False, False, False, False, False],
[-1, -2],
)
test_indexer(
mdata,
{"one": "a", "three": -1},
[True, False, True, False, False, False, False, False],
[1, 2],
)
test_indexer(
mdata,
{"one": "a"},
[True, True, True, True, False, False, False, False],
pd.MultiIndex.from_product([[1, 2], [-1, -2]]),
)
def test_read_only_view(self):
arr = DataArray(
np.random.rand(3, 3),
coords={"x": np.arange(3), "y": np.arange(3)},
dims=("x", "y"),
) # Create a 2D DataArray
arr = arr.expand_dims({"z": 3}, -1) # New dimension 'z'
arr["z"] = np.arange(3) # New coords to dimension 'z'
with pytest.raises(ValueError, match="Do you want to .copy()"):
arr.loc[0, 0, 0] = 999
class TestLazyArray:
def test_slice_slice(self):
arr = ReturnItem()
for size in [100, 99]:
# We test even/odd size cases
x = np.arange(size)
slices = [
arr[:3],
arr[:4],
arr[2:4],
arr[:1],
arr[:-1],
arr[5:-1],
arr[-5:-1],
arr[::-1],
arr[5::-1],
arr[:3:-1],
arr[:30:-1],
arr[10:4:],
arr[::4],
arr[4:4:4],
arr[:4:-4],
arr[::-2],
]
for i in slices:
for j in slices:
expected = x[i][j]
new_slice = indexing.slice_slice(i, j, size=size)
actual = x[new_slice]
assert_array_equal(expected, actual)
def test_lazily_indexed_array(self):
original = np.random.rand(10, 20, 30)
x = indexing.NumpyIndexingAdapter(original)
v = Variable(["i", "j", "k"], original)
lazy = indexing.LazilyOuterIndexedArray(x)
v_lazy = Variable(["i", "j", "k"], lazy)
arr = ReturnItem()
# test orthogonally applied indexers
indexers = [arr[:], 0, -2, arr[:3], [0, 1, 2, 3], [0], np.arange(10) < 5]
for i in indexers:
for j in indexers:
for k in indexers:
if isinstance(j, np.ndarray) and j.dtype.kind == "b":
j = np.arange(20) < 5
if isinstance(k, np.ndarray) and k.dtype.kind == "b":
k = np.arange(30) < 5
expected = np.asarray(v[i, j, k])
for actual in [
v_lazy[i, j, k],
v_lazy[:, j, k][i],
v_lazy[:, :, k][:, j][i],
]:
assert expected.shape == actual.shape
assert_array_equal(expected, actual)
assert isinstance(
actual._data, indexing.LazilyOuterIndexedArray
)
# make sure actual.key is appropriate type
if all(
isinstance(k, (int, slice)) for k in v_lazy._data.key.tuple
):
assert isinstance(v_lazy._data.key, indexing.BasicIndexer)
else:
assert isinstance(v_lazy._data.key, indexing.OuterIndexer)
# test sequentially applied indexers
indexers = [
(3, 2),
(arr[:], 0),
(arr[:2], -1),
(arr[:4], [0]),
([4, 5], 0),
([0, 1, 2], [0, 1]),
([0, 3, 5], arr[:2]),
]
for i, j in indexers:
expected = v[i][j]
actual = v_lazy[i][j]
assert expected.shape == actual.shape
assert_array_equal(expected, actual)
# test transpose
if actual.ndim > 1:
order = np.random.choice(actual.ndim, actual.ndim)
order = np.array(actual.dims)
transposed = actual.transpose(*order)
assert_array_equal(expected.transpose(*order), transposed)
assert isinstance(
actual._data,
(
indexing.LazilyVectorizedIndexedArray,
indexing.LazilyOuterIndexedArray,
),
)
assert isinstance(actual._data, indexing.LazilyOuterIndexedArray)
assert isinstance(actual._data.array, indexing.NumpyIndexingAdapter)
def test_vectorized_lazily_indexed_array(self):
original = np.random.rand(10, 20, 30)
x = indexing.NumpyIndexingAdapter(original)
v_eager = Variable(["i", "j", "k"], x)
lazy = indexing.LazilyOuterIndexedArray(x)
v_lazy = Variable(["i", "j", "k"], lazy)
arr = ReturnItem()
def check_indexing(v_eager, v_lazy, indexers):
for indexer in indexers:
actual = v_lazy[indexer]
expected = v_eager[indexer]
assert expected.shape == actual.shape
assert isinstance(
actual._data,
(
indexing.LazilyVectorizedIndexedArray,
indexing.LazilyOuterIndexedArray,
),
)
assert_array_equal(expected, actual)
v_eager = expected
v_lazy = actual
# test orthogonal indexing
indexers = [(arr[:], 0, 1), (Variable("i", [0, 1]),)]
check_indexing(v_eager, v_lazy, indexers)
# vectorized indexing
indexers = [
(Variable("i", [0, 1]), Variable("i", [0, 1]), slice(None)),
(slice(1, 3, 2), 0),
]
check_indexing(v_eager, v_lazy, indexers)
indexers = [
(slice(None, None, 2), 0, slice(None, 10)),
(Variable("i", [3, 2, 4, 3]), Variable("i", [3, 2, 1, 0])),
(Variable(["i", "j"], [[0, 1], [1, 2]]),),
]
check_indexing(v_eager, v_lazy, indexers)
indexers = [
(Variable("i", [3, 2, 4, 3]), Variable("i", [3, 2, 1, 0])),
(Variable(["i", "j"], [[0, 1], [1, 2]]),),
]
check_indexing(v_eager, v_lazy, indexers)
class TestCopyOnWriteArray:
def test_setitem(self):
original = np.arange(10)
wrapped = indexing.CopyOnWriteArray(original)
wrapped[B[:]] = 0
assert_array_equal(original, np.arange(10))
assert_array_equal(wrapped, np.zeros(10))
def test_sub_array(self):
original = np.arange(10)
wrapped = indexing.CopyOnWriteArray(original)
child = wrapped[B[:5]]
assert isinstance(child, indexing.CopyOnWriteArray)
child[B[:]] = 0
assert_array_equal(original, np.arange(10))
assert_array_equal(wrapped, np.arange(10))
assert_array_equal(child, np.zeros(5))
def test_index_scalar(self):
# regression test for GH1374
x = indexing.CopyOnWriteArray(np.array(["foo", "bar"]))
assert np.array(x[B[0]][B[()]]) == "foo"
class TestMemoryCachedArray:
def test_wrapper(self):
original = indexing.LazilyOuterIndexedArray(np.arange(10))
wrapped = indexing.MemoryCachedArray(original)
assert_array_equal(wrapped, np.arange(10))
assert isinstance(wrapped.array, indexing.NumpyIndexingAdapter)
def test_sub_array(self):
original = indexing.LazilyOuterIndexedArray(np.arange(10))
wrapped = indexing.MemoryCachedArray(original)
child = wrapped[B[:5]]
assert isinstance(child, indexing.MemoryCachedArray)
assert_array_equal(child, np.arange(5))
assert isinstance(child.array, indexing.NumpyIndexingAdapter)
assert isinstance(wrapped.array, indexing.LazilyOuterIndexedArray)
def test_setitem(self):
original = np.arange(10)
wrapped = indexing.MemoryCachedArray(original)
wrapped[B[:]] = 0
assert_array_equal(original, np.zeros(10))
def test_index_scalar(self):
# regression test for GH1374
x = indexing.MemoryCachedArray(np.array(["foo", "bar"]))
assert np.array(x[B[0]][B[()]]) == "foo"
def test_base_explicit_indexer():
with pytest.raises(TypeError):
indexing.ExplicitIndexer(())
class Subclass(indexing.ExplicitIndexer):
pass
value = Subclass((1, 2, 3))
assert value.tuple == (1, 2, 3)
assert repr(value) == "Subclass((1, 2, 3))"
@pytest.mark.parametrize(
"indexer_cls",
[indexing.BasicIndexer, indexing.OuterIndexer, indexing.VectorizedIndexer],
)
def test_invalid_for_all(indexer_cls):
with pytest.raises(TypeError):
indexer_cls(None)
with pytest.raises(TypeError):
indexer_cls(([],))
with pytest.raises(TypeError):
indexer_cls((None,))
with pytest.raises(TypeError):
indexer_cls(("foo",))
with pytest.raises(TypeError):
indexer_cls((1.0,))
with pytest.raises(TypeError):
indexer_cls((slice("foo"),))
with pytest.raises(TypeError):
indexer_cls((np.array(["foo"]),))
def check_integer(indexer_cls):
value = indexer_cls((1, np.uint64(2))).tuple
assert all(isinstance(v, int) for v in value)
assert value == (1, 2)
def check_slice(indexer_cls):
(value,) = indexer_cls((slice(1, None, np.int64(2)),)).tuple
assert value == slice(1, None, 2)
assert isinstance(value.step, int)
def check_array1d(indexer_cls):
(value,) = indexer_cls((np.arange(3, dtype=np.int32),)).tuple
assert value.dtype == np.int64
np.testing.assert_array_equal(value, [0, 1, 2])
def check_array2d(indexer_cls):
array = np.array([[1, 2], [3, 4]], dtype=np.int64)
(value,) = indexer_cls((array,)).tuple
assert value.dtype == np.int64
np.testing.assert_array_equal(value, array)
def test_basic_indexer():
check_integer(indexing.BasicIndexer)
check_slice(indexing.BasicIndexer)
with pytest.raises(TypeError):
check_array1d(indexing.BasicIndexer)
with pytest.raises(TypeError):
check_array2d(indexing.BasicIndexer)
def test_outer_indexer():
check_integer(indexing.OuterIndexer)
check_slice(indexing.OuterIndexer)
check_array1d(indexing.OuterIndexer)
with pytest.raises(TypeError):
check_array2d(indexing.OuterIndexer)
def test_vectorized_indexer():
with pytest.raises(TypeError):
check_integer(indexing.VectorizedIndexer)
check_slice(indexing.VectorizedIndexer)
check_array1d(indexing.VectorizedIndexer)
check_array2d(indexing.VectorizedIndexer)
with raises_regex(ValueError, "numbers of dimensions"):
indexing.VectorizedIndexer(
(np.array(1, dtype=np.int64), np.arange(5, dtype=np.int64))
)
class Test_vectorized_indexer:
@pytest.fixture(autouse=True)
def setup(self):
self.data = indexing.NumpyIndexingAdapter(np.random.randn(10, 12, 13))
self.indexers = [
np.array([[0, 3, 2]]),
np.array([[0, 3, 3], [4, 6, 7]]),
slice(2, -2, 2),
slice(2, -2, 3),
slice(None),
]
def test_arrayize_vectorized_indexer(self):
for i, j, k in itertools.product(self.indexers, repeat=3):
vindex = indexing.VectorizedIndexer((i, j, k))
vindex_array = indexing._arrayize_vectorized_indexer(
vindex, self.data.shape
)
np.testing.assert_array_equal(self.data[vindex], self.data[vindex_array])
actual = indexing._arrayize_vectorized_indexer(
indexing.VectorizedIndexer((slice(None),)), shape=(5,)
)
np.testing.assert_array_equal(actual.tuple, [np.arange(5)])
actual = indexing._arrayize_vectorized_indexer(
indexing.VectorizedIndexer((np.arange(5),) * 3), shape=(8, 10, 12)
)
expected = np.stack([np.arange(5)] * 3)
np.testing.assert_array_equal(np.stack(actual.tuple), expected)
actual = indexing._arrayize_vectorized_indexer(
indexing.VectorizedIndexer((np.arange(5), slice(None))), shape=(8, 10)
)
a, b = actual.tuple
np.testing.assert_array_equal(a, np.arange(5)[:, np.newaxis])
np.testing.assert_array_equal(b, np.arange(10)[np.newaxis, :])
actual = indexing._arrayize_vectorized_indexer(
indexing.VectorizedIndexer((slice(None), np.arange(5))), shape=(8, 10)
)
a, b = actual.tuple
np.testing.assert_array_equal(a, np.arange(8)[np.newaxis, :])
np.testing.assert_array_equal(b, np.arange(5)[:, np.newaxis])
def get_indexers(shape, mode):
if mode == "vectorized":
indexed_shape = (3, 4)
indexer = tuple(np.random.randint(0, s, size=indexed_shape) for s in shape)
return indexing.VectorizedIndexer(indexer)
elif mode == "outer":
indexer = tuple(np.random.randint(0, s, s + 2) for s in shape)
return indexing.OuterIndexer(indexer)
elif mode == "outer_scalar":
indexer = (np.random.randint(0, 3, 4), 0, slice(None, None, 2))
return indexing.OuterIndexer(indexer[: len(shape)])
elif mode == "outer_scalar2":
indexer = (np.random.randint(0, 3, 4), -2, slice(None, None, 2))
return indexing.OuterIndexer(indexer[: len(shape)])
elif mode == "outer1vec":
indexer = [slice(2, -3) for s in shape]
indexer[1] = np.random.randint(0, shape[1], shape[1] + 2)
return indexing.OuterIndexer(tuple(indexer))
elif mode == "basic": # basic indexer
indexer = [slice(2, -3) for s in shape]
indexer[0] = 3
return indexing.BasicIndexer(tuple(indexer))
elif mode == "basic1": # basic indexer
return indexing.BasicIndexer((3,))
elif mode == "basic2": # basic indexer
indexer = [0, 2, 4]
return indexing.BasicIndexer(tuple(indexer[: len(shape)]))
elif mode == "basic3": # basic indexer
indexer = [slice(None) for s in shape]
indexer[0] = slice(-2, 2, -2)
indexer[1] = slice(1, -1, 2)
return indexing.BasicIndexer(tuple(indexer[: len(shape)]))
@pytest.mark.parametrize("size", [100, 99])
@pytest.mark.parametrize(
"sl", [slice(1, -1, 1), slice(None, -1, 2), slice(-1, 1, -1), slice(-1, 1, -2)]
)
def test_decompose_slice(size, sl):
x = np.arange(size)
slice1, slice2 = indexing._decompose_slice(sl, size)
expected = x[sl]
actual = x[slice1][slice2]
assert_array_equal(expected, actual)
@pytest.mark.parametrize("shape", [(10, 5, 8), (10, 3)])
@pytest.mark.parametrize(
"indexer_mode",
[
"vectorized",
"outer",
"outer_scalar",
"outer_scalar2",
"outer1vec",
"basic",
"basic1",
"basic2",
"basic3",
],
)
@pytest.mark.parametrize(
"indexing_support",
[
indexing.IndexingSupport.BASIC,
indexing.IndexingSupport.OUTER,
indexing.IndexingSupport.OUTER_1VECTOR,
indexing.IndexingSupport.VECTORIZED,
],
)
def test_decompose_indexers(shape, indexer_mode, indexing_support):
data = np.random.randn(*shape)
indexer = get_indexers(shape, indexer_mode)
backend_ind, np_ind = indexing.decompose_indexer(indexer, shape, indexing_support)
expected = indexing.NumpyIndexingAdapter(data)[indexer]
array = indexing.NumpyIndexingAdapter(data)[backend_ind]
if len(np_ind.tuple) > 0:
array = indexing.NumpyIndexingAdapter(array)[np_ind]
np.testing.assert_array_equal(expected, array)
if not all(isinstance(k, indexing.integer_types) for k in np_ind.tuple):
combined_ind = indexing._combine_indexers(backend_ind, shape, np_ind)
array = indexing.NumpyIndexingAdapter(data)[combined_ind]
np.testing.assert_array_equal(expected, array)
def test_implicit_indexing_adapter():
array = np.arange(10, dtype=np.int64)
implicit = indexing.ImplicitToExplicitIndexingAdapter(
indexing.NumpyIndexingAdapter(array), indexing.BasicIndexer
)
np.testing.assert_array_equal(array, np.asarray(implicit))
np.testing.assert_array_equal(array, implicit[:])
def test_implicit_indexing_adapter_copy_on_write():
array = np.arange(10, dtype=np.int64)
implicit = indexing.ImplicitToExplicitIndexingAdapter(
indexing.CopyOnWriteArray(array)
)
assert isinstance(implicit[:], indexing.ImplicitToExplicitIndexingAdapter)
def test_outer_indexer_consistency_with_broadcast_indexes_vectorized():
def nonzero(x):
if isinstance(x, np.ndarray) and x.dtype.kind == "b":
x = x.nonzero()[0]
return x
original = np.random.rand(10, 20, 30)
v = Variable(["i", "j", "k"], original)
arr = ReturnItem()
# test orthogonally applied indexers
indexers = [
arr[:],
0,
-2,
arr[:3],
np.array([0, 1, 2, 3]),
np.array([0]),
np.arange(10) < 5,
]
for i, j, k in itertools.product(indexers, repeat=3):
if isinstance(j, np.ndarray) and j.dtype.kind == "b": # match size
j = np.arange(20) < 4
if isinstance(k, np.ndarray) and k.dtype.kind == "b":
k = np.arange(30) < 8
_, expected, new_order = v._broadcast_indexes_vectorized((i, j, k))
expected_data = nputils.NumpyVIndexAdapter(v.data)[expected.tuple]
if new_order:
old_order = range(len(new_order))
expected_data = np.moveaxis(expected_data, old_order, new_order)
outer_index = indexing.OuterIndexer((nonzero(i), nonzero(j), nonzero(k)))
actual = indexing._outer_to_numpy_indexer(outer_index, v.shape)
actual_data = v.data[actual]
np.testing.assert_array_equal(actual_data, expected_data)
def test_create_mask_outer_indexer():
indexer = indexing.OuterIndexer((np.array([0, -1, 2]),))
expected = np.array([False, True, False])
actual = indexing.create_mask(indexer, (5,))
np.testing.assert_array_equal(expected, actual)
indexer = indexing.OuterIndexer((1, slice(2), np.array([0, -1, 2])))
expected = np.array(2 * [[False, True, False]])
actual = indexing.create_mask(indexer, (5, 5, 5))
np.testing.assert_array_equal(expected, actual)
def test_create_mask_vectorized_indexer():
indexer = indexing.VectorizedIndexer((np.array([0, -1, 2]), np.array([0, 1, -1])))
expected = np.array([False, True, True])
actual = indexing.create_mask(indexer, (5,))
np.testing.assert_array_equal(expected, actual)
indexer = indexing.VectorizedIndexer(
(np.array([0, -1, 2]), slice(None), np.array([0, 1, -1]))
)
expected = np.array([[False, True, True]] * 2).T
actual = indexing.create_mask(indexer, (5, 2))
np.testing.assert_array_equal(expected, actual)
def test_create_mask_basic_indexer():
indexer = indexing.BasicIndexer((-1,))
actual = indexing.create_mask(indexer, (3,))
np.testing.assert_array_equal(True, actual)
indexer = indexing.BasicIndexer((0,))
actual = indexing.create_mask(indexer, (3,))
np.testing.assert_array_equal(False, actual)
def test_create_mask_dask():
da = pytest.importorskip("dask.array")
indexer = indexing.OuterIndexer((1, slice(2), np.array([0, -1, 2])))
expected = np.array(2 * [[False, True, False]])
actual = indexing.create_mask(
indexer, (5, 5, 5), da.empty((2, 3), chunks=((1, 1), (2, 1)))
)
assert actual.chunks == ((1, 1), (2, 1))
np.testing.assert_array_equal(expected, actual)
indexer = indexing.VectorizedIndexer(
(np.array([0, -1, 2]), slice(None), np.array([0, 1, -1]))
)
expected = np.array([[False, True, True]] * 2).T
actual = indexing.create_mask(
indexer, (5, 2), da.empty((3, 2), chunks=((3,), (2,)))
)
assert isinstance(actual, da.Array)
np.testing.assert_array_equal(expected, actual)
with pytest.raises(ValueError):
indexing.create_mask(indexer, (5, 2), da.empty((5,), chunks=(1,)))
def test_create_mask_error():
with raises_regex(TypeError, "unexpected key type"):
indexing.create_mask((1, 2), (3, 4))
@pytest.mark.parametrize(
"indices, expected",
[
(np.arange(5), np.arange(5)),
(np.array([0, -1, -1]), np.array([0, 0, 0])),
(np.array([-1, 1, -1]), np.array([1, 1, 1])),
(np.array([-1, -1, 2]), np.array([2, 2, 2])),
(np.array([-1]), np.array([0])),
(np.array([0, -1, 1, -1, -1]), np.array([0, 0, 1, 1, 1])),
(np.array([0, -1, -1, -1, 1]), np.array([0, 0, 0, 0, 1])),
],
)
def test_posify_mask_subindexer(indices, expected):
actual = indexing._posify_mask_subindexer(indices)
np.testing.assert_array_equal(expected, actual)
|