File: test_plot.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (2498 lines) | stat: -rw-r--r-- 89,437 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
import contextlib
import inspect
from copy import copy
from datetime import datetime

import numpy as np
import pandas as pd
import pytest

import xarray as xr
import xarray.plot as xplt
from xarray import DataArray, Dataset
from xarray.plot.dataset_plot import _infer_meta_data
from xarray.plot.plot import _infer_interval_breaks
from xarray.plot.utils import (
    _build_discrete_cmap,
    _color_palette,
    _determine_cmap_params,
    get_axis,
    label_from_attrs,
)

from . import (
    assert_array_equal,
    assert_equal,
    has_nc_time_axis,
    raises_regex,
    requires_cartopy,
    requires_cftime,
    requires_matplotlib,
    requires_nc_time_axis,
    requires_seaborn,
)

# import mpl and change the backend before other mpl imports
try:
    import matplotlib as mpl
    import matplotlib.pyplot as plt
except ImportError:
    pass

try:
    import cartopy as ctpy  # type: ignore
except ImportError:
    ctpy = None


@contextlib.contextmanager
def figure_context(*args, **kwargs):
    """context manager which autocloses a figure (even if the test failed)"""

    try:
        yield None
    finally:
        plt.close("all")


@pytest.fixture(scope="module", autouse=True)
def test_all_figures_closed():
    """meta-test to ensure all figures are closed at the end of a test

    Notes:  Scope is kept to module (only invoke this function once per test
    module) else tests cannot be run in parallel (locally). Disadvantage: only
    catches one open figure per run. May still give a false positive if tests
    are run in parallel.
    """
    yield None

    open_figs = len(plt.get_fignums())
    if open_figs:
        raise RuntimeError(
            f"tests did not close all figures ({open_figs} figures open)"
        )


@pytest.mark.flaky
@pytest.mark.skip(reason="maybe flaky")
def text_in_fig():
    """
    Return the set of all text in the figure
    """
    return {t.get_text() for t in plt.gcf().findobj(mpl.text.Text)}


def find_possible_colorbars():
    # nb. this function also matches meshes from pcolormesh
    return plt.gcf().findobj(mpl.collections.QuadMesh)


def substring_in_axes(substring, ax):
    """
    Return True if a substring is found anywhere in an axes
    """
    alltxt = {t.get_text() for t in ax.findobj(mpl.text.Text)}
    for txt in alltxt:
        if substring in txt:
            return True
    return False


def substring_not_in_axes(substring, ax):
    """
    Return True if a substring is not found anywhere in an axes
    """
    alltxt = {t.get_text() for t in ax.findobj(mpl.text.Text)}
    check = [(substring not in txt) for txt in alltxt]
    return all(check)


def easy_array(shape, start=0, stop=1):
    """
    Make an array with desired shape using np.linspace

    shape is a tuple like (2, 3)
    """
    a = np.linspace(start, stop, num=np.prod(shape))
    return a.reshape(shape)


def get_colorbar_label(colorbar):
    if colorbar.orientation == "vertical":
        return colorbar.ax.get_ylabel()
    else:
        return colorbar.ax.get_xlabel()


@requires_matplotlib
class PlotTestCase:
    @pytest.fixture(autouse=True)
    def setup(self):
        yield
        # Remove all matplotlib figures
        plt.close("all")

    def pass_in_axis(self, plotmethod):
        fig, axes = plt.subplots(ncols=2)
        plotmethod(ax=axes[0])
        assert axes[0].has_data()

    @pytest.mark.slow
    def imshow_called(self, plotmethod):
        plotmethod()
        images = plt.gca().findobj(mpl.image.AxesImage)
        return len(images) > 0

    def contourf_called(self, plotmethod):
        plotmethod()
        paths = plt.gca().findobj(mpl.collections.PathCollection)
        return len(paths) > 0


class TestPlot(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setup_array(self):
        self.darray = DataArray(easy_array((2, 3, 4)))

    def test_accessor(self):
        from ..plot.plot import _PlotMethods

        assert DataArray.plot is _PlotMethods
        assert isinstance(self.darray.plot, _PlotMethods)

    def test_label_from_attrs(self):
        da = self.darray.copy()
        assert "" == label_from_attrs(da)

        da.name = "a"
        da.attrs["units"] = "a_units"
        da.attrs["long_name"] = "a_long_name"
        da.attrs["standard_name"] = "a_standard_name"
        assert "a_long_name [a_units]" == label_from_attrs(da)

        da.attrs.pop("long_name")
        assert "a_standard_name [a_units]" == label_from_attrs(da)
        da.attrs.pop("units")
        assert "a_standard_name" == label_from_attrs(da)

        da.attrs["units"] = "a_units"
        da.attrs.pop("standard_name")
        assert "a [a_units]" == label_from_attrs(da)

        da.attrs.pop("units")
        assert "a" == label_from_attrs(da)

    def test1d(self):
        self.darray[:, 0, 0].plot()

        with raises_regex(ValueError, "x must be one of None, 'dim_0'"):
            self.darray[:, 0, 0].plot(x="dim_1")

        with raises_regex(TypeError, "complex128"):
            (self.darray[:, 0, 0] + 1j).plot()

    def test_1d_bool(self):
        xr.ones_like(self.darray[:, 0, 0], dtype=bool).plot()

    def test_1d_x_y_kw(self):
        z = np.arange(10)
        da = DataArray(np.cos(z), dims=["z"], coords=[z], name="f")

        xy = [[None, None], [None, "z"], ["z", None]]

        f, ax = plt.subplots(3, 1)
        for aa, (x, y) in enumerate(xy):
            da.plot(x=x, y=y, ax=ax.flat[aa])

        with raises_regex(ValueError, "Cannot specify both"):
            da.plot(x="z", y="z")

        error_msg = "must be one of None, 'z'"
        with raises_regex(ValueError, f"x {error_msg}"):
            da.plot(x="f")

        with raises_regex(ValueError, f"y {error_msg}"):
            da.plot(y="f")

    def test_multiindex_level_as_coord(self):
        da = xr.DataArray(
            np.arange(5),
            dims="x",
            coords=dict(a=("x", np.arange(5)), b=("x", np.arange(5, 10))),
        )
        da = da.set_index(x=["a", "b"])

        for x in ["a", "b"]:
            h = da.plot(x=x)[0]
            assert_array_equal(h.get_xdata(), da[x].values)

        for y in ["a", "b"]:
            h = da.plot(y=y)[0]
            assert_array_equal(h.get_ydata(), da[y].values)

    # Test for bug in GH issue #2725
    def test_infer_line_data(self):
        current = DataArray(
            name="I",
            data=np.array([5, 8]),
            dims=["t"],
            coords={
                "t": (["t"], np.array([0.1, 0.2])),
                "V": (["t"], np.array([100, 200])),
            },
        )

        # Plot current against voltage
        line = current.plot.line(x="V")[0]
        assert_array_equal(line.get_xdata(), current.coords["V"].values)

        # Plot current against time
        line = current.plot.line()[0]
        assert_array_equal(line.get_xdata(), current.coords["t"].values)

    def test_line_plot_along_1d_coord(self):
        # Test for bug in GH #3334
        x_coord = xr.DataArray(data=[0.1, 0.2], dims=["x"])
        t_coord = xr.DataArray(data=[10, 20], dims=["t"])

        da = xr.DataArray(
            data=np.array([[0, 1], [5, 9]]),
            dims=["x", "t"],
            coords={"x": x_coord, "time": t_coord},
        )

        line = da.plot(x="time", hue="x")[0]
        assert_array_equal(line.get_xdata(), da.coords["time"].values)

        line = da.plot(y="time", hue="x")[0]
        assert_array_equal(line.get_ydata(), da.coords["time"].values)

    def test_2d_line(self):
        with raises_regex(ValueError, "hue"):
            self.darray[:, :, 0].plot.line()

        self.darray[:, :, 0].plot.line(hue="dim_1")
        self.darray[:, :, 0].plot.line(x="dim_1")
        self.darray[:, :, 0].plot.line(y="dim_1")
        self.darray[:, :, 0].plot.line(x="dim_0", hue="dim_1")
        self.darray[:, :, 0].plot.line(y="dim_0", hue="dim_1")

        with raises_regex(ValueError, "Cannot"):
            self.darray[:, :, 0].plot.line(x="dim_1", y="dim_0", hue="dim_1")

    def test_2d_line_accepts_legend_kw(self):
        self.darray[:, :, 0].plot.line(x="dim_0", add_legend=False)
        assert not plt.gca().get_legend()
        plt.cla()
        self.darray[:, :, 0].plot.line(x="dim_0", add_legend=True)
        assert plt.gca().get_legend()
        # check whether legend title is set
        assert plt.gca().get_legend().get_title().get_text() == "dim_1"

    def test_2d_line_accepts_x_kw(self):
        self.darray[:, :, 0].plot.line(x="dim_0")
        assert plt.gca().get_xlabel() == "dim_0"
        plt.cla()
        self.darray[:, :, 0].plot.line(x="dim_1")
        assert plt.gca().get_xlabel() == "dim_1"

    def test_2d_line_accepts_hue_kw(self):
        self.darray[:, :, 0].plot.line(hue="dim_0")
        assert plt.gca().get_legend().get_title().get_text() == "dim_0"
        plt.cla()
        self.darray[:, :, 0].plot.line(hue="dim_1")
        assert plt.gca().get_legend().get_title().get_text() == "dim_1"

    def test_2d_coords_line_plot(self):
        lon, lat = np.meshgrid(np.linspace(-20, 20, 5), np.linspace(0, 30, 4))
        lon += lat / 10
        lat += lon / 10
        da = xr.DataArray(
            np.arange(20).reshape(4, 5),
            dims=["y", "x"],
            coords={"lat": (("y", "x"), lat), "lon": (("y", "x"), lon)},
        )

        with figure_context():
            hdl = da.plot.line(x="lon", hue="x")
            assert len(hdl) == 5

        with figure_context():
            hdl = da.plot.line(x="lon", hue="y")
            assert len(hdl) == 4

        with pytest.raises(ValueError, match="For 2D inputs, hue must be a dimension"):
            da.plot.line(x="lon", hue="lat")

    def test_2d_coord_line_plot_coords_transpose_invariant(self):
        # checks for bug reported in GH #3933
        x = np.arange(10)
        y = np.arange(20)
        ds = xr.Dataset(coords={"x": x, "y": y})

        for z in [ds.y + ds.x, ds.x + ds.y]:
            ds = ds.assign_coords(z=z)
            ds["v"] = ds.x + ds.y
            ds["v"].plot.line(y="z", hue="x")

    def test_2d_before_squeeze(self):
        a = DataArray(easy_array((1, 5)))
        a.plot()

    def test2d_uniform_calls_imshow(self):
        assert self.imshow_called(self.darray[:, :, 0].plot.imshow)

    @pytest.mark.slow
    def test2d_nonuniform_calls_contourf(self):
        a = self.darray[:, :, 0]
        a.coords["dim_1"] = [2, 1, 89]
        assert self.contourf_called(a.plot.contourf)

    def test2d_1d_2d_coordinates_contourf(self):
        sz = (20, 10)
        depth = easy_array(sz)
        a = DataArray(
            easy_array(sz),
            dims=["z", "time"],
            coords={"depth": (["z", "time"], depth), "time": np.linspace(0, 1, sz[1])},
        )

        a.plot.contourf(x="time", y="depth")
        a.plot.contourf(x="depth", y="time")

    def test_contourf_cmap_set(self):
        a = DataArray(easy_array((4, 4)), dims=["z", "time"])

        cmap = mpl.cm.viridis

        # use copy to ensure cmap is not changed by contourf()
        # Set vmin and vmax so that _build_discrete_colormap is called with
        # extend='both'. extend is passed to
        # mpl.colors.from_levels_and_colors(), which returns a result with
        # sensible under and over values if extend='both', but not if
        # extend='neither' (but if extend='neither' the under and over values
        # would not be used because the data would all be within the plotted
        # range)
        pl = a.plot.contourf(cmap=copy(cmap), vmin=0.1, vmax=0.9)

        # check the set_bad color
        assert_array_equal(
            pl.cmap(np.ma.masked_invalid([np.nan]))[0],
            cmap(np.ma.masked_invalid([np.nan]))[0],
        )

        # check the set_under color
        assert pl.cmap(-np.inf) == cmap(-np.inf)

        # check the set_over color
        assert pl.cmap(np.inf) == cmap(np.inf)

    def test_contourf_cmap_set_with_bad_under_over(self):
        a = DataArray(easy_array((4, 4)), dims=["z", "time"])

        # make a copy here because we want a local cmap that we will modify.
        cmap = copy(mpl.cm.viridis)

        cmap.set_bad("w")
        # check we actually changed the set_bad color
        assert np.all(
            cmap(np.ma.masked_invalid([np.nan]))[0]
            != mpl.cm.viridis(np.ma.masked_invalid([np.nan]))[0]
        )

        cmap.set_under("r")
        # check we actually changed the set_under color
        assert cmap(-np.inf) != mpl.cm.viridis(-np.inf)

        cmap.set_over("g")
        # check we actually changed the set_over color
        assert cmap(np.inf) != mpl.cm.viridis(-np.inf)

        # copy to ensure cmap is not changed by contourf()
        pl = a.plot.contourf(cmap=copy(cmap))

        # check the set_bad color has been kept
        assert_array_equal(
            pl.cmap(np.ma.masked_invalid([np.nan]))[0],
            cmap(np.ma.masked_invalid([np.nan]))[0],
        )

        # check the set_under color has been kept
        assert pl.cmap(-np.inf) == cmap(-np.inf)

        # check the set_over color has been kept
        assert pl.cmap(np.inf) == cmap(np.inf)

    def test3d(self):
        self.darray.plot()

    def test_can_pass_in_axis(self):
        self.pass_in_axis(self.darray.plot)

    def test__infer_interval_breaks(self):
        assert_array_equal([-0.5, 0.5, 1.5], _infer_interval_breaks([0, 1]))
        assert_array_equal(
            [-0.5, 0.5, 5.0, 9.5, 10.5], _infer_interval_breaks([0, 1, 9, 10])
        )
        assert_array_equal(
            pd.date_range("20000101", periods=4) - np.timedelta64(12, "h"),
            _infer_interval_breaks(pd.date_range("20000101", periods=3)),
        )

        # make a bounded 2D array that we will center and re-infer
        xref, yref = np.meshgrid(np.arange(6), np.arange(5))
        cx = (xref[1:, 1:] + xref[:-1, :-1]) / 2
        cy = (yref[1:, 1:] + yref[:-1, :-1]) / 2
        x = _infer_interval_breaks(cx, axis=1)
        x = _infer_interval_breaks(x, axis=0)
        y = _infer_interval_breaks(cy, axis=1)
        y = _infer_interval_breaks(y, axis=0)
        np.testing.assert_allclose(xref, x)
        np.testing.assert_allclose(yref, y)

        # test that ValueError is raised for non-monotonic 1D inputs
        with pytest.raises(ValueError):
            _infer_interval_breaks(np.array([0, 2, 1]), check_monotonic=True)

    def test_geo_data(self):
        # Regression test for gh2250
        # Realistic coordinates taken from the example dataset
        lat = np.array(
            [
                [16.28, 18.48, 19.58, 19.54, 18.35],
                [28.07, 30.52, 31.73, 31.68, 30.37],
                [39.65, 42.27, 43.56, 43.51, 42.11],
                [50.52, 53.22, 54.55, 54.50, 53.06],
            ]
        )
        lon = np.array(
            [
                [-126.13, -113.69, -100.92, -88.04, -75.29],
                [-129.27, -115.62, -101.54, -87.32, -73.26],
                [-133.10, -118.00, -102.31, -86.42, -70.76],
                [-137.85, -120.99, -103.28, -85.28, -67.62],
            ]
        )
        data = np.sqrt(lon ** 2 + lat ** 2)
        da = DataArray(
            data,
            dims=("y", "x"),
            coords={"lon": (("y", "x"), lon), "lat": (("y", "x"), lat)},
        )
        da.plot(x="lon", y="lat")
        ax = plt.gca()
        assert ax.has_data()
        da.plot(x="lat", y="lon")
        ax = plt.gca()
        assert ax.has_data()

    def test_datetime_dimension(self):
        nrow = 3
        ncol = 4
        time = pd.date_range("2000-01-01", periods=nrow)
        a = DataArray(
            easy_array((nrow, ncol)), coords=[("time", time), ("y", range(ncol))]
        )
        a.plot()
        ax = plt.gca()
        assert ax.has_data()

    @pytest.mark.slow
    @pytest.mark.filterwarnings("ignore:tight_layout cannot")
    def test_convenient_facetgrid(self):
        a = easy_array((10, 15, 4))
        d = DataArray(a, dims=["y", "x", "z"])
        d.coords["z"] = list("abcd")
        g = d.plot(x="x", y="y", col="z", col_wrap=2, cmap="cool")

        assert_array_equal(g.axes.shape, [2, 2])
        for ax in g.axes.flat:
            assert ax.has_data()

        with raises_regex(ValueError, "[Ff]acet"):
            d.plot(x="x", y="y", col="z", ax=plt.gca())

        with raises_regex(ValueError, "[Ff]acet"):
            d[0].plot(x="x", y="y", col="z", ax=plt.gca())

    @pytest.mark.slow
    def test_subplot_kws(self):
        a = easy_array((10, 15, 4))
        d = DataArray(a, dims=["y", "x", "z"])
        d.coords["z"] = list("abcd")
        g = d.plot(
            x="x",
            y="y",
            col="z",
            col_wrap=2,
            cmap="cool",
            subplot_kws=dict(facecolor="r"),
        )
        for ax in g.axes.flat:
            # mpl V2
            assert ax.get_facecolor()[0:3] == mpl.colors.to_rgb("r")

    @pytest.mark.slow
    def test_plot_size(self):
        self.darray[:, 0, 0].plot(figsize=(13, 5))
        assert tuple(plt.gcf().get_size_inches()) == (13, 5)

        self.darray.plot(figsize=(13, 5))
        assert tuple(plt.gcf().get_size_inches()) == (13, 5)

        self.darray.plot(size=5)
        assert plt.gcf().get_size_inches()[1] == 5

        self.darray.plot(size=5, aspect=2)
        assert tuple(plt.gcf().get_size_inches()) == (10, 5)

        with raises_regex(ValueError, "cannot provide both"):
            self.darray.plot(ax=plt.gca(), figsize=(3, 4))

        with raises_regex(ValueError, "cannot provide both"):
            self.darray.plot(size=5, figsize=(3, 4))

        with raises_regex(ValueError, "cannot provide both"):
            self.darray.plot(size=5, ax=plt.gca())

        with raises_regex(ValueError, "cannot provide `aspect`"):
            self.darray.plot(aspect=1)

    @pytest.mark.slow
    @pytest.mark.filterwarnings("ignore:tight_layout cannot")
    def test_convenient_facetgrid_4d(self):
        a = easy_array((10, 15, 2, 3))
        d = DataArray(a, dims=["y", "x", "columns", "rows"])
        g = d.plot(x="x", y="y", col="columns", row="rows")

        assert_array_equal(g.axes.shape, [3, 2])
        for ax in g.axes.flat:
            assert ax.has_data()

        with raises_regex(ValueError, "[Ff]acet"):
            d.plot(x="x", y="y", col="columns", ax=plt.gca())

    def test_coord_with_interval(self):
        """Test line plot with intervals."""
        bins = [-1, 0, 1, 2]
        self.darray.groupby_bins("dim_0", bins).mean(...).plot()

    def test_coord_with_interval_x(self):
        """Test line plot with intervals explicitly on x axis."""
        bins = [-1, 0, 1, 2]
        self.darray.groupby_bins("dim_0", bins).mean(...).plot(x="dim_0_bins")

    def test_coord_with_interval_y(self):
        """Test line plot with intervals explicitly on y axis."""
        bins = [-1, 0, 1, 2]
        self.darray.groupby_bins("dim_0", bins).mean(...).plot(y="dim_0_bins")

    def test_coord_with_interval_xy(self):
        """Test line plot with intervals on both x and y axes."""
        bins = [-1, 0, 1, 2]
        self.darray.groupby_bins("dim_0", bins).mean(...).dim_0_bins.plot()


class TestPlot1D(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        d = [0, 1.1, 0, 2]
        self.darray = DataArray(d, coords={"period": range(len(d))}, dims="period")
        self.darray.period.attrs["units"] = "s"

    def test_xlabel_is_index_name(self):
        self.darray.plot()
        assert "period [s]" == plt.gca().get_xlabel()

    def test_no_label_name_on_x_axis(self):
        self.darray.plot(y="period")
        assert "" == plt.gca().get_xlabel()

    def test_no_label_name_on_y_axis(self):
        self.darray.plot()
        assert "" == plt.gca().get_ylabel()

    def test_ylabel_is_data_name(self):
        self.darray.name = "temperature"
        self.darray.attrs["units"] = "degrees_Celsius"
        self.darray.plot()
        assert "temperature [degrees_Celsius]" == plt.gca().get_ylabel()

    def test_xlabel_is_data_name(self):
        self.darray.name = "temperature"
        self.darray.attrs["units"] = "degrees_Celsius"
        self.darray.plot(y="period")
        assert "temperature [degrees_Celsius]" == plt.gca().get_xlabel()

    def test_format_string(self):
        self.darray.plot.line("ro")

    def test_can_pass_in_axis(self):
        self.pass_in_axis(self.darray.plot.line)

    def test_nonnumeric_index_raises_typeerror(self):
        a = DataArray([1, 2, 3], {"letter": ["a", "b", "c"]}, dims="letter")
        with raises_regex(TypeError, r"[Pp]lot"):
            a.plot.line()

    def test_primitive_returned(self):
        p = self.darray.plot.line()
        assert isinstance(p[0], mpl.lines.Line2D)

    @pytest.mark.slow
    def test_plot_nans(self):
        self.darray[1] = np.nan
        self.darray.plot.line()

    def test_x_ticks_are_rotated_for_time(self):
        time = pd.date_range("2000-01-01", "2000-01-10")
        a = DataArray(np.arange(len(time)), [("t", time)])
        a.plot.line()
        rotation = plt.gca().get_xticklabels()[0].get_rotation()
        assert rotation != 0

    def test_xyincrease_false_changes_axes(self):
        self.darray.plot.line(xincrease=False, yincrease=False)
        xlim = plt.gca().get_xlim()
        ylim = plt.gca().get_ylim()
        diffs = xlim[1] - xlim[0], ylim[1] - ylim[0]
        assert all(x < 0 for x in diffs)

    def test_slice_in_title(self):
        self.darray.coords["d"] = 10
        self.darray.plot.line()
        title = plt.gca().get_title()
        assert "d = 10" == title


class TestPlotStep(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        self.darray = DataArray(easy_array((2, 3, 4)))

    def test_step(self):
        hdl = self.darray[0, 0].plot.step()
        assert "steps" in hdl[0].get_drawstyle()

    @pytest.mark.parametrize("where", ["pre", "post", "mid"])
    def test_step_with_where(self, where):
        hdl = self.darray[0, 0].plot.step(where=where)
        assert hdl[0].get_drawstyle() == f"steps-{where}"

    def test_coord_with_interval_step(self):
        """Test step plot with intervals."""
        bins = [-1, 0, 1, 2]
        self.darray.groupby_bins("dim_0", bins).mean(...).plot.step()
        assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2)

    def test_coord_with_interval_step_x(self):
        """Test step plot with intervals explicitly on x axis."""
        bins = [-1, 0, 1, 2]
        self.darray.groupby_bins("dim_0", bins).mean(...).plot.step(x="dim_0_bins")
        assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2)

    def test_coord_with_interval_step_y(self):
        """Test step plot with intervals explicitly on y axis."""
        bins = [-1, 0, 1, 2]
        self.darray.groupby_bins("dim_0", bins).mean(...).plot.step(y="dim_0_bins")
        assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2)


class TestPlotHistogram(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        self.darray = DataArray(easy_array((2, 3, 4)))

    def test_3d_array(self):
        self.darray.plot.hist()

    def test_xlabel_uses_name(self):
        self.darray.name = "testpoints"
        self.darray.attrs["units"] = "testunits"
        self.darray.plot.hist()
        assert "testpoints [testunits]" == plt.gca().get_xlabel()

    def test_title_is_histogram(self):
        self.darray.plot.hist()
        assert "Histogram" == plt.gca().get_title()

    def test_can_pass_in_kwargs(self):
        nbins = 5
        self.darray.plot.hist(bins=nbins)
        assert nbins == len(plt.gca().patches)

    def test_can_pass_in_axis(self):
        self.pass_in_axis(self.darray.plot.hist)

    def test_primitive_returned(self):
        h = self.darray.plot.hist()
        assert isinstance(h[-1][0], mpl.patches.Rectangle)

    @pytest.mark.slow
    def test_plot_nans(self):
        self.darray[0, 0, 0] = np.nan
        self.darray.plot.hist()

    def test_hist_coord_with_interval(self):
        (
            self.darray.groupby_bins("dim_0", [-1, 0, 1, 2])
            .mean(...)
            .plot.hist(range=(-1, 2))
        )


@requires_matplotlib
class TestDetermineCmapParams:
    @pytest.fixture(autouse=True)
    def setUp(self):
        self.data = np.linspace(0, 1, num=100)

    def test_robust(self):
        cmap_params = _determine_cmap_params(self.data, robust=True)
        assert cmap_params["vmin"] == np.percentile(self.data, 2)
        assert cmap_params["vmax"] == np.percentile(self.data, 98)
        assert cmap_params["cmap"] == "viridis"
        assert cmap_params["extend"] == "both"
        assert cmap_params["levels"] is None
        assert cmap_params["norm"] is None

    def test_center(self):
        cmap_params = _determine_cmap_params(self.data, center=0.5)
        assert cmap_params["vmax"] - 0.5 == 0.5 - cmap_params["vmin"]
        assert cmap_params["cmap"] == "RdBu_r"
        assert cmap_params["extend"] == "neither"
        assert cmap_params["levels"] is None
        assert cmap_params["norm"] is None

    def test_cmap_sequential_option(self):
        with xr.set_options(cmap_sequential="magma"):
            cmap_params = _determine_cmap_params(self.data)
            assert cmap_params["cmap"] == "magma"

    def test_cmap_sequential_explicit_option(self):
        with xr.set_options(cmap_sequential=mpl.cm.magma):
            cmap_params = _determine_cmap_params(self.data)
            assert cmap_params["cmap"] == mpl.cm.magma

    def test_cmap_divergent_option(self):
        with xr.set_options(cmap_divergent="magma"):
            cmap_params = _determine_cmap_params(self.data, center=0.5)
            assert cmap_params["cmap"] == "magma"

    def test_nan_inf_are_ignored(self):
        cmap_params1 = _determine_cmap_params(self.data)
        data = self.data
        data[50:55] = np.nan
        data[56:60] = np.inf
        cmap_params2 = _determine_cmap_params(data)
        assert cmap_params1["vmin"] == cmap_params2["vmin"]
        assert cmap_params1["vmax"] == cmap_params2["vmax"]

    @pytest.mark.slow
    def test_integer_levels(self):
        data = self.data + 1

        # default is to cover full data range but with no guarantee on Nlevels
        for level in np.arange(2, 10, dtype=int):
            cmap_params = _determine_cmap_params(data, levels=level)
            assert cmap_params["vmin"] is None
            assert cmap_params["vmax"] is None
            assert cmap_params["norm"].vmin == cmap_params["levels"][0]
            assert cmap_params["norm"].vmax == cmap_params["levels"][-1]
            assert cmap_params["extend"] == "neither"

        # with min max we are more strict
        cmap_params = _determine_cmap_params(
            data, levels=5, vmin=0, vmax=5, cmap="Blues"
        )
        assert cmap_params["vmin"] is None
        assert cmap_params["vmax"] is None
        assert cmap_params["norm"].vmin == 0
        assert cmap_params["norm"].vmax == 5
        assert cmap_params["norm"].vmin == cmap_params["levels"][0]
        assert cmap_params["norm"].vmax == cmap_params["levels"][-1]
        assert cmap_params["cmap"].name == "Blues"
        assert cmap_params["extend"] == "neither"
        assert cmap_params["cmap"].N == 4
        assert cmap_params["norm"].N == 5

        cmap_params = _determine_cmap_params(data, levels=5, vmin=0.5, vmax=1.5)
        assert cmap_params["cmap"].name == "viridis"
        assert cmap_params["extend"] == "max"

        cmap_params = _determine_cmap_params(data, levels=5, vmin=1.5)
        assert cmap_params["cmap"].name == "viridis"
        assert cmap_params["extend"] == "min"

        cmap_params = _determine_cmap_params(data, levels=5, vmin=1.3, vmax=1.5)
        assert cmap_params["cmap"].name == "viridis"
        assert cmap_params["extend"] == "both"

    def test_list_levels(self):
        data = self.data + 1

        orig_levels = [0, 1, 2, 3, 4, 5]
        # vmin and vmax should be ignored if levels are explicitly provided
        cmap_params = _determine_cmap_params(data, levels=orig_levels, vmin=0, vmax=3)
        assert cmap_params["vmin"] is None
        assert cmap_params["vmax"] is None
        assert cmap_params["norm"].vmin == 0
        assert cmap_params["norm"].vmax == 5
        assert cmap_params["cmap"].N == 5
        assert cmap_params["norm"].N == 6

        for wrap_levels in [list, np.array, pd.Index, DataArray]:
            cmap_params = _determine_cmap_params(data, levels=wrap_levels(orig_levels))
            assert_array_equal(cmap_params["levels"], orig_levels)

    def test_divergentcontrol(self):
        neg = self.data - 0.1
        pos = self.data

        # Default with positive data will be a normal cmap
        cmap_params = _determine_cmap_params(pos)
        assert cmap_params["vmin"] == 0
        assert cmap_params["vmax"] == 1
        assert cmap_params["cmap"] == "viridis"

        # Default with negative data will be a divergent cmap
        cmap_params = _determine_cmap_params(neg)
        assert cmap_params["vmin"] == -0.9
        assert cmap_params["vmax"] == 0.9
        assert cmap_params["cmap"] == "RdBu_r"

        # Setting vmin or vmax should prevent this only if center is false
        cmap_params = _determine_cmap_params(neg, vmin=-0.1, center=False)
        assert cmap_params["vmin"] == -0.1
        assert cmap_params["vmax"] == 0.9
        assert cmap_params["cmap"] == "viridis"
        cmap_params = _determine_cmap_params(neg, vmax=0.5, center=False)
        assert cmap_params["vmin"] == -0.1
        assert cmap_params["vmax"] == 0.5
        assert cmap_params["cmap"] == "viridis"

        # Setting center=False too
        cmap_params = _determine_cmap_params(neg, center=False)
        assert cmap_params["vmin"] == -0.1
        assert cmap_params["vmax"] == 0.9
        assert cmap_params["cmap"] == "viridis"

        # However, I should still be able to set center and have a div cmap
        cmap_params = _determine_cmap_params(neg, center=0)
        assert cmap_params["vmin"] == -0.9
        assert cmap_params["vmax"] == 0.9
        assert cmap_params["cmap"] == "RdBu_r"

        # Setting vmin or vmax alone will force symmetric bounds around center
        cmap_params = _determine_cmap_params(neg, vmin=-0.1)
        assert cmap_params["vmin"] == -0.1
        assert cmap_params["vmax"] == 0.1
        assert cmap_params["cmap"] == "RdBu_r"
        cmap_params = _determine_cmap_params(neg, vmax=0.5)
        assert cmap_params["vmin"] == -0.5
        assert cmap_params["vmax"] == 0.5
        assert cmap_params["cmap"] == "RdBu_r"
        cmap_params = _determine_cmap_params(neg, vmax=0.6, center=0.1)
        assert cmap_params["vmin"] == -0.4
        assert cmap_params["vmax"] == 0.6
        assert cmap_params["cmap"] == "RdBu_r"

        # But this is only true if vmin or vmax are negative
        cmap_params = _determine_cmap_params(pos, vmin=-0.1)
        assert cmap_params["vmin"] == -0.1
        assert cmap_params["vmax"] == 0.1
        assert cmap_params["cmap"] == "RdBu_r"
        cmap_params = _determine_cmap_params(pos, vmin=0.1)
        assert cmap_params["vmin"] == 0.1
        assert cmap_params["vmax"] == 1
        assert cmap_params["cmap"] == "viridis"
        cmap_params = _determine_cmap_params(pos, vmax=0.5)
        assert cmap_params["vmin"] == 0
        assert cmap_params["vmax"] == 0.5
        assert cmap_params["cmap"] == "viridis"

        # If both vmin and vmax are provided, output is non-divergent
        cmap_params = _determine_cmap_params(neg, vmin=-0.2, vmax=0.6)
        assert cmap_params["vmin"] == -0.2
        assert cmap_params["vmax"] == 0.6
        assert cmap_params["cmap"] == "viridis"

        # regression test for GH3524
        # infer diverging colormap from divergent levels
        cmap_params = _determine_cmap_params(pos, levels=[-0.1, 0, 1])
        # specifying levels makes cmap a Colormap object
        assert cmap_params["cmap"].name == "RdBu_r"

    def test_norm_sets_vmin_vmax(self):
        vmin = self.data.min()
        vmax = self.data.max()

        for norm, extend, levels in zip(
            [
                mpl.colors.Normalize(),
                mpl.colors.Normalize(),
                mpl.colors.Normalize(vmin + 0.1, vmax - 0.1),
                mpl.colors.Normalize(None, vmax - 0.1),
                mpl.colors.Normalize(vmin + 0.1, None),
            ],
            ["neither", "neither", "both", "max", "min"],
            [7, None, None, None, None],
        ):

            test_min = vmin if norm.vmin is None else norm.vmin
            test_max = vmax if norm.vmax is None else norm.vmax

            cmap_params = _determine_cmap_params(self.data, norm=norm, levels=levels)
            assert cmap_params["vmin"] is None
            assert cmap_params["vmax"] is None
            assert cmap_params["norm"].vmin == test_min
            assert cmap_params["norm"].vmax == test_max
            assert cmap_params["extend"] == extend
            assert cmap_params["norm"] == norm


@requires_matplotlib
class TestDiscreteColorMap:
    @pytest.fixture(autouse=True)
    def setUp(self):
        x = np.arange(start=0, stop=10, step=2)
        y = np.arange(start=9, stop=-7, step=-3)
        xy = np.dstack(np.meshgrid(x, y))
        distance = np.linalg.norm(xy, axis=2)
        self.darray = DataArray(distance, list(zip(("y", "x"), (y, x))))
        self.data_min = distance.min()
        self.data_max = distance.max()
        yield
        # Remove all matplotlib figures
        plt.close("all")

    @pytest.mark.slow
    def test_recover_from_seaborn_jet_exception(self):
        pal = _color_palette("jet", 4)
        assert type(pal) == np.ndarray
        assert len(pal) == 4

    @pytest.mark.slow
    def test_build_discrete_cmap(self):
        for (cmap, levels, extend, filled) in [
            ("jet", [0, 1], "both", False),
            ("hot", [-4, 4], "max", True),
        ]:
            ncmap, cnorm = _build_discrete_cmap(cmap, levels, extend, filled)
            assert ncmap.N == len(levels) - 1
            assert len(ncmap.colors) == len(levels) - 1
            assert cnorm.N == len(levels)
            assert_array_equal(cnorm.boundaries, levels)
            assert max(levels) == cnorm.vmax
            assert min(levels) == cnorm.vmin
            if filled:
                assert ncmap.colorbar_extend == extend
            else:
                assert ncmap.colorbar_extend == "max"

    @pytest.mark.slow
    def test_discrete_colormap_list_of_levels(self):
        for extend, levels in [
            ("max", [-1, 2, 4, 8, 10]),
            ("both", [2, 5, 10, 11]),
            ("neither", [0, 5, 10, 15]),
            ("min", [2, 5, 10, 15]),
        ]:
            for kind in ["imshow", "pcolormesh", "contourf", "contour"]:
                primitive = getattr(self.darray.plot, kind)(levels=levels)
                assert_array_equal(levels, primitive.norm.boundaries)
                assert max(levels) == primitive.norm.vmax
                assert min(levels) == primitive.norm.vmin
                if kind != "contour":
                    assert extend == primitive.cmap.colorbar_extend
                else:
                    assert "max" == primitive.cmap.colorbar_extend
                assert len(levels) - 1 == len(primitive.cmap.colors)

    @pytest.mark.slow
    def test_discrete_colormap_int_levels(self):
        for extend, levels, vmin, vmax, cmap in [
            ("neither", 7, None, None, None),
            ("neither", 7, None, 20, mpl.cm.RdBu),
            ("both", 7, 4, 8, None),
            ("min", 10, 4, 15, None),
        ]:
            for kind in ["imshow", "pcolormesh", "contourf", "contour"]:
                primitive = getattr(self.darray.plot, kind)(
                    levels=levels, vmin=vmin, vmax=vmax, cmap=cmap
                )
                assert levels >= len(primitive.norm.boundaries) - 1
                if vmax is None:
                    assert primitive.norm.vmax >= self.data_max
                else:
                    assert primitive.norm.vmax >= vmax
                if vmin is None:
                    assert primitive.norm.vmin <= self.data_min
                else:
                    assert primitive.norm.vmin <= vmin
                if kind != "contour":
                    assert extend == primitive.cmap.colorbar_extend
                else:
                    assert "max" == primitive.cmap.colorbar_extend
                assert levels >= len(primitive.cmap.colors)

    def test_discrete_colormap_list_levels_and_vmin_or_vmax(self):
        levels = [0, 5, 10, 15]
        primitive = self.darray.plot(levels=levels, vmin=-3, vmax=20)
        assert primitive.norm.vmax == max(levels)
        assert primitive.norm.vmin == min(levels)

    def test_discrete_colormap_provided_boundary_norm(self):
        norm = mpl.colors.BoundaryNorm([0, 5, 10, 15], 4)
        primitive = self.darray.plot.contourf(norm=norm)
        np.testing.assert_allclose(primitive.levels, norm.boundaries)


class Common2dMixin:
    """
    Common tests for 2d plotting go here.

    These tests assume that a staticmethod for `self.plotfunc` exists.
    Should have the same name as the method.
    """

    @pytest.fixture(autouse=True)
    def setUp(self):
        da = DataArray(
            easy_array((10, 15), start=-1),
            dims=["y", "x"],
            coords={"y": np.arange(10), "x": np.arange(15)},
        )
        # add 2d coords
        ds = da.to_dataset(name="testvar")
        x, y = np.meshgrid(da.x.values, da.y.values)
        ds["x2d"] = DataArray(x, dims=["y", "x"])
        ds["y2d"] = DataArray(y, dims=["y", "x"])
        ds = ds.set_coords(["x2d", "y2d"])
        # set darray and plot method
        self.darray = ds.testvar

        # Add CF-compliant metadata
        self.darray.attrs["long_name"] = "a_long_name"
        self.darray.attrs["units"] = "a_units"
        self.darray.x.attrs["long_name"] = "x_long_name"
        self.darray.x.attrs["units"] = "x_units"
        self.darray.y.attrs["long_name"] = "y_long_name"
        self.darray.y.attrs["units"] = "y_units"

        self.plotmethod = getattr(self.darray.plot, self.plotfunc.__name__)

    def test_label_names(self):
        self.plotmethod()
        assert "x_long_name [x_units]" == plt.gca().get_xlabel()
        assert "y_long_name [y_units]" == plt.gca().get_ylabel()

    def test_1d_raises_valueerror(self):
        with raises_regex(ValueError, r"DataArray must be 2d"):
            self.plotfunc(self.darray[0, :])

    def test_bool(self):
        xr.ones_like(self.darray, dtype=bool).plot()

    def test_complex_raises_typeerror(self):
        with raises_regex(TypeError, "complex128"):
            (self.darray + 1j).plot()

    def test_3d_raises_valueerror(self):
        a = DataArray(easy_array((2, 3, 4)))
        if self.plotfunc.__name__ == "imshow":
            pytest.skip()
        with raises_regex(ValueError, r"DataArray must be 2d"):
            self.plotfunc(a)

    def test_nonnumeric_index_raises_typeerror(self):
        a = DataArray(easy_array((3, 2)), coords=[["a", "b", "c"], ["d", "e"]])
        with raises_regex(TypeError, r"[Pp]lot"):
            self.plotfunc(a)

    def test_multiindex_raises_typeerror(self):
        a = DataArray(
            easy_array((3, 2)),
            dims=("x", "y"),
            coords=dict(x=("x", [0, 1, 2]), a=("y", [0, 1]), b=("y", [2, 3])),
        )
        a = a.set_index(y=("a", "b"))
        with raises_regex(TypeError, r"[Pp]lot"):
            self.plotfunc(a)

    def test_can_pass_in_axis(self):
        self.pass_in_axis(self.plotmethod)

    def test_xyincrease_defaults(self):

        # With default settings the axis must be ordered regardless
        # of the coords order.
        self.plotfunc(DataArray(easy_array((3, 2)), coords=[[1, 2, 3], [1, 2]]))
        bounds = plt.gca().get_ylim()
        assert bounds[0] < bounds[1]
        bounds = plt.gca().get_xlim()
        assert bounds[0] < bounds[1]
        # Inverted coords
        self.plotfunc(DataArray(easy_array((3, 2)), coords=[[3, 2, 1], [2, 1]]))
        bounds = plt.gca().get_ylim()
        assert bounds[0] < bounds[1]
        bounds = plt.gca().get_xlim()
        assert bounds[0] < bounds[1]

    def test_xyincrease_false_changes_axes(self):
        self.plotmethod(xincrease=False, yincrease=False)
        xlim = plt.gca().get_xlim()
        ylim = plt.gca().get_ylim()
        diffs = xlim[0] - 14, xlim[1] - 0, ylim[0] - 9, ylim[1] - 0
        assert all(abs(x) < 1 for x in diffs)

    def test_xyincrease_true_changes_axes(self):
        self.plotmethod(xincrease=True, yincrease=True)
        xlim = plt.gca().get_xlim()
        ylim = plt.gca().get_ylim()
        diffs = xlim[0] - 0, xlim[1] - 14, ylim[0] - 0, ylim[1] - 9
        assert all(abs(x) < 1 for x in diffs)

    def test_x_ticks_are_rotated_for_time(self):
        time = pd.date_range("2000-01-01", "2000-01-10")
        a = DataArray(np.random.randn(2, len(time)), [("xx", [1, 2]), ("t", time)])
        a.plot(x="t")
        rotation = plt.gca().get_xticklabels()[0].get_rotation()
        assert rotation != 0

    def test_plot_nans(self):
        x1 = self.darray[:5]
        x2 = self.darray.copy()
        x2[5:] = np.nan

        clim1 = self.plotfunc(x1).get_clim()
        clim2 = self.plotfunc(x2).get_clim()
        assert clim1 == clim2

    @pytest.mark.filterwarnings("ignore::UserWarning")
    @pytest.mark.filterwarnings("ignore:invalid value encountered")
    def test_can_plot_all_nans(self):
        # regression test for issue #1780
        self.plotfunc(DataArray(np.full((2, 2), np.nan)))

    @pytest.mark.filterwarnings("ignore: Attempting to set")
    def test_can_plot_axis_size_one(self):
        if self.plotfunc.__name__ not in ("contour", "contourf"):
            self.plotfunc(DataArray(np.ones((1, 1))))

    def test_disallows_rgb_arg(self):
        with pytest.raises(ValueError):
            # Always invalid for most plots.  Invalid for imshow with 2D data.
            self.plotfunc(DataArray(np.ones((2, 2))), rgb="not None")

    def test_viridis_cmap(self):
        cmap_name = self.plotmethod(cmap="viridis").get_cmap().name
        assert "viridis" == cmap_name

    def test_default_cmap(self):
        cmap_name = self.plotmethod().get_cmap().name
        assert "RdBu_r" == cmap_name

        cmap_name = self.plotfunc(abs(self.darray)).get_cmap().name
        assert "viridis" == cmap_name

    @requires_seaborn
    def test_seaborn_palette_as_cmap(self):
        cmap_name = self.plotmethod(levels=2, cmap="husl").get_cmap().name
        assert "husl" == cmap_name

    def test_can_change_default_cmap(self):
        cmap_name = self.plotmethod(cmap="Blues").get_cmap().name
        assert "Blues" == cmap_name

    def test_diverging_color_limits(self):
        artist = self.plotmethod()
        vmin, vmax = artist.get_clim()
        assert round(abs(-vmin - vmax), 7) == 0

    def test_xy_strings(self):
        self.plotmethod("y", "x")
        ax = plt.gca()
        assert "y_long_name [y_units]" == ax.get_xlabel()
        assert "x_long_name [x_units]" == ax.get_ylabel()

    def test_positional_coord_string(self):
        self.plotmethod(y="x")
        ax = plt.gca()
        assert "x_long_name [x_units]" == ax.get_ylabel()
        assert "y_long_name [y_units]" == ax.get_xlabel()

        self.plotmethod(x="x")
        ax = plt.gca()
        assert "x_long_name [x_units]" == ax.get_xlabel()
        assert "y_long_name [y_units]" == ax.get_ylabel()

    def test_bad_x_string_exception(self):

        with raises_regex(ValueError, "x and y cannot be equal."):
            self.plotmethod(x="y", y="y")

        error_msg = "must be one of None, 'x', 'x2d', 'y', 'y2d'"
        with raises_regex(ValueError, f"x {error_msg}"):
            self.plotmethod("not_a_real_dim", "y")
        with raises_regex(ValueError, f"x {error_msg}"):
            self.plotmethod(x="not_a_real_dim")
        with raises_regex(ValueError, f"y {error_msg}"):
            self.plotmethod(y="not_a_real_dim")
        self.darray.coords["z"] = 100

    def test_coord_strings(self):
        # 1d coords (same as dims)
        assert {"x", "y"} == set(self.darray.dims)
        self.plotmethod(y="y", x="x")

    def test_non_linked_coords(self):
        # plot with coordinate names that are not dimensions
        self.darray.coords["newy"] = self.darray.y + 150
        # Normal case, without transpose
        self.plotfunc(self.darray, x="x", y="newy")
        ax = plt.gca()
        assert "x_long_name [x_units]" == ax.get_xlabel()
        assert "newy" == ax.get_ylabel()
        # ax limits might change between plotfuncs
        # simply ensure that these high coords were passed over
        assert np.min(ax.get_ylim()) > 100.0

    def test_non_linked_coords_transpose(self):
        # plot with coordinate names that are not dimensions,
        # and with transposed y and x axes
        # This used to raise an error with pcolormesh and contour
        # https://github.com/pydata/xarray/issues/788
        self.darray.coords["newy"] = self.darray.y + 150
        self.plotfunc(self.darray, x="newy", y="x")
        ax = plt.gca()
        assert "newy" == ax.get_xlabel()
        assert "x_long_name [x_units]" == ax.get_ylabel()
        # ax limits might change between plotfuncs
        # simply ensure that these high coords were passed over
        assert np.min(ax.get_xlim()) > 100.0

    def test_multiindex_level_as_coord(self):
        da = DataArray(
            easy_array((3, 2)),
            dims=("x", "y"),
            coords=dict(x=("x", [0, 1, 2]), a=("y", [0, 1]), b=("y", [2, 3])),
        )
        da = da.set_index(y=["a", "b"])

        for x, y in (("a", "x"), ("b", "x"), ("x", "a"), ("x", "b")):
            self.plotfunc(da, x=x, y=y)

            ax = plt.gca()
            assert x == ax.get_xlabel()
            assert y == ax.get_ylabel()

        with raises_regex(ValueError, "levels of the same MultiIndex"):
            self.plotfunc(da, x="a", y="b")

        with raises_regex(ValueError, "y must be one of None, 'a', 'b', 'x'"):
            self.plotfunc(da, x="a", y="y")

    def test_default_title(self):
        a = DataArray(easy_array((4, 3, 2)), dims=["a", "b", "c"])
        a.coords["c"] = [0, 1]
        a.coords["d"] = "foo"
        self.plotfunc(a.isel(c=1))
        title = plt.gca().get_title()
        assert "c = 1, d = foo" == title or "d = foo, c = 1" == title

    def test_colorbar_default_label(self):
        self.plotmethod(add_colorbar=True)
        assert "a_long_name [a_units]" in text_in_fig()

    def test_no_labels(self):
        self.darray.name = "testvar"
        self.darray.attrs["units"] = "test_units"
        self.plotmethod(add_labels=False)
        alltxt = text_in_fig()
        for string in [
            "x_long_name [x_units]",
            "y_long_name [y_units]",
            "testvar [test_units]",
        ]:
            assert string not in alltxt

    def test_colorbar_kwargs(self):
        # replace label
        self.darray.attrs.pop("long_name")
        self.darray.attrs["units"] = "test_units"
        # check default colorbar label
        self.plotmethod(add_colorbar=True)
        alltxt = text_in_fig()
        assert "testvar [test_units]" in alltxt
        self.darray.attrs.pop("units")

        self.darray.name = "testvar"
        self.plotmethod(add_colorbar=True, cbar_kwargs={"label": "MyLabel"})
        alltxt = text_in_fig()
        assert "MyLabel" in alltxt
        assert "testvar" not in alltxt
        # you can use anything accepted by the dict constructor as well
        self.plotmethod(add_colorbar=True, cbar_kwargs=(("label", "MyLabel"),))
        alltxt = text_in_fig()
        assert "MyLabel" in alltxt
        assert "testvar" not in alltxt
        # change cbar ax
        fig, (ax, cax) = plt.subplots(1, 2)
        self.plotmethod(
            ax=ax, cbar_ax=cax, add_colorbar=True, cbar_kwargs={"label": "MyBar"}
        )
        assert ax.has_data()
        assert cax.has_data()
        alltxt = text_in_fig()
        assert "MyBar" in alltxt
        assert "testvar" not in alltxt
        # note that there are two ways to achieve this
        fig, (ax, cax) = plt.subplots(1, 2)
        self.plotmethod(
            ax=ax, add_colorbar=True, cbar_kwargs={"label": "MyBar", "cax": cax}
        )
        assert ax.has_data()
        assert cax.has_data()
        alltxt = text_in_fig()
        assert "MyBar" in alltxt
        assert "testvar" not in alltxt
        # see that no colorbar is respected
        self.plotmethod(add_colorbar=False)
        assert "testvar" not in text_in_fig()
        # check that error is raised
        pytest.raises(
            ValueError,
            self.plotmethod,
            add_colorbar=False,
            cbar_kwargs={"label": "label"},
        )

    def test_verbose_facetgrid(self):
        a = easy_array((10, 15, 3))
        d = DataArray(a, dims=["y", "x", "z"])
        g = xplt.FacetGrid(d, col="z")
        g.map_dataarray(self.plotfunc, "x", "y")
        for ax in g.axes.flat:
            assert ax.has_data()

    def test_2d_function_and_method_signature_same(self):
        func_sig = inspect.getcallargs(self.plotfunc, self.darray)
        method_sig = inspect.getcallargs(self.plotmethod)
        del method_sig["_PlotMethods_obj"]
        del func_sig["darray"]
        assert func_sig == method_sig

    @pytest.mark.filterwarnings("ignore:tight_layout cannot")
    def test_convenient_facetgrid(self):
        a = easy_array((10, 15, 4))
        d = DataArray(a, dims=["y", "x", "z"])
        g = self.plotfunc(d, x="x", y="y", col="z", col_wrap=2)

        assert_array_equal(g.axes.shape, [2, 2])
        for (y, x), ax in np.ndenumerate(g.axes):
            assert ax.has_data()
            if x == 0:
                assert "y" == ax.get_ylabel()
            else:
                assert "" == ax.get_ylabel()
            if y == 1:
                assert "x" == ax.get_xlabel()
            else:
                assert "" == ax.get_xlabel()

        # Infering labels
        g = self.plotfunc(d, col="z", col_wrap=2)
        assert_array_equal(g.axes.shape, [2, 2])
        for (y, x), ax in np.ndenumerate(g.axes):
            assert ax.has_data()
            if x == 0:
                assert "y" == ax.get_ylabel()
            else:
                assert "" == ax.get_ylabel()
            if y == 1:
                assert "x" == ax.get_xlabel()
            else:
                assert "" == ax.get_xlabel()

    @pytest.mark.filterwarnings("ignore:tight_layout cannot")
    def test_convenient_facetgrid_4d(self):
        a = easy_array((10, 15, 2, 3))
        d = DataArray(a, dims=["y", "x", "columns", "rows"])
        g = self.plotfunc(d, x="x", y="y", col="columns", row="rows")

        assert_array_equal(g.axes.shape, [3, 2])
        for ax in g.axes.flat:
            assert ax.has_data()

    @pytest.mark.filterwarnings("ignore:This figure includes")
    def test_facetgrid_map_only_appends_mappables(self):
        a = easy_array((10, 15, 2, 3))
        d = DataArray(a, dims=["y", "x", "columns", "rows"])
        g = self.plotfunc(d, x="x", y="y", col="columns", row="rows")

        expected = g._mappables

        g.map(lambda: plt.plot(1, 1))
        actual = g._mappables

        assert expected == actual

    def test_facetgrid_cmap(self):
        # Regression test for GH592
        data = np.random.random(size=(20, 25, 12)) + np.linspace(-3, 3, 12)
        d = DataArray(data, dims=["x", "y", "time"])
        fg = d.plot.pcolormesh(col="time")
        # check that all color limits are the same
        assert len({m.get_clim() for m in fg._mappables}) == 1
        # check that all colormaps are the same
        assert len({m.get_cmap().name for m in fg._mappables}) == 1

    def test_facetgrid_cbar_kwargs(self):
        a = easy_array((10, 15, 2, 3))
        d = DataArray(a, dims=["y", "x", "columns", "rows"])
        g = self.plotfunc(
            d,
            x="x",
            y="y",
            col="columns",
            row="rows",
            cbar_kwargs={"label": "test_label"},
        )

        # catch contour case
        if hasattr(g, "cbar"):
            assert get_colorbar_label(g.cbar) == "test_label"

    def test_facetgrid_no_cbar_ax(self):
        a = easy_array((10, 15, 2, 3))
        d = DataArray(a, dims=["y", "x", "columns", "rows"])
        with pytest.raises(ValueError):
            self.plotfunc(d, x="x", y="y", col="columns", row="rows", cbar_ax=1)

    def test_cmap_and_color_both(self):
        with pytest.raises(ValueError):
            self.plotmethod(colors="k", cmap="RdBu")

    def test_2d_coord_with_interval(self):
        for dim in self.darray.dims:
            gp = self.darray.groupby_bins(dim, range(15), restore_coord_dims=True).mean(
                dim
            )
            for kind in ["imshow", "pcolormesh", "contourf", "contour"]:
                getattr(gp.plot, kind)()

    def test_colormap_error_norm_and_vmin_vmax(self):
        norm = mpl.colors.LogNorm(0.1, 1e1)

        with pytest.raises(ValueError):
            self.darray.plot(norm=norm, vmin=2)

        with pytest.raises(ValueError):
            self.darray.plot(norm=norm, vmax=2)


@pytest.mark.slow
class TestContourf(Common2dMixin, PlotTestCase):

    plotfunc = staticmethod(xplt.contourf)

    @pytest.mark.slow
    def test_contourf_called(self):
        # Having both statements ensures the test works properly
        assert not self.contourf_called(self.darray.plot.imshow)
        assert self.contourf_called(self.darray.plot.contourf)

    def test_primitive_artist_returned(self):
        artist = self.plotmethod()
        assert isinstance(artist, mpl.contour.QuadContourSet)

    @pytest.mark.slow
    def test_extend(self):
        artist = self.plotmethod()
        assert artist.extend == "neither"

        self.darray[0, 0] = -100
        self.darray[-1, -1] = 100
        artist = self.plotmethod(robust=True)
        assert artist.extend == "both"

        self.darray[0, 0] = 0
        self.darray[-1, -1] = 0
        artist = self.plotmethod(vmin=-0, vmax=10)
        assert artist.extend == "min"

        artist = self.plotmethod(vmin=-10, vmax=0)
        assert artist.extend == "max"

    @pytest.mark.slow
    def test_2d_coord_names(self):
        self.plotmethod(x="x2d", y="y2d")
        # make sure labels came out ok
        ax = plt.gca()
        assert "x2d" == ax.get_xlabel()
        assert "y2d" == ax.get_ylabel()

    @pytest.mark.slow
    def test_levels(self):
        artist = self.plotmethod(levels=[-0.5, -0.4, 0.1])
        assert artist.extend == "both"

        artist = self.plotmethod(levels=3)
        assert artist.extend == "neither"


@pytest.mark.slow
class TestContour(Common2dMixin, PlotTestCase):

    plotfunc = staticmethod(xplt.contour)

    # matplotlib cmap.colors gives an rgbA ndarray
    # when seaborn is used, instead we get an rgb tuple
    @staticmethod
    def _color_as_tuple(c):
        return tuple(c[:3])

    def test_colors(self):

        # with single color, we don't want rgb array
        artist = self.plotmethod(colors="k")
        assert artist.cmap.colors[0] == "k"

        artist = self.plotmethod(colors=["k", "b"])
        assert self._color_as_tuple(artist.cmap.colors[1]) == (0.0, 0.0, 1.0)

        artist = self.darray.plot.contour(
            levels=[-0.5, 0.0, 0.5, 1.0], colors=["k", "r", "w", "b"]
        )
        assert self._color_as_tuple(artist.cmap.colors[1]) == (1.0, 0.0, 0.0)
        assert self._color_as_tuple(artist.cmap.colors[2]) == (1.0, 1.0, 1.0)
        # the last color is now under "over"
        assert self._color_as_tuple(artist.cmap._rgba_over) == (0.0, 0.0, 1.0)

    def test_colors_np_levels(self):

        # https://github.com/pydata/xarray/issues/3284
        levels = np.array([-0.5, 0.0, 0.5, 1.0])
        artist = self.darray.plot.contour(levels=levels, colors=["k", "r", "w", "b"])
        assert self._color_as_tuple(artist.cmap.colors[1]) == (1.0, 0.0, 0.0)
        assert self._color_as_tuple(artist.cmap.colors[2]) == (1.0, 1.0, 1.0)
        # the last color is now under "over"
        assert self._color_as_tuple(artist.cmap._rgba_over) == (0.0, 0.0, 1.0)

    def test_cmap_and_color_both(self):
        with pytest.raises(ValueError):
            self.plotmethod(colors="k", cmap="RdBu")

    def list_of_colors_in_cmap_raises_error(self):
        with raises_regex(ValueError, "list of colors"):
            self.plotmethod(cmap=["k", "b"])

    @pytest.mark.slow
    def test_2d_coord_names(self):
        self.plotmethod(x="x2d", y="y2d")
        # make sure labels came out ok
        ax = plt.gca()
        assert "x2d" == ax.get_xlabel()
        assert "y2d" == ax.get_ylabel()

    def test_single_level(self):
        # this used to raise an error, but not anymore since
        # add_colorbar defaults to false
        self.plotmethod(levels=[0.1])
        self.plotmethod(levels=1)


class TestPcolormesh(Common2dMixin, PlotTestCase):

    plotfunc = staticmethod(xplt.pcolormesh)

    def test_primitive_artist_returned(self):
        artist = self.plotmethod()
        assert isinstance(artist, mpl.collections.QuadMesh)

    def test_everything_plotted(self):
        artist = self.plotmethod()
        assert artist.get_array().size == self.darray.size

    @pytest.mark.slow
    def test_2d_coord_names(self):
        self.plotmethod(x="x2d", y="y2d")
        # make sure labels came out ok
        ax = plt.gca()
        assert "x2d" == ax.get_xlabel()
        assert "y2d" == ax.get_ylabel()

    def test_dont_infer_interval_breaks_for_cartopy(self):
        # Regression for GH 781
        ax = plt.gca()
        # Simulate a Cartopy Axis
        setattr(ax, "projection", True)
        artist = self.plotmethod(x="x2d", y="y2d", ax=ax)
        assert isinstance(artist, mpl.collections.QuadMesh)
        # Let cartopy handle the axis limits and artist size
        assert artist.get_array().size <= self.darray.size


@pytest.mark.slow
class TestImshow(Common2dMixin, PlotTestCase):

    plotfunc = staticmethod(xplt.imshow)

    @pytest.mark.slow
    def test_imshow_called(self):
        # Having both statements ensures the test works properly
        assert not self.imshow_called(self.darray.plot.contourf)
        assert self.imshow_called(self.darray.plot.imshow)

    def test_xy_pixel_centered(self):
        self.darray.plot.imshow(yincrease=False)
        assert np.allclose([-0.5, 14.5], plt.gca().get_xlim())
        assert np.allclose([9.5, -0.5], plt.gca().get_ylim())

    def test_default_aspect_is_auto(self):
        self.darray.plot.imshow()
        assert "auto" == plt.gca().get_aspect()

    @pytest.mark.slow
    def test_cannot_change_mpl_aspect(self):

        with raises_regex(ValueError, "not available in xarray"):
            self.darray.plot.imshow(aspect="equal")

        # with numbers we fall back to fig control
        self.darray.plot.imshow(size=5, aspect=2)
        assert "auto" == plt.gca().get_aspect()
        assert tuple(plt.gcf().get_size_inches()) == (10, 5)

    @pytest.mark.slow
    def test_primitive_artist_returned(self):
        artist = self.plotmethod()
        assert isinstance(artist, mpl.image.AxesImage)

    @pytest.mark.slow
    @requires_seaborn
    def test_seaborn_palette_needs_levels(self):
        with pytest.raises(ValueError):
            self.plotmethod(cmap="husl")

    def test_2d_coord_names(self):
        with raises_regex(ValueError, "requires 1D coordinates"):
            self.plotmethod(x="x2d", y="y2d")

    def test_plot_rgb_image(self):
        DataArray(
            easy_array((10, 15, 3), start=0), dims=["y", "x", "band"]
        ).plot.imshow()
        assert 0 == len(find_possible_colorbars())

    def test_plot_rgb_image_explicit(self):
        DataArray(
            easy_array((10, 15, 3), start=0), dims=["y", "x", "band"]
        ).plot.imshow(y="y", x="x", rgb="band")
        assert 0 == len(find_possible_colorbars())

    def test_plot_rgb_faceted(self):
        DataArray(
            easy_array((2, 2, 10, 15, 3), start=0), dims=["a", "b", "y", "x", "band"]
        ).plot.imshow(row="a", col="b")
        assert 0 == len(find_possible_colorbars())

    def test_plot_rgba_image_transposed(self):
        # We can handle the color axis being in any position
        DataArray(
            easy_array((4, 10, 15), start=0), dims=["band", "y", "x"]
        ).plot.imshow()

    def test_warns_ambigious_dim(self):
        arr = DataArray(easy_array((3, 3, 3)), dims=["y", "x", "band"])
        with pytest.warns(UserWarning):
            arr.plot.imshow()
        # but doesn't warn if dimensions specified
        arr.plot.imshow(rgb="band")
        arr.plot.imshow(x="x", y="y")

    def test_rgb_errors_too_many_dims(self):
        arr = DataArray(easy_array((3, 3, 3, 3)), dims=["y", "x", "z", "band"])
        with pytest.raises(ValueError):
            arr.plot.imshow(rgb="band")

    def test_rgb_errors_bad_dim_sizes(self):
        arr = DataArray(easy_array((5, 5, 5)), dims=["y", "x", "band"])
        with pytest.raises(ValueError):
            arr.plot.imshow(rgb="band")

    def test_normalize_rgb_imshow(self):
        for kwargs in (
            dict(vmin=-1),
            dict(vmax=2),
            dict(vmin=-1, vmax=1),
            dict(vmin=0, vmax=0),
            dict(vmin=0, robust=True),
            dict(vmax=-1, robust=True),
        ):
            da = DataArray(easy_array((5, 5, 3), start=-0.6, stop=1.4))
            arr = da.plot.imshow(**kwargs).get_array()
            assert 0 <= arr.min() <= arr.max() <= 1, kwargs

    def test_normalize_rgb_one_arg_error(self):
        da = DataArray(easy_array((5, 5, 3), start=-0.6, stop=1.4))
        # If passed one bound that implies all out of range, error:
        for kwargs in [dict(vmax=-1), dict(vmin=2)]:
            with pytest.raises(ValueError):
                da.plot.imshow(**kwargs)
        # If passed two that's just moving the range, *not* an error:
        for kwargs in [dict(vmax=-1, vmin=-1.2), dict(vmin=2, vmax=2.1)]:
            da.plot.imshow(**kwargs)

    def test_imshow_rgb_values_in_valid_range(self):
        da = DataArray(np.arange(75, dtype="uint8").reshape((5, 5, 3)))
        _, ax = plt.subplots()
        out = da.plot.imshow(ax=ax).get_array()
        assert out.dtype == np.uint8
        assert (out[..., :3] == da.values).all()  # Compare without added alpha

    @pytest.mark.filterwarnings("ignore:Several dimensions of this array")
    def test_regression_rgb_imshow_dim_size_one(self):
        # Regression: https://github.com/pydata/xarray/issues/1966
        da = DataArray(easy_array((1, 3, 3), start=0.0, stop=1.0))
        da.plot.imshow()

    def test_origin_overrides_xyincrease(self):
        da = DataArray(easy_array((3, 2)), coords=[[-2, 0, 2], [-1, 1]])
        with figure_context():
            da.plot.imshow(origin="upper")
            assert plt.xlim()[0] < 0
            assert plt.ylim()[1] < 0

        with figure_context():
            da.plot.imshow(origin="lower")
            assert plt.xlim()[0] < 0
            assert plt.ylim()[0] < 0


class TestFacetGrid(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        d = easy_array((10, 15, 3))
        self.darray = DataArray(d, dims=["y", "x", "z"], coords={"z": ["a", "b", "c"]})
        self.g = xplt.FacetGrid(self.darray, col="z")

    @pytest.mark.slow
    def test_no_args(self):
        self.g.map_dataarray(xplt.contourf, "x", "y")

        # Don't want colorbar labeled with 'None'
        alltxt = text_in_fig()
        assert "None" not in alltxt

        for ax in self.g.axes.flat:
            assert ax.has_data()

    @pytest.mark.slow
    def test_names_appear_somewhere(self):
        self.darray.name = "testvar"
        self.g.map_dataarray(xplt.contourf, "x", "y")
        for k, ax in zip("abc", self.g.axes.flat):
            assert f"z = {k}" == ax.get_title()

        alltxt = text_in_fig()
        assert self.darray.name in alltxt
        for label in ["x", "y"]:
            assert label in alltxt

    @pytest.mark.slow
    def test_text_not_super_long(self):
        self.darray.coords["z"] = [100 * letter for letter in "abc"]
        g = xplt.FacetGrid(self.darray, col="z")
        g.map_dataarray(xplt.contour, "x", "y")
        alltxt = text_in_fig()
        maxlen = max(len(txt) for txt in alltxt)
        assert maxlen < 50

        t0 = g.axes[0, 0].get_title()
        assert t0.endswith("...")

    @pytest.mark.slow
    def test_colorbar(self):
        vmin = self.darray.values.min()
        vmax = self.darray.values.max()
        expected = np.array((vmin, vmax))

        self.g.map_dataarray(xplt.imshow, "x", "y")

        for image in plt.gcf().findobj(mpl.image.AxesImage):
            clim = np.array(image.get_clim())
            assert np.allclose(expected, clim)

        assert 1 == len(find_possible_colorbars())

    @pytest.mark.slow
    def test_empty_cell(self):
        g = xplt.FacetGrid(self.darray, col="z", col_wrap=2)
        g.map_dataarray(xplt.imshow, "x", "y")

        bottomright = g.axes[-1, -1]
        assert not bottomright.has_data()
        assert not bottomright.get_visible()

    @pytest.mark.slow
    def test_norow_nocol_error(self):
        with raises_regex(ValueError, r"[Rr]ow"):
            xplt.FacetGrid(self.darray)

    @pytest.mark.slow
    def test_groups(self):
        self.g.map_dataarray(xplt.imshow, "x", "y")
        upperleft_dict = self.g.name_dicts[0, 0]
        upperleft_array = self.darray.loc[upperleft_dict]
        z0 = self.darray.isel(z=0)

        assert_equal(upperleft_array, z0)

    @pytest.mark.slow
    def test_float_index(self):
        self.darray.coords["z"] = [0.1, 0.2, 0.4]
        g = xplt.FacetGrid(self.darray, col="z")
        g.map_dataarray(xplt.imshow, "x", "y")

    @pytest.mark.slow
    def test_nonunique_index_error(self):
        self.darray.coords["z"] = [0.1, 0.2, 0.2]
        with raises_regex(ValueError, r"[Uu]nique"):
            xplt.FacetGrid(self.darray, col="z")

    @pytest.mark.slow
    def test_robust(self):
        z = np.zeros((20, 20, 2))
        darray = DataArray(z, dims=["y", "x", "z"])
        darray[:, :, 1] = 1
        darray[2, 0, 0] = -1000
        darray[3, 0, 0] = 1000
        g = xplt.FacetGrid(darray, col="z")
        g.map_dataarray(xplt.imshow, "x", "y", robust=True)

        # Color limits should be 0, 1
        # The largest number displayed in the figure should be less than 21
        numbers = set()
        alltxt = text_in_fig()
        for txt in alltxt:
            try:
                numbers.add(float(txt))
            except ValueError:
                pass
        largest = max(abs(x) for x in numbers)
        assert largest < 21

    @pytest.mark.slow
    def test_can_set_vmin_vmax(self):
        vmin, vmax = 50.0, 1000.0
        expected = np.array((vmin, vmax))
        self.g.map_dataarray(xplt.imshow, "x", "y", vmin=vmin, vmax=vmax)

        for image in plt.gcf().findobj(mpl.image.AxesImage):
            clim = np.array(image.get_clim())
            assert np.allclose(expected, clim)

    @pytest.mark.slow
    def test_vmin_vmax_equal(self):
        # regression test for GH3734
        fg = self.g.map_dataarray(xplt.imshow, "x", "y", vmin=50, vmax=50)
        for mappable in fg._mappables:
            assert mappable.norm.vmin != mappable.norm.vmax

    @pytest.mark.slow
    @pytest.mark.filterwarnings("ignore")
    def test_can_set_norm(self):
        norm = mpl.colors.SymLogNorm(0.1)
        self.g.map_dataarray(xplt.imshow, "x", "y", norm=norm)
        for image in plt.gcf().findobj(mpl.image.AxesImage):
            assert image.norm is norm

    @pytest.mark.slow
    def test_figure_size(self):

        assert_array_equal(self.g.fig.get_size_inches(), (10, 3))

        g = xplt.FacetGrid(self.darray, col="z", size=6)
        assert_array_equal(g.fig.get_size_inches(), (19, 6))

        g = self.darray.plot.imshow(col="z", size=6)
        assert_array_equal(g.fig.get_size_inches(), (19, 6))

        g = xplt.FacetGrid(self.darray, col="z", size=4, aspect=0.5)
        assert_array_equal(g.fig.get_size_inches(), (7, 4))

        g = xplt.FacetGrid(self.darray, col="z", figsize=(9, 4))
        assert_array_equal(g.fig.get_size_inches(), (9, 4))

        with raises_regex(ValueError, "cannot provide both"):
            g = xplt.plot(self.darray, row=2, col="z", figsize=(6, 4), size=6)

        with raises_regex(ValueError, "Can't use"):
            g = xplt.plot(self.darray, row=2, col="z", ax=plt.gca(), size=6)

    @pytest.mark.slow
    def test_num_ticks(self):
        nticks = 99
        maxticks = nticks + 1
        self.g.map_dataarray(xplt.imshow, "x", "y")
        self.g.set_ticks(max_xticks=nticks, max_yticks=nticks)

        for ax in self.g.axes.flat:
            xticks = len(ax.get_xticks())
            yticks = len(ax.get_yticks())
            assert xticks <= maxticks
            assert yticks <= maxticks
            assert xticks >= nticks / 2.0
            assert yticks >= nticks / 2.0

    @pytest.mark.slow
    def test_map(self):
        assert self.g._finalized is False
        self.g.map(plt.contourf, "x", "y", Ellipsis)
        assert self.g._finalized is True
        self.g.map(lambda: None)

    @pytest.mark.slow
    def test_map_dataset(self):
        g = xplt.FacetGrid(self.darray.to_dataset(name="foo"), col="z")
        g.map(plt.contourf, "x", "y", "foo")

        alltxt = text_in_fig()
        for label in ["x", "y"]:
            assert label in alltxt
        # everything has a label
        assert "None" not in alltxt

        # colorbar can't be inferred automatically
        assert "foo" not in alltxt
        assert 0 == len(find_possible_colorbars())

        g.add_colorbar(label="colors!")
        assert "colors!" in text_in_fig()
        assert 1 == len(find_possible_colorbars())

    @pytest.mark.slow
    def test_set_axis_labels(self):
        g = self.g.map_dataarray(xplt.contourf, "x", "y")
        g.set_axis_labels("longitude", "latitude")
        alltxt = text_in_fig()
        for label in ["longitude", "latitude"]:
            assert label in alltxt

    @pytest.mark.slow
    def test_facetgrid_colorbar(self):
        a = easy_array((10, 15, 4))
        d = DataArray(a, dims=["y", "x", "z"], name="foo")

        d.plot.imshow(x="x", y="y", col="z")
        assert 1 == len(find_possible_colorbars())

        d.plot.imshow(x="x", y="y", col="z", add_colorbar=True)
        assert 1 == len(find_possible_colorbars())

        d.plot.imshow(x="x", y="y", col="z", add_colorbar=False)
        assert 0 == len(find_possible_colorbars())

    @pytest.mark.slow
    def test_facetgrid_polar(self):
        # test if polar projection in FacetGrid does not raise an exception
        self.darray.plot.pcolormesh(
            col="z", subplot_kws=dict(projection="polar"), sharex=False, sharey=False
        )


@pytest.mark.filterwarnings("ignore:tight_layout cannot")
class TestFacetGrid4d(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        a = easy_array((10, 15, 3, 2))
        darray = DataArray(a, dims=["y", "x", "col", "row"])
        darray.coords["col"] = np.array(
            ["col" + str(x) for x in darray.coords["col"].values]
        )
        darray.coords["row"] = np.array(
            ["row" + str(x) for x in darray.coords["row"].values]
        )

        self.darray = darray

    @pytest.mark.slow
    def test_default_labels(self):
        g = xplt.FacetGrid(self.darray, col="col", row="row")
        assert (2, 3) == g.axes.shape

        g.map_dataarray(xplt.imshow, "x", "y")

        # Rightmost column should be labeled
        for label, ax in zip(self.darray.coords["row"].values, g.axes[:, -1]):
            assert substring_in_axes(label, ax)

        # Top row should be labeled
        for label, ax in zip(self.darray.coords["col"].values, g.axes[0, :]):
            assert substring_in_axes(label, ax)

        # ensure that row & col labels can be changed
        g.set_titles("abc={value}")
        for label, ax in zip(self.darray.coords["row"].values, g.axes[:, -1]):
            assert substring_in_axes(f"abc={label}", ax)
            # previous labels were "row=row0" etc.
            assert substring_not_in_axes("row=", ax)

        for label, ax in zip(self.darray.coords["col"].values, g.axes[0, :]):
            assert substring_in_axes(f"abc={label}", ax)
            # previous labels were "col=row0" etc.
            assert substring_not_in_axes("col=", ax)


@pytest.mark.filterwarnings("ignore:tight_layout cannot")
class TestFacetedLinePlotsLegend(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        self.darray = xr.tutorial.scatter_example_dataset()

    def test_legend_labels(self):
        fg = self.darray.A.plot.line(col="x", row="w", hue="z")
        all_legend_labels = [t.get_text() for t in fg.figlegend.texts]
        # labels in legend should be ['0', '1', '2', '3']
        assert sorted(all_legend_labels) == ["0", "1", "2", "3"]


@pytest.mark.filterwarnings("ignore:tight_layout cannot")
class TestFacetedLinePlots(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        self.darray = DataArray(
            np.random.randn(10, 6, 3, 4),
            dims=["hue", "x", "col", "row"],
            coords=[range(10), range(6), range(3), ["A", "B", "C", "C++"]],
            name="Cornelius Ortega the 1st",
        )

        self.darray.hue.name = "huename"
        self.darray.hue.attrs["units"] = "hunits"
        self.darray.x.attrs["units"] = "xunits"
        self.darray.col.attrs["units"] = "colunits"
        self.darray.row.attrs["units"] = "rowunits"

    def test_facetgrid_shape(self):
        g = self.darray.plot(row="row", col="col", hue="hue")
        assert g.axes.shape == (len(self.darray.row), len(self.darray.col))

        g = self.darray.plot(row="col", col="row", hue="hue")
        assert g.axes.shape == (len(self.darray.col), len(self.darray.row))

    def test_unnamed_args(self):
        g = self.darray.plot.line("o--", row="row", col="col", hue="hue")
        lines = [
            q for q in g.axes.flat[0].get_children() if isinstance(q, mpl.lines.Line2D)
        ]
        # passing 'o--' as argument should set marker and linestyle
        assert lines[0].get_marker() == "o"
        assert lines[0].get_linestyle() == "--"

    def test_default_labels(self):
        g = self.darray.plot(row="row", col="col", hue="hue")
        # Rightmost column should be labeled
        for label, ax in zip(self.darray.coords["row"].values, g.axes[:, -1]):
            assert substring_in_axes(label, ax)

        # Top row should be labeled
        for label, ax in zip(self.darray.coords["col"].values, g.axes[0, :]):
            assert substring_in_axes(str(label), ax)

        # Leftmost column should have array name
        for ax in g.axes[:, 0]:
            assert substring_in_axes(self.darray.name, ax)

    def test_test_empty_cell(self):
        g = (
            self.darray.isel(row=1)
            .drop_vars("row")
            .plot(col="col", hue="hue", col_wrap=2)
        )
        bottomright = g.axes[-1, -1]
        assert not bottomright.has_data()
        assert not bottomright.get_visible()

    def test_set_axis_labels(self):
        g = self.darray.plot(row="row", col="col", hue="hue")
        g.set_axis_labels("longitude", "latitude")
        alltxt = text_in_fig()

        assert "longitude" in alltxt
        assert "latitude" in alltxt

    def test_axes_in_faceted_plot(self):
        with pytest.raises(ValueError):
            self.darray.plot.line(row="row", col="col", x="x", ax=plt.axes())

    def test_figsize_and_size(self):
        with pytest.raises(ValueError):
            self.darray.plot.line(row="row", col="col", x="x", size=3, figsize=4)

    def test_wrong_num_of_dimensions(self):
        with pytest.raises(ValueError):
            self.darray.plot(row="row", hue="hue")
            self.darray.plot.line(row="row", hue="hue")


@requires_matplotlib
class TestDatasetScatterPlots(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        das = [
            DataArray(
                np.random.randn(3, 3, 4, 4),
                dims=["x", "row", "col", "hue"],
                coords=[range(k) for k in [3, 3, 4, 4]],
            )
            for _ in [1, 2]
        ]
        ds = Dataset({"A": das[0], "B": das[1]})
        ds.hue.name = "huename"
        ds.hue.attrs["units"] = "hunits"
        ds.x.attrs["units"] = "xunits"
        ds.col.attrs["units"] = "colunits"
        ds.row.attrs["units"] = "rowunits"
        ds.A.attrs["units"] = "Aunits"
        ds.B.attrs["units"] = "Bunits"
        self.ds = ds

    def test_accessor(self):
        from ..plot.dataset_plot import _Dataset_PlotMethods

        assert Dataset.plot is _Dataset_PlotMethods
        assert isinstance(self.ds.plot, _Dataset_PlotMethods)

    @pytest.mark.parametrize(
        "add_guide, hue_style, legend, colorbar",
        [
            (None, None, False, True),
            (False, None, False, False),
            (True, None, False, True),
            (True, "continuous", False, True),
            (False, "discrete", False, False),
            (True, "discrete", True, False),
        ],
    )
    def test_add_guide(self, add_guide, hue_style, legend, colorbar):

        meta_data = _infer_meta_data(
            self.ds, x="A", y="B", hue="hue", hue_style=hue_style, add_guide=add_guide
        )
        assert meta_data["add_legend"] is legend
        assert meta_data["add_colorbar"] is colorbar

    def test_facetgrid_shape(self):
        g = self.ds.plot.scatter(x="A", y="B", row="row", col="col")
        assert g.axes.shape == (len(self.ds.row), len(self.ds.col))

        g = self.ds.plot.scatter(x="A", y="B", row="col", col="row")
        assert g.axes.shape == (len(self.ds.col), len(self.ds.row))

    def test_default_labels(self):
        g = self.ds.plot.scatter("A", "B", row="row", col="col", hue="hue")

        # Top row should be labeled
        for label, ax in zip(self.ds.coords["col"].values, g.axes[0, :]):
            assert substring_in_axes(str(label), ax)

        # Bottom row should have name of x array name and units
        for ax in g.axes[-1, :]:
            assert ax.get_xlabel() == "A [Aunits]"

        # Leftmost column should have name of y array name and units
        for ax in g.axes[:, 0]:
            assert ax.get_ylabel() == "B [Bunits]"

    def test_axes_in_faceted_plot(self):
        with pytest.raises(ValueError):
            self.ds.plot.scatter(x="A", y="B", row="row", ax=plt.axes())

    def test_figsize_and_size(self):
        with pytest.raises(ValueError):
            self.ds.plot.scatter(x="A", y="B", row="row", size=3, figsize=4)

    @pytest.mark.parametrize(
        "x, y, hue_style, add_guide",
        [
            ("A", "B", "something", True),
            ("A", "B", "discrete", True),
            ("A", "B", None, True),
            ("A", "The Spanish Inquisition", None, None),
            ("The Spanish Inquisition", "B", None, True),
        ],
    )
    def test_bad_args(self, x, y, hue_style, add_guide):
        with pytest.raises(ValueError):
            self.ds.plot.scatter(x, y, hue_style=hue_style, add_guide=add_guide)

    @pytest.mark.xfail(reason="datetime,timedelta hue variable not supported.")
    @pytest.mark.parametrize("hue_style", ["discrete", "continuous"])
    def test_datetime_hue(self, hue_style):
        ds2 = self.ds.copy()
        ds2["hue"] = pd.date_range("2000-1-1", periods=4)
        ds2.plot.scatter(x="A", y="B", hue="hue", hue_style=hue_style)

        ds2["hue"] = pd.timedelta_range("-1D", periods=4, freq="D")
        ds2.plot.scatter(x="A", y="B", hue="hue", hue_style=hue_style)

    def test_facetgrid_hue_style(self):
        # Can't move this to pytest.mark.parametrize because py36-bare-minimum
        # doesn't have matplotlib.
        for hue_style, map_type in (
            ("discrete", list),
            ("continuous", mpl.collections.PathCollection),
        ):
            g = self.ds.plot.scatter(
                x="A", y="B", row="row", col="col", hue="hue", hue_style=hue_style
            )
            # for 'discrete' a list is appended to _mappables
            # for 'continuous', should be single PathCollection
            assert isinstance(g._mappables[-1], map_type)

    @pytest.mark.parametrize(
        "x, y, hue, markersize", [("A", "B", "x", "col"), ("x", "row", "A", "B")]
    )
    def test_scatter(self, x, y, hue, markersize):
        self.ds.plot.scatter(x, y, hue=hue, markersize=markersize)

    def test_non_numeric_legend(self):
        ds2 = self.ds.copy()
        ds2["hue"] = ["a", "b", "c", "d"]
        lines = ds2.plot.scatter(x="A", y="B", hue="hue")
        # should make a discrete legend
        assert lines[0].axes.legend_ is not None
        # and raise an error if explicitly not allowed to do so
        with pytest.raises(ValueError):
            ds2.plot.scatter(x="A", y="B", hue="hue", hue_style="continuous")

    def test_legend_labels(self):
        # regression test for #4126: incorrect legend labels
        ds2 = self.ds.copy()
        ds2["hue"] = ["a", "a", "b", "b"]
        lines = ds2.plot.scatter(x="A", y="B", hue="hue")
        assert [t.get_text() for t in lines[0].axes.get_legend().texts] == ["a", "b"]

    def test_add_legend_by_default(self):
        sc = self.ds.plot.scatter(x="A", y="B", hue="hue")
        assert len(sc.figure.axes) == 2


class TestDatetimePlot(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        """
        Create a DataArray with a time-axis that contains datetime objects.
        """
        month = np.arange(1, 13, 1)
        data = np.sin(2 * np.pi * month / 12.0)

        darray = DataArray(data, dims=["time"])
        darray.coords["time"] = np.array([datetime(2017, m, 1) for m in month])

        self.darray = darray

    def test_datetime_line_plot(self):
        # test if line plot raises no Exception
        self.darray.plot.line()


@pytest.mark.filterwarnings("ignore:setting an array element with a sequence")
@requires_nc_time_axis
@requires_cftime
class TestCFDatetimePlot(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        """
        Create a DataArray with a time-axis that contains cftime.datetime
        objects.
        """
        # case for 1d array
        data = np.random.rand(4, 12)
        time = xr.cftime_range(start="2017", periods=12, freq="1M", calendar="noleap")
        darray = DataArray(data, dims=["x", "time"])
        darray.coords["time"] = time

        self.darray = darray

    def test_cfdatetime_line_plot(self):
        self.darray.isel(x=0).plot.line()

    def test_cfdatetime_pcolormesh_plot(self):
        self.darray.plot.pcolormesh()

    def test_cfdatetime_contour_plot(self):
        self.darray.plot.contour()


@requires_cftime
@pytest.mark.skipif(has_nc_time_axis, reason="nc_time_axis is installed")
class TestNcAxisNotInstalled(PlotTestCase):
    @pytest.fixture(autouse=True)
    def setUp(self):
        """
        Create a DataArray with a time-axis that contains cftime.datetime
        objects.
        """
        month = np.arange(1, 13, 1)
        data = np.sin(2 * np.pi * month / 12.0)
        darray = DataArray(data, dims=["time"])
        darray.coords["time"] = xr.cftime_range(
            start="2017", periods=12, freq="1M", calendar="noleap"
        )

        self.darray = darray

    def test_ncaxis_notinstalled_line_plot(self):
        with raises_regex(ImportError, "optional `nc-time-axis`"):
            self.darray.plot.line()


test_da_list = [
    DataArray(easy_array((10,))),
    DataArray(easy_array((10, 3))),
    DataArray(easy_array((10, 3, 2))),
]


@requires_matplotlib
class TestAxesKwargs:
    @pytest.mark.parametrize("da", test_da_list)
    @pytest.mark.parametrize("xincrease", [True, False])
    def test_xincrease_kwarg(self, da, xincrease):
        with figure_context():
            da.plot(xincrease=xincrease)
            assert plt.gca().xaxis_inverted() == (not xincrease)

    @pytest.mark.parametrize("da", test_da_list)
    @pytest.mark.parametrize("yincrease", [True, False])
    def test_yincrease_kwarg(self, da, yincrease):
        with figure_context():
            da.plot(yincrease=yincrease)
            assert plt.gca().yaxis_inverted() == (not yincrease)

    @pytest.mark.parametrize("da", test_da_list)
    @pytest.mark.parametrize("xscale", ["linear", "log", "logit", "symlog"])
    def test_xscale_kwarg(self, da, xscale):
        with figure_context():
            da.plot(xscale=xscale)
            assert plt.gca().get_xscale() == xscale

    @pytest.mark.parametrize(
        "da", [DataArray(easy_array((10,))), DataArray(easy_array((10, 3)))]
    )
    @pytest.mark.parametrize("yscale", ["linear", "log", "logit", "symlog"])
    def test_yscale_kwarg(self, da, yscale):
        with figure_context():
            da.plot(yscale=yscale)
            assert plt.gca().get_yscale() == yscale

    @pytest.mark.parametrize("da", test_da_list)
    def test_xlim_kwarg(self, da):
        with figure_context():
            expected = (0.0, 1000.0)
            da.plot(xlim=[0, 1000])
            assert plt.gca().get_xlim() == expected

    @pytest.mark.parametrize("da", test_da_list)
    def test_ylim_kwarg(self, da):
        with figure_context():
            da.plot(ylim=[0, 1000])
            expected = (0.0, 1000.0)
            assert plt.gca().get_ylim() == expected

    @pytest.mark.parametrize("da", test_da_list)
    def test_xticks_kwarg(self, da):
        with figure_context():
            da.plot(xticks=np.arange(5))
            expected = np.arange(5).tolist()
            assert_array_equal(plt.gca().get_xticks(), expected)

    @pytest.mark.parametrize("da", test_da_list)
    def test_yticks_kwarg(self, da):
        with figure_context():
            da.plot(yticks=np.arange(5))
            expected = np.arange(5)
            assert_array_equal(plt.gca().get_yticks(), expected)


@requires_matplotlib
@pytest.mark.parametrize("plotfunc", ["pcolormesh", "contourf", "contour"])
def test_plot_transposed_nondim_coord(plotfunