1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
from itertools import combinations, permutations
import numpy as np
import pandas as pd
import pytest
import xarray as xr
from xarray.tests import (
assert_allclose,
assert_equal,
assert_identical,
requires_cftime,
requires_dask,
requires_scipy,
)
from ..coding.cftimeindex import _parse_array_of_cftime_strings
from . import has_dask, has_scipy
from .test_dataset import create_test_data
try:
import scipy
except ImportError:
pass
def get_example_data(case):
x = np.linspace(0, 1, 100)
y = np.linspace(0, 0.1, 30)
data = xr.DataArray(
np.sin(x[:, np.newaxis]) * np.cos(y),
dims=["x", "y"],
coords={"x": x, "y": y, "x2": ("x", x ** 2)},
)
if case == 0:
return data
elif case == 1:
return data.chunk({"y": 3})
elif case == 2:
return data.chunk({"x": 25, "y": 3})
elif case == 3:
x = np.linspace(0, 1, 100)
y = np.linspace(0, 0.1, 30)
z = np.linspace(0.1, 0.2, 10)
return xr.DataArray(
np.sin(x[:, np.newaxis, np.newaxis]) * np.cos(y[:, np.newaxis]) * z,
dims=["x", "y", "z"],
coords={"x": x, "y": y, "x2": ("x", x ** 2), "z": z},
)
elif case == 4:
return get_example_data(3).chunk({"z": 5})
def test_keywargs():
if not has_scipy:
pytest.skip("scipy is not installed.")
da = get_example_data(0)
assert_equal(da.interp(x=[0.5, 0.8]), da.interp({"x": [0.5, 0.8]}))
@pytest.mark.parametrize("method", ["linear", "cubic"])
@pytest.mark.parametrize("dim", ["x", "y"])
@pytest.mark.parametrize("case", [0, 1])
def test_interpolate_1d(method, dim, case):
if not has_scipy:
pytest.skip("scipy is not installed.")
if not has_dask and case in [1]:
pytest.skip("dask is not installed in the environment.")
da = get_example_data(case)
xdest = np.linspace(0.0, 0.9, 80)
actual = da.interp(method=method, **{dim: xdest})
# scipy interpolation for the reference
def func(obj, new_x):
return scipy.interpolate.interp1d(
da[dim],
obj.data,
axis=obj.get_axis_num(dim),
bounds_error=False,
fill_value=np.nan,
kind=method,
)(new_x)
if dim == "x":
coords = {"x": xdest, "y": da["y"], "x2": ("x", func(da["x2"], xdest))}
else: # y
coords = {"x": da["x"], "y": xdest, "x2": da["x2"]}
expected = xr.DataArray(func(da, xdest), dims=["x", "y"], coords=coords)
assert_allclose(actual, expected)
@pytest.mark.parametrize("method", ["cubic", "zero"])
def test_interpolate_1d_methods(method):
if not has_scipy:
pytest.skip("scipy is not installed.")
da = get_example_data(0)
dim = "x"
xdest = np.linspace(0.0, 0.9, 80)
actual = da.interp(method=method, **{dim: xdest})
# scipy interpolation for the reference
def func(obj, new_x):
return scipy.interpolate.interp1d(
da[dim],
obj.data,
axis=obj.get_axis_num(dim),
bounds_error=False,
fill_value=np.nan,
kind=method,
)(new_x)
coords = {"x": xdest, "y": da["y"], "x2": ("x", func(da["x2"], xdest))}
expected = xr.DataArray(func(da, xdest), dims=["x", "y"], coords=coords)
assert_allclose(actual, expected)
@pytest.mark.parametrize("use_dask", [False, True])
def test_interpolate_vectorize(use_dask):
if not has_scipy:
pytest.skip("scipy is not installed.")
if not has_dask and use_dask:
pytest.skip("dask is not installed in the environment.")
# scipy interpolation for the reference
def func(obj, dim, new_x):
shape = [s for i, s in enumerate(obj.shape) if i != obj.get_axis_num(dim)]
for s in new_x.shape[::-1]:
shape.insert(obj.get_axis_num(dim), s)
return scipy.interpolate.interp1d(
da[dim],
obj.data,
axis=obj.get_axis_num(dim),
bounds_error=False,
fill_value=np.nan,
)(new_x).reshape(shape)
da = get_example_data(0)
if use_dask:
da = da.chunk({"y": 5})
# xdest is 1d but has different dimension
xdest = xr.DataArray(
np.linspace(0.1, 0.9, 30),
dims="z",
coords={"z": np.random.randn(30), "z2": ("z", np.random.randn(30))},
)
actual = da.interp(x=xdest, method="linear")
expected = xr.DataArray(
func(da, "x", xdest),
dims=["z", "y"],
coords={
"z": xdest["z"],
"z2": xdest["z2"],
"y": da["y"],
"x": ("z", xdest.values),
"x2": ("z", func(da["x2"], "x", xdest)),
},
)
assert_allclose(actual, expected.transpose("z", "y", transpose_coords=True))
# xdest is 2d
xdest = xr.DataArray(
np.linspace(0.1, 0.9, 30).reshape(6, 5),
dims=["z", "w"],
coords={
"z": np.random.randn(6),
"w": np.random.randn(5),
"z2": ("z", np.random.randn(6)),
},
)
actual = da.interp(x=xdest, method="linear")
expected = xr.DataArray(
func(da, "x", xdest),
dims=["z", "w", "y"],
coords={
"z": xdest["z"],
"w": xdest["w"],
"z2": xdest["z2"],
"y": da["y"],
"x": (("z", "w"), xdest),
"x2": (("z", "w"), func(da["x2"], "x", xdest)),
},
)
assert_allclose(actual, expected.transpose("z", "w", "y", transpose_coords=True))
@pytest.mark.parametrize("case", [3, 4])
def test_interpolate_nd(case):
if not has_scipy:
pytest.skip("scipy is not installed.")
if not has_dask and case == 4:
pytest.skip("dask is not installed in the environment.")
da = get_example_data(case)
# grid -> grid
xdest = np.linspace(0.1, 1.0, 11)
ydest = np.linspace(0.0, 0.2, 10)
actual = da.interp(x=xdest, y=ydest, method="linear")
# linear interpolation is separateable
expected = da.interp(x=xdest, method="linear")
expected = expected.interp(y=ydest, method="linear")
assert_allclose(actual.transpose("x", "y", "z"), expected.transpose("x", "y", "z"))
# grid -> 1d-sample
xdest = xr.DataArray(np.linspace(0.1, 1.0, 11), dims="y")
ydest = xr.DataArray(np.linspace(0.0, 0.2, 11), dims="y")
actual = da.interp(x=xdest, y=ydest, method="linear")
# linear interpolation is separateable
expected_data = scipy.interpolate.RegularGridInterpolator(
(da["x"], da["y"]),
da.transpose("x", "y", "z").values,
method="linear",
bounds_error=False,
fill_value=np.nan,
)(np.stack([xdest, ydest], axis=-1))
expected = xr.DataArray(
expected_data,
dims=["y", "z"],
coords={
"z": da["z"],
"y": ydest,
"x": ("y", xdest.values),
"x2": da["x2"].interp(x=xdest),
},
)
assert_allclose(actual.transpose("y", "z"), expected)
# reversed order
actual = da.interp(y=ydest, x=xdest, method="linear")
assert_allclose(actual.transpose("y", "z"), expected)
@requires_scipy
def test_interpolate_nd_nd():
"""Interpolate nd array with an nd indexer sharing coordinates."""
# Create original array
a = [0, 2]
x = [0, 1, 2]
da = xr.DataArray(
np.arange(6).reshape(2, 3), dims=("a", "x"), coords={"a": a, "x": x}
)
# Create indexer into `a` with dimensions (y, x)
y = [10]
c = {"x": x, "y": y}
ia = xr.DataArray([[1, 2, 2]], dims=("y", "x"), coords=c)
out = da.interp(a=ia)
expected = xr.DataArray([[1.5, 4, 5]], dims=("y", "x"), coords=c)
xr.testing.assert_allclose(out.drop_vars("a"), expected)
# If the *shared* indexing coordinates do not match, interp should fail.
with pytest.raises(ValueError):
c = {"x": [1], "y": y}
ia = xr.DataArray([[1]], dims=("y", "x"), coords=c)
da.interp(a=ia)
with pytest.raises(ValueError):
c = {"x": [5, 6, 7], "y": y}
ia = xr.DataArray([[1]], dims=("y", "x"), coords=c)
da.interp(a=ia)
@requires_scipy
def test_interpolate_nd_with_nan():
"""Interpolate an array with an nd indexer and `NaN` values."""
# Create indexer into `a` with dimensions (y, x)
x = [0, 1, 2]
y = [10, 20]
c = {"x": x, "y": y}
a = np.arange(6, dtype=float).reshape(2, 3)
a[0, 1] = np.nan
ia = xr.DataArray(a, dims=("y", "x"), coords=c)
da = xr.DataArray([1, 2, 2], dims=("a"), coords={"a": [0, 2, 4]})
out = da.interp(a=ia)
expected = xr.DataArray(
[[1.0, np.nan, 2.0], [2.0, 2.0, np.nan]], dims=("y", "x"), coords=c
)
xr.testing.assert_allclose(out.drop_vars("a"), expected)
db = 2 * da
ds = xr.Dataset({"da": da, "db": db})
out = ds.interp(a=ia)
expected_ds = xr.Dataset({"da": expected, "db": 2 * expected})
xr.testing.assert_allclose(out.drop_vars("a"), expected_ds)
@pytest.mark.parametrize("method", ["linear"])
@pytest.mark.parametrize("case", [0, 1])
def test_interpolate_scalar(method, case):
if not has_scipy:
pytest.skip("scipy is not installed.")
if not has_dask and case in [1]:
pytest.skip("dask is not installed in the environment.")
da = get_example_data(case)
xdest = 0.4
actual = da.interp(x=xdest, method=method)
# scipy interpolation for the reference
def func(obj, new_x):
return scipy.interpolate.interp1d(
da["x"],
obj.data,
axis=obj.get_axis_num("x"),
bounds_error=False,
fill_value=np.nan,
)(new_x)
coords = {"x": xdest, "y": da["y"], "x2": func(da["x2"], xdest)}
expected = xr.DataArray(func(da, xdest), dims=["y"], coords=coords)
assert_allclose(actual, expected)
@pytest.mark.parametrize("method", ["linear"])
@pytest.mark.parametrize("case", [3, 4])
def test_interpolate_nd_scalar(method, case):
if not has_scipy:
pytest.skip("scipy is not installed.")
if not has_dask and case in [4]:
pytest.skip("dask is not installed in the environment.")
da = get_example_data(case)
xdest = 0.4
ydest = 0.05
actual = da.interp(x=xdest, y=ydest, method=method)
# scipy interpolation for the reference
expected_data = scipy.interpolate.RegularGridInterpolator(
(da["x"], da["y"]),
da.transpose("x", "y", "z").values,
method="linear",
bounds_error=False,
fill_value=np.nan,
)(np.stack([xdest, ydest], axis=-1))
coords = {"x": xdest, "y": ydest, "x2": da["x2"].interp(x=xdest), "z": da["z"]}
expected = xr.DataArray(expected_data[0], dims=["z"], coords=coords)
assert_allclose(actual, expected)
@pytest.mark.parametrize("use_dask", [True, False])
def test_nans(use_dask):
if not has_scipy:
pytest.skip("scipy is not installed.")
da = xr.DataArray([0, 1, np.nan, 2], dims="x", coords={"x": range(4)})
if not has_dask and use_dask:
pytest.skip("dask is not installed in the environment.")
da = da.chunk()
actual = da.interp(x=[0.5, 1.5])
# not all values are nan
assert actual.count() > 0
@pytest.mark.parametrize("use_dask", [True, False])
def test_errors(use_dask):
if not has_scipy:
pytest.skip("scipy is not installed.")
# akima and spline are unavailable
da = xr.DataArray([0, 1, np.nan, 2], dims="x", coords={"x": range(4)})
if not has_dask and use_dask:
pytest.skip("dask is not installed in the environment.")
da = da.chunk()
for method in ["akima", "spline"]:
with pytest.raises(ValueError):
da.interp(x=[0.5, 1.5], method=method)
# not sorted
if use_dask:
da = get_example_data(3)
else:
da = get_example_data(0)
result = da.interp(x=[-1, 1, 3], kwargs={"fill_value": 0.0})
assert not np.isnan(result.values).any()
result = da.interp(x=[-1, 1, 3])
assert np.isnan(result.values).any()
# invalid method
with pytest.raises(ValueError):
da.interp(x=[2, 0], method="boo")
with pytest.raises(ValueError):
da.interp(y=[2, 0], method="boo")
# object-type DataArray cannot be interpolated
da = xr.DataArray(["a", "b", "c"], dims="x", coords={"x": [0, 1, 2]})
with pytest.raises(TypeError):
da.interp(x=0)
@requires_scipy
def test_dtype():
ds = xr.Dataset(
{"var1": ("x", [0, 1, 2]), "var2": ("x", ["a", "b", "c"])},
coords={"x": [0.1, 0.2, 0.3], "z": ("x", ["a", "b", "c"])},
)
actual = ds.interp(x=[0.15, 0.25])
assert "var1" in actual
assert "var2" not in actual
# object array should be dropped
assert "z" not in actual.coords
@requires_scipy
def test_sorted():
# unsorted non-uniform gridded data
x = np.random.randn(100)
y = np.random.randn(30)
z = np.linspace(0.1, 0.2, 10) * 3.0
da = xr.DataArray(
np.cos(x[:, np.newaxis, np.newaxis]) * np.cos(y[:, np.newaxis]) * z,
dims=["x", "y", "z"],
coords={"x": x, "y": y, "x2": ("x", x ** 2), "z": z},
)
x_new = np.linspace(0, 1, 30)
y_new = np.linspace(0, 1, 20)
da_sorted = da.sortby("x")
assert_allclose(da.interp(x=x_new), da_sorted.interp(x=x_new, assume_sorted=True))
da_sorted = da.sortby(["x", "y"])
assert_allclose(
da.interp(x=x_new, y=y_new),
da_sorted.interp(x=x_new, y=y_new, assume_sorted=True),
)
with pytest.raises(ValueError):
da.interp(x=[0, 1, 2], assume_sorted=True)
@requires_scipy
def test_dimension_wo_coords():
da = xr.DataArray(
np.arange(12).reshape(3, 4), dims=["x", "y"], coords={"y": [0, 1, 2, 3]}
)
da_w_coord = da.copy()
da_w_coord["x"] = np.arange(3)
assert_equal(da.interp(x=[0.1, 0.2, 0.3]), da_w_coord.interp(x=[0.1, 0.2, 0.3]))
assert_equal(
da.interp(x=[0.1, 0.2, 0.3], y=[0.5]),
da_w_coord.interp(x=[0.1, 0.2, 0.3], y=[0.5]),
)
@requires_scipy
def test_dataset():
ds = create_test_data()
ds.attrs["foo"] = "var"
ds["var1"].attrs["buz"] = "var2"
new_dim2 = xr.DataArray([0.11, 0.21, 0.31], dims="z")
interpolated = ds.interp(dim2=new_dim2)
assert_allclose(interpolated["var1"], ds["var1"].interp(dim2=new_dim2))
assert interpolated["var3"].equals(ds["var3"])
# make sure modifying interpolated does not affect the original dataset
interpolated["var1"][:, 1] = 1.0
interpolated["var2"][:, 1] = 1.0
interpolated["var3"][:, 1] = 1.0
assert not interpolated["var1"].equals(ds["var1"])
assert not interpolated["var2"].equals(ds["var2"])
assert not interpolated["var3"].equals(ds["var3"])
# attrs should be kept
assert interpolated.attrs["foo"] == "var"
assert interpolated["var1"].attrs["buz"] == "var2"
@pytest.mark.parametrize("case", [0, 3])
def test_interpolate_dimorder(case):
""" Make sure the resultant dimension order is consistent with .sel() """
if not has_scipy:
pytest.skip("scipy is not installed.")
da = get_example_data(case)
new_x = xr.DataArray([0, 1, 2], dims="x")
assert da.interp(x=new_x).dims == da.sel(x=new_x, method="nearest").dims
new_y = xr.DataArray([0, 1, 2], dims="y")
actual = da.interp(x=new_x, y=new_y).dims
expected = da.sel(x=new_x, y=new_y, method="nearest").dims
assert actual == expected
# reversed order
actual = da.interp(y=new_y, x=new_x).dims
expected = da.sel(y=new_y, x=new_x, method="nearest").dims
assert actual == expected
new_x = xr.DataArray([0, 1, 2], dims="a")
assert da.interp(x=new_x).dims == da.sel(x=new_x, method="nearest").dims
assert da.interp(y=new_x).dims == da.sel(y=new_x, method="nearest").dims
new_y = xr.DataArray([0, 1, 2], dims="a")
actual = da.interp(x=new_x, y=new_y).dims
expected = da.sel(x=new_x, y=new_y, method="nearest").dims
assert actual == expected
new_x = xr.DataArray([[0], [1], [2]], dims=["a", "b"])
assert da.interp(x=new_x).dims == da.sel(x=new_x, method="nearest").dims
assert da.interp(y=new_x).dims == da.sel(y=new_x, method="nearest").dims
if case == 3:
new_x = xr.DataArray([[0], [1], [2]], dims=["a", "b"])
new_z = xr.DataArray([[0], [1], [2]], dims=["a", "b"])
actual = da.interp(x=new_x, z=new_z).dims
expected = da.sel(x=new_x, z=new_z, method="nearest").dims
assert actual == expected
actual = da.interp(z=new_z, x=new_x).dims
expected = da.sel(z=new_z, x=new_x, method="nearest").dims
assert actual == expected
actual = da.interp(x=0.5, z=new_z).dims
expected = da.sel(x=0.5, z=new_z, method="nearest").dims
assert actual == expected
@requires_scipy
def test_interp_like():
ds = create_test_data()
ds.attrs["foo"] = "var"
ds["var1"].attrs["buz"] = "var2"
other = xr.DataArray(np.random.randn(3), dims=["dim2"], coords={"dim2": [0, 1, 2]})
interpolated = ds.interp_like(other)
assert_allclose(interpolated["var1"], ds["var1"].interp(dim2=other["dim2"]))
assert_allclose(interpolated["var1"], ds["var1"].interp_like(other))
assert interpolated["var3"].equals(ds["var3"])
# attrs should be kept
assert interpolated.attrs["foo"] == "var"
assert interpolated["var1"].attrs["buz"] == "var2"
other = xr.DataArray(
np.random.randn(3), dims=["dim3"], coords={"dim3": ["a", "b", "c"]}
)
actual = ds.interp_like(other)
expected = ds.reindex_like(other)
assert_allclose(actual, expected)
@requires_scipy
@pytest.mark.parametrize(
"x_new, expected",
[
(pd.date_range("2000-01-02", periods=3), [1, 2, 3]),
(
np.array(
[np.datetime64("2000-01-01T12:00"), np.datetime64("2000-01-02T12:00")]
),
[0.5, 1.5],
),
(["2000-01-01T12:00", "2000-01-02T12:00"], [0.5, 1.5]),
(["2000-01-01T12:00", "2000-01-02T12:00", "NaT"], [0.5, 1.5, np.nan]),
(["2000-01-01T12:00"], 0.5),
pytest.param("2000-01-01T12:00", 0.5, marks=pytest.mark.xfail),
],
)
def test_datetime(x_new, expected):
da = xr.DataArray(
np.arange(24),
dims="time",
coords={"time": pd.date_range("2000-01-01", periods=24)},
)
actual = da.interp(time=x_new)
expected_da = xr.DataArray(
np.atleast_1d(expected),
dims=["time"],
coords={"time": (np.atleast_1d(x_new).astype("datetime64[ns]"))},
)
assert_allclose(actual, expected_da)
@requires_scipy
def test_datetime_single_string():
da = xr.DataArray(
np.arange(24),
dims="time",
coords={"time": pd.date_range("2000-01-01", periods=24)},
)
actual = da.interp(time="2000-01-01T12:00")
expected = xr.DataArray(0.5)
assert_allclose(actual.drop_vars("time"), expected)
@requires_cftime
@requires_scipy
def test_cftime():
times = xr.cftime_range("2000", periods=24, freq="D")
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
times_new = xr.cftime_range("2000-01-01T12:00:00", periods=3, freq="D")
actual = da.interp(time=times_new)
expected = xr.DataArray([0.5, 1.5, 2.5], coords=[times_new], dims=["time"])
assert_allclose(actual, expected)
@requires_cftime
@requires_scipy
def test_cftime_type_error():
times = xr.cftime_range("2000", periods=24, freq="D")
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
times_new = xr.cftime_range(
"2000-01-01T12:00:00", periods=3, freq="D", calendar="noleap"
)
with pytest.raises(TypeError):
da.interp(time=times_new)
@requires_cftime
@requires_scipy
def test_cftime_list_of_strings():
from cftime import DatetimeProlepticGregorian
times = xr.cftime_range(
"2000", periods=24, freq="D", calendar="proleptic_gregorian"
)
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
times_new = ["2000-01-01T12:00", "2000-01-02T12:00", "2000-01-03T12:00"]
actual = da.interp(time=times_new)
times_new_array = _parse_array_of_cftime_strings(
np.array(times_new), DatetimeProlepticGregorian
)
expected = xr.DataArray([0.5, 1.5, 2.5], coords=[times_new_array], dims=["time"])
assert_allclose(actual, expected)
@requires_cftime
@requires_scipy
def test_cftime_single_string():
from cftime import DatetimeProlepticGregorian
times = xr.cftime_range(
"2000", periods=24, freq="D", calendar="proleptic_gregorian"
)
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
times_new = "2000-01-01T12:00"
actual = da.interp(time=times_new)
times_new_array = _parse_array_of_cftime_strings(
np.array(times_new), DatetimeProlepticGregorian
)
expected = xr.DataArray(0.5, coords={"time": times_new_array})
assert_allclose(actual, expected)
@requires_scipy
def test_datetime_to_non_datetime_error():
da = xr.DataArray(
np.arange(24),
dims="time",
coords={"time": pd.date_range("2000-01-01", periods=24)},
)
with pytest.raises(TypeError):
da.interp(time=0.5)
@requires_cftime
@requires_scipy
def test_cftime_to_non_cftime_error():
times = xr.cftime_range("2000", periods=24, freq="D")
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
with pytest.raises(TypeError):
da.interp(time=0.5)
@requires_scipy
def test_datetime_interp_noerror():
# GH:2667
a = xr.DataArray(
np.arange(21).reshape(3, 7),
dims=["x", "time"],
coords={
"x": [1, 2, 3],
"time": pd.date_range("01-01-2001", periods=7, freq="D"),
},
)
xi = xr.DataArray(
np.linspace(1, 3, 50),
dims=["time"],
coords={"time": pd.date_range("01-01-2001", periods=50, freq="H")},
)
a.interp(x=xi, time=xi.time) # should not raise an error
@requires_cftime
def test_3641():
times = xr.cftime_range("0001", periods=3, freq="500Y")
da = xr.DataArray(range(3), dims=["time"], coords=[times])
da.interp(time=["0002-05-01"])
@requires_scipy
@pytest.mark.parametrize("method", ["nearest", "linear"])
def test_decompose(method):
da = xr.DataArray(
np.arange(6).reshape(3, 2),
dims=["x", "y"],
coords={"x": [0, 1, 2], "y": [-0.1, -0.3]},
)
x_new = xr.DataArray([0.5, 1.5, 2.5], dims=["x1"])
y_new = xr.DataArray([-0.15, -0.25], dims=["y1"])
x_broadcast, y_broadcast = xr.broadcast(x_new, y_new)
assert x_broadcast.ndim == 2
actual = da.interp(x=x_new, y=y_new, method=method).drop_vars(("x", "y"))
expected = da.interp(x=x_broadcast, y=y_broadcast, method=method).drop_vars(
("x", "y")
)
assert_allclose(actual, expected)
@requires_scipy
@requires_dask
@pytest.mark.parametrize(
"method", ["linear", "nearest", "zero", "slinear", "quadratic", "cubic"]
)
@pytest.mark.parametrize("chunked", [True, False])
@pytest.mark.parametrize(
"data_ndim,interp_ndim,nscalar",
[
(data_ndim, interp_ndim, nscalar)
for data_ndim in range(1, 4)
for interp_ndim in range(1, data_ndim + 1)
for nscalar in range(0, interp_ndim + 1)
],
)
def test_interpolate_chunk_1d(method, data_ndim, interp_ndim, nscalar, chunked):
"""Interpolate nd array with multiple independant indexers
It should do a series of 1d interpolation
"""
# 3d non chunked data
x = np.linspace(0, 1, 5)
y = np.linspace(2, 4, 7)
z = np.linspace(-0.5, 0.5, 11)
da = xr.DataArray(
data=np.sin(x[:, np.newaxis, np.newaxis])
* np.cos(y[:, np.newaxis])
* np.exp(z),
coords=[("x", x), ("y", y), ("z", z)],
)
kwargs = {"fill_value": "extrapolate"}
# choose the data dimensions
for data_dims in permutations(da.dims, data_ndim):
# select only data_ndim dim
da = da.isel( # take the middle line
{dim: len(da.coords[dim]) // 2 for dim in da.dims if dim not in data_dims}
)
# chunk data
da = da.chunk(chunks={dim: i + 1 for i, dim in enumerate(da.dims)})
# choose the interpolation dimensions
for interp_dims in permutations(da.dims, interp_ndim):
# choose the scalar interpolation dimensions
for scalar_dims in combinations(interp_dims, nscalar):
dest = {}
for dim in interp_dims:
if dim in scalar_dims:
# take the middle point
dest[dim] = 0.5 * (da.coords[dim][0] + da.coords[dim][-1])
else:
# pick some points, including outside the domain
before = 2 * da.coords[dim][0] - da.coords[dim][1]
after = 2 * da.coords[dim][-1] - da.coords[dim][-2]
dest[dim] = np.linspace(before, after, len(da.coords[dim]) * 13)
if chunked:
dest[dim] = xr.DataArray(data=dest[dim], dims=[dim])
dest[dim] = dest[dim].chunk(2)
actual = da.interp(method=method, **dest, kwargs=kwargs)
expected = da.compute().interp(method=method, **dest, kwargs=kwargs)
assert_identical(actual, expected)
# all the combinations are usualy not necessary
break
break
break
@requires_scipy
@requires_dask
@pytest.mark.parametrize("method", ["linear", "nearest"])
def test_interpolate_chunk_advanced(method):
"""Interpolate nd array with an nd indexer sharing coordinates."""
# Create original array
x = np.linspace(-1, 1, 5)
y = np.linspace(-1, 1, 7)
z = np.linspace(-1, 1, 11)
t = np.linspace(0, 1, 13)
q = np.linspace(0, 1, 17)
da = xr.DataArray(
data=np.sin(x[:, np.newaxis, np.newaxis, np.newaxis, np.newaxis])
* np.cos(y[:, np.newaxis, np.newaxis, np.newaxis])
* np.exp(z[:, np.newaxis, np.newaxis])
* t[:, np.newaxis]
+ q,
dims=("x", "y", "z", "t", "q"),
coords={"x": x, "y": y, "z": z, "t": t, "q": q, "label": "dummy_attr"},
)
# Create indexer into `da` with shared coordinate ("full-twist" Möbius strip)
theta = np.linspace(0, 2 * np.pi, 5)
w = np.linspace(-0.25, 0.25, 7)
r = xr.DataArray(
data=1 + w[:, np.newaxis] * np.cos(theta),
coords=[("w", w), ("theta", theta)],
)
x = r * np.cos(theta)
y = r * np.sin(theta)
z = xr.DataArray(
data=w[:, np.newaxis] * np.sin(theta),
coords=[("w", w), ("theta", theta)],
)
kwargs = {"fill_value": None}
expected = da.interp(t=0.5, x=x, y=y, z=z, kwargs=kwargs, method=method)
da = da.chunk(2)
x = x.chunk(1)
z = z.chunk(3)
actual = da.interp(t=0.5, x=x, y=y, z=z, kwargs=kwargs, method=method)
assert_identical(actual, expected)
|