1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
import itertools
import numpy as np
import pandas as pd
import pytest
import xarray as xr
from xarray.core.missing import (
NumpyInterpolator,
ScipyInterpolator,
SplineInterpolator,
_get_nan_block_lengths,
get_clean_interp_index,
)
from xarray.core.pycompat import dask_array_type
from xarray.tests import (
assert_allclose,
assert_array_equal,
assert_equal,
raises_regex,
requires_bottleneck,
requires_cftime,
requires_dask,
requires_scipy,
)
from xarray.tests.test_cftime_offsets import _CFTIME_CALENDARS
@pytest.fixture
def da():
return xr.DataArray([0, np.nan, 1, 2, np.nan, 3, 4, 5, np.nan, 6, 7], dims="time")
@pytest.fixture
def cf_da():
def _cf_da(calendar, freq="1D"):
times = xr.cftime_range(
start="1970-01-01", freq=freq, periods=10, calendar=calendar
)
values = np.arange(10)
return xr.DataArray(values, dims=("time",), coords={"time": times})
return _cf_da
@pytest.fixture
def ds():
ds = xr.Dataset()
ds["var1"] = xr.DataArray(
[0, np.nan, 1, 2, np.nan, 3, 4, 5, np.nan, 6, 7], dims="time"
)
ds["var2"] = xr.DataArray(
[10, np.nan, 11, 12, np.nan, 13, 14, 15, np.nan, 16, 17], dims="x"
)
return ds
def make_interpolate_example_data(shape, frac_nan, seed=12345, non_uniform=False):
rs = np.random.RandomState(seed)
vals = rs.normal(size=shape)
if frac_nan == 1:
vals[:] = np.nan
elif frac_nan == 0:
pass
else:
n_missing = int(vals.size * frac_nan)
ys = np.arange(shape[0])
xs = np.arange(shape[1])
if n_missing:
np.random.shuffle(ys)
ys = ys[:n_missing]
np.random.shuffle(xs)
xs = xs[:n_missing]
vals[ys, xs] = np.nan
if non_uniform:
# construct a datetime index that has irregular spacing
deltas = pd.TimedeltaIndex(unit="d", data=rs.normal(size=shape[0], scale=10))
coords = {"time": (pd.Timestamp("2000-01-01") + deltas).sort_values()}
else:
coords = {"time": pd.date_range("2000-01-01", freq="D", periods=shape[0])}
da = xr.DataArray(vals, dims=("time", "x"), coords=coords)
df = da.to_pandas()
return da, df
@requires_scipy
def test_interpolate_pd_compat():
shapes = [(8, 8), (1, 20), (20, 1), (100, 100)]
frac_nans = [0, 0.5, 1]
methods = ["linear", "nearest", "zero", "slinear", "quadratic", "cubic"]
for (shape, frac_nan, method) in itertools.product(shapes, frac_nans, methods):
da, df = make_interpolate_example_data(shape, frac_nan)
for dim in ["time", "x"]:
actual = da.interpolate_na(method=method, dim=dim, fill_value=np.nan)
expected = df.interpolate(
method=method, axis=da.get_axis_num(dim), fill_value=(np.nan, np.nan)
)
# Note, Pandas does some odd things with the left/right fill_value
# for the linear methods. This next line inforces the xarray
# fill_value convention on the pandas output. Therefore, this test
# only checks that interpolated values are the same (not nans)
expected.values[pd.isnull(actual.values)] = np.nan
np.testing.assert_allclose(actual.values, expected.values)
@requires_scipy
@pytest.mark.parametrize("method", ["barycentric", "krog", "pchip", "spline", "akima"])
def test_scipy_methods_function(method):
# Note: Pandas does some wacky things with these methods and the full
# integration tests wont work.
da, _ = make_interpolate_example_data((25, 25), 0.4, non_uniform=True)
actual = da.interpolate_na(method=method, dim="time")
assert (da.count("time") <= actual.count("time")).all()
@requires_scipy
def test_interpolate_pd_compat_non_uniform_index():
shapes = [(8, 8), (1, 20), (20, 1), (100, 100)]
frac_nans = [0, 0.5, 1]
methods = ["time", "index", "values"]
for (shape, frac_nan, method) in itertools.product(shapes, frac_nans, methods):
da, df = make_interpolate_example_data(shape, frac_nan, non_uniform=True)
for dim in ["time", "x"]:
if method == "time" and dim != "time":
continue
actual = da.interpolate_na(
method="linear", dim=dim, use_coordinate=True, fill_value=np.nan
)
expected = df.interpolate(
method=method, axis=da.get_axis_num(dim), fill_value=np.nan
)
# Note, Pandas does some odd things with the left/right fill_value
# for the linear methods. This next line inforces the xarray
# fill_value convention on the pandas output. Therefore, this test
# only checks that interpolated values are the same (not nans)
expected.values[pd.isnull(actual.values)] = np.nan
np.testing.assert_allclose(actual.values, expected.values)
@requires_scipy
def test_interpolate_pd_compat_polynomial():
shapes = [(8, 8), (1, 20), (20, 1), (100, 100)]
frac_nans = [0, 0.5, 1]
orders = [1, 2, 3]
for (shape, frac_nan, order) in itertools.product(shapes, frac_nans, orders):
da, df = make_interpolate_example_data(shape, frac_nan)
for dim in ["time", "x"]:
actual = da.interpolate_na(
method="polynomial", order=order, dim=dim, use_coordinate=False
)
expected = df.interpolate(
method="polynomial", order=order, axis=da.get_axis_num(dim)
)
np.testing.assert_allclose(actual.values, expected.values)
@requires_scipy
def test_interpolate_unsorted_index_raises():
vals = np.array([1, 2, 3], dtype=np.float64)
expected = xr.DataArray(vals, dims="x", coords={"x": [2, 1, 3]})
with raises_regex(ValueError, "Index 'x' must be monotonically increasing"):
expected.interpolate_na(dim="x", method="index")
def test_interpolate_no_dim_raises():
da = xr.DataArray(np.array([1, 2, np.nan, 5], dtype=np.float64), dims="x")
with raises_regex(NotImplementedError, "dim is a required argument"):
da.interpolate_na(method="linear")
def test_interpolate_invalid_interpolator_raises():
da = xr.DataArray(np.array([1, 2, np.nan, 5], dtype=np.float64), dims="x")
with raises_regex(ValueError, "not a valid"):
da.interpolate_na(dim="x", method="foo")
def test_interpolate_duplicate_values_raises():
data = np.random.randn(2, 3)
da = xr.DataArray(data, coords=[("x", ["a", "a"]), ("y", [0, 1, 2])])
with raises_regex(ValueError, "Index 'x' has duplicate values"):
da.interpolate_na(dim="x", method="foo")
def test_interpolate_multiindex_raises():
data = np.random.randn(2, 3)
data[1, 1] = np.nan
da = xr.DataArray(data, coords=[("x", ["a", "b"]), ("y", [0, 1, 2])])
das = da.stack(z=("x", "y"))
with raises_regex(TypeError, "Index 'z' must be castable to float64"):
das.interpolate_na(dim="z")
def test_interpolate_2d_coord_raises():
coords = {
"x": xr.Variable(("a", "b"), np.arange(6).reshape(2, 3)),
"y": xr.Variable(("a", "b"), np.arange(6).reshape(2, 3)) * 2,
}
data = np.random.randn(2, 3)
data[1, 1] = np.nan
da = xr.DataArray(data, dims=("a", "b"), coords=coords)
with raises_regex(ValueError, "interpolation must be 1D"):
da.interpolate_na(dim="a", use_coordinate="x")
@requires_scipy
def test_interpolate_kwargs():
da = xr.DataArray(np.array([4, 5, np.nan], dtype=np.float64), dims="x")
expected = xr.DataArray(np.array([4, 5, 6], dtype=np.float64), dims="x")
actual = da.interpolate_na(dim="x", fill_value="extrapolate")
assert_equal(actual, expected)
expected = xr.DataArray(np.array([4, 5, -999], dtype=np.float64), dims="x")
actual = da.interpolate_na(dim="x", fill_value=-999)
assert_equal(actual, expected)
def test_interpolate_keep_attrs():
vals = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64)
mvals = vals.copy()
mvals[2] = np.nan
missing = xr.DataArray(mvals, dims="x")
missing.attrs = {"test": "value"}
actual = missing.interpolate_na(dim="x", keep_attrs=True)
assert actual.attrs == {"test": "value"}
def test_interpolate():
vals = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64)
expected = xr.DataArray(vals, dims="x")
mvals = vals.copy()
mvals[2] = np.nan
missing = xr.DataArray(mvals, dims="x")
actual = missing.interpolate_na(dim="x")
assert_equal(actual, expected)
def test_interpolate_nonans():
vals = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64)
expected = xr.DataArray(vals, dims="x")
actual = expected.interpolate_na(dim="x")
assert_equal(actual, expected)
@requires_scipy
def test_interpolate_allnans():
vals = np.full(6, np.nan, dtype=np.float64)
expected = xr.DataArray(vals, dims="x")
actual = expected.interpolate_na(dim="x")
assert_equal(actual, expected)
@requires_bottleneck
def test_interpolate_limits():
da = xr.DataArray(
np.array([1, 2, np.nan, np.nan, np.nan, 6], dtype=np.float64), dims="x"
)
actual = da.interpolate_na(dim="x", limit=None)
assert actual.isnull().sum() == 0
actual = da.interpolate_na(dim="x", limit=2)
expected = xr.DataArray(
np.array([1, 2, 3, 4, np.nan, 6], dtype=np.float64), dims="x"
)
assert_equal(actual, expected)
@requires_scipy
def test_interpolate_methods():
for method in ["linear", "nearest", "zero", "slinear", "quadratic", "cubic"]:
kwargs = {}
da = xr.DataArray(
np.array([0, 1, 2, np.nan, np.nan, np.nan, 6, 7, 8], dtype=np.float64),
dims="x",
)
actual = da.interpolate_na("x", method=method, **kwargs)
assert actual.isnull().sum() == 0
actual = da.interpolate_na("x", method=method, limit=2, **kwargs)
assert actual.isnull().sum() == 1
@requires_scipy
def test_interpolators():
for method, interpolator in [
("linear", NumpyInterpolator),
("linear", ScipyInterpolator),
("spline", SplineInterpolator),
]:
xi = np.array([-1, 0, 1, 2, 5], dtype=np.float64)
yi = np.array([-10, 0, 10, 20, 50], dtype=np.float64)
x = np.array([3, 4], dtype=np.float64)
f = interpolator(xi, yi, method=method)
out = f(x)
assert pd.isnull(out).sum() == 0
def test_interpolate_use_coordinate():
xc = xr.Variable("x", [100, 200, 300, 400, 500, 600])
da = xr.DataArray(
np.array([1, 2, np.nan, np.nan, np.nan, 6], dtype=np.float64),
dims="x",
coords={"xc": xc},
)
# use_coordinate == False is same as using the default index
actual = da.interpolate_na(dim="x", use_coordinate=False)
expected = da.interpolate_na(dim="x")
assert_equal(actual, expected)
# possible to specify non index coordinate
actual = da.interpolate_na(dim="x", use_coordinate="xc")
expected = da.interpolate_na(dim="x")
assert_equal(actual, expected)
# possible to specify index coordinate by name
actual = da.interpolate_na(dim="x", use_coordinate="x")
expected = da.interpolate_na(dim="x")
assert_equal(actual, expected)
@requires_dask
def test_interpolate_dask():
da, _ = make_interpolate_example_data((40, 40), 0.5)
da = da.chunk({"x": 5})
actual = da.interpolate_na("time")
expected = da.load().interpolate_na("time")
assert isinstance(actual.data, dask_array_type)
assert_equal(actual.compute(), expected)
# with limit
da = da.chunk({"x": 5})
actual = da.interpolate_na("time", limit=3)
expected = da.load().interpolate_na("time", limit=3)
assert isinstance(actual.data, dask_array_type)
assert_equal(actual, expected)
@requires_dask
def test_interpolate_dask_raises_for_invalid_chunk_dim():
da, _ = make_interpolate_example_data((40, 40), 0.5)
da = da.chunk({"time": 5})
# this checks for ValueError in dask.array.apply_gufunc
with raises_regex(ValueError, "consists of multiple chunks"):
da.interpolate_na("time")
@requires_bottleneck
def test_ffill():
da = xr.DataArray(np.array([4, 5, np.nan], dtype=np.float64), dims="x")
expected = xr.DataArray(np.array([4, 5, 5], dtype=np.float64), dims="x")
actual = da.ffill("x")
assert_equal(actual, expected)
@requires_bottleneck
@requires_dask
def test_ffill_dask():
da, _ = make_interpolate_example_data((40, 40), 0.5)
da = da.chunk({"x": 5})
actual = da.ffill("time")
expected = da.load().ffill("time")
assert isinstance(actual.data, dask_array_type)
assert_equal(actual, expected)
# with limit
da = da.chunk({"x": 5})
actual = da.ffill("time", limit=3)
expected = da.load().ffill("time", limit=3)
assert isinstance(actual.data, dask_array_type)
assert_equal(actual, expected)
@requires_bottleneck
@requires_dask
def test_bfill_dask():
da, _ = make_interpolate_example_data((40, 40), 0.5)
da = da.chunk({"x": 5})
actual = da.bfill("time")
expected = da.load().bfill("time")
assert isinstance(actual.data, dask_array_type)
assert_equal(actual, expected)
# with limit
da = da.chunk({"x": 5})
actual = da.bfill("time", limit=3)
expected = da.load().bfill("time", limit=3)
assert isinstance(actual.data, dask_array_type)
assert_equal(actual, expected)
@requires_bottleneck
def test_ffill_bfill_nonans():
vals = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64)
expected = xr.DataArray(vals, dims="x")
actual = expected.ffill(dim="x")
assert_equal(actual, expected)
actual = expected.bfill(dim="x")
assert_equal(actual, expected)
@requires_bottleneck
def test_ffill_bfill_allnans():
vals = np.full(6, np.nan, dtype=np.float64)
expected = xr.DataArray(vals, dims="x")
actual = expected.ffill(dim="x")
assert_equal(actual, expected)
actual = expected.bfill(dim="x")
assert_equal(actual, expected)
@requires_bottleneck
def test_ffill_functions(da):
result = da.ffill("time")
assert result.isnull().sum() == 0
@requires_bottleneck
def test_ffill_limit():
da = xr.DataArray(
[0, np.nan, np.nan, np.nan, np.nan, 3, 4, 5, np.nan, 6, 7], dims="time"
)
result = da.ffill("time")
expected = xr.DataArray([0, 0, 0, 0, 0, 3, 4, 5, 5, 6, 7], dims="time")
assert_array_equal(result, expected)
result = da.ffill("time", limit=1)
expected = xr.DataArray(
[0, 0, np.nan, np.nan, np.nan, 3, 4, 5, 5, 6, 7], dims="time"
)
assert_array_equal(result, expected)
def test_interpolate_dataset(ds):
actual = ds.interpolate_na(dim="time")
# no missing values in var1
assert actual["var1"].count("time") == actual.dims["time"]
# var2 should be the same as it was
assert_array_equal(actual["var2"], ds["var2"])
@requires_bottleneck
def test_ffill_dataset(ds):
ds.ffill(dim="time")
@requires_bottleneck
def test_bfill_dataset(ds):
ds.ffill(dim="time")
@requires_bottleneck
@pytest.mark.parametrize(
"y, lengths",
[
[np.arange(9), [[3, 3, 3, 0, 3, 3, 0, 2, 2]]],
[np.arange(9) * 3, [[9, 9, 9, 0, 9, 9, 0, 6, 6]]],
[[0, 2, 5, 6, 7, 8, 10, 12, 14], [[6, 6, 6, 0, 4, 4, 0, 4, 4]]],
],
)
def test_interpolate_na_nan_block_lengths(y, lengths):
arr = [[np.nan, np.nan, np.nan, 1, np.nan, np.nan, 4, np.nan, np.nan]]
da = xr.DataArray(arr * 2, dims=["x", "y"], coords={"x": [0, 1], "y": y})
index = get_clean_interp_index(da, dim="y", use_coordinate=True)
actual = _get_nan_block_lengths(da, dim="y", index=index)
expected = da.copy(data=lengths * 2)
assert_equal(actual, expected)
@requires_cftime
@pytest.mark.parametrize("calendar", _CFTIME_CALENDARS)
def test_get_clean_interp_index_cf_calendar(cf_da, calendar):
"""The index for CFTimeIndex is in units of days. This means that if two series using a 360 and 365 days
calendar each have a trend of .01C/year, the linear regression coefficients will be different because they
have different number of days.
Another option would be to have an index in units of years, but this would likely create other difficulties.
"""
i = get_clean_interp_index(cf_da(calendar), dim="time")
np.testing.assert_array_equal(i, np.arange(10) * 1e9 * 86400)
@requires_cftime
@pytest.mark.parametrize(
("calendar", "freq"), zip(["gregorian", "proleptic_gregorian"], ["1D", "1M", "1Y"])
)
def test_get_clean_interp_index_dt(cf_da, calendar, freq):
"""In the gregorian case, the index should be proportional to normal datetimes."""
g = cf_da(calendar, freq=freq)
g["stime"] = xr.Variable(data=g.time.to_index().to_datetimeindex(), dims=("time",))
gi = get_clean_interp_index(g, "time")
si = get_clean_interp_index(g, "time", use_coordinate="stime")
np.testing.assert_array_equal(gi, si)
def test_get_clean_interp_index_potential_overflow():
da = xr.DataArray(
[0, 1, 2],
dims=("time",),
coords={"time": xr.cftime_range("0000-01-01", periods=3, calendar="360_day")},
)
get_clean_interp_index(da, "time")
@pytest.mark.parametrize("index", ([0, 2, 1], [0, 1, 1]))
def test_get_clean_interp_index_strict(index):
da = xr.DataArray([0, 1, 2], dims=("x",), coords={"x": index})
with pytest.raises(ValueError):
get_clean_interp_index(da, "x")
clean = get_clean_interp_index(da, "x", strict=False)
np.testing.assert_array_equal(index, clean)
assert clean.dtype == np.float64
@pytest.fixture
def da_time():
return xr.DataArray(
[np.nan, 1, 2, np.nan, np.nan, 5, np.nan, np.nan, np.nan, np.nan, 10],
dims=["t"],
)
def test_interpolate_na_max_gap_errors(da_time):
with raises_regex(
NotImplementedError, "max_gap not implemented for unlabeled coordinates"
):
da_time.interpolate_na("t", max_gap=1)
with raises_regex(ValueError, "max_gap must be a scalar."):
da_time.interpolate_na("t", max_gap=(1,))
da_time["t"] = pd.date_range("2001-01-01", freq="H", periods=11)
with raises_regex(TypeError, "Expected value of type str"):
da_time.interpolate_na("t", max_gap=1)
with raises_regex(TypeError, "Expected integer or floating point"):
da_time.interpolate_na("t", max_gap="1H", use_coordinate=False)
with raises_regex(ValueError, "Could not convert 'huh' to timedelta64"):
da_time.interpolate_na("t", max_gap="huh")
@requires_bottleneck
@pytest.mark.parametrize("time_range_func", [pd.date_range, xr.cftime_range])
@pytest.mark.parametrize("transform", [lambda x: x, lambda x: x.to_dataset(name="a")])
@pytest.mark.parametrize(
"max_gap", ["3H", np.timedelta64(3, "h"), pd.to_timedelta("3H")]
)
def test_interpolate_na_max_gap_time_specifier(
da_time, max_gap, transform, time_range_func
):
da_time["t"] = time_range_func("2001-01-01", freq="H", periods=11)
expected = transform(
da_time.copy(data=[np.nan, 1, 2, 3, 4, 5, np.nan, np.nan, np.nan, np.nan, 10])
)
actual = transform(da_time).interpolate_na("t", max_gap=max_gap)
assert_allclose(actual, expected)
@requires_bottleneck
@pytest.mark.parametrize(
"coords",
[
pytest.param(None, marks=pytest.mark.xfail()),
{"x": np.arange(4), "y": np.arange(11)},
],
)
def test_interpolate_na_2d(coords):
da = xr.DataArray(
[
[1, 2, 3, 4, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
[1, 2, 3, np.nan, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
[1, 2, 3, np.nan, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
[1, 2, 3, 4, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
],
dims=["x", "y"],
coords=coords,
)
actual = da.interpolate_na("y", max_gap=2)
expected_y = da.copy(
data=[
[1, 2, 3, 4, 5, 6, 7, np.nan, np.nan, np.nan, 11],
[1, 2, 3, np.nan, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
[1, 2, 3, np.nan, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
[1, 2, 3, 4, 5, 6, 7, np.nan, np.nan, np.nan, 11],
]
)
assert_equal(actual, expected_y)
actual = da.interpolate_na("x", max_gap=3)
expected_x = xr.DataArray(
[
[1, 2, 3, 4, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
[1, 2, 3, 4, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
[1, 2, 3, 4, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
[1, 2, 3, 4, np.nan, 6, 7, np.nan, np.nan, np.nan, 11],
],
dims=["x", "y"],
coords=coords,
)
assert_equal(actual, expected_x)
|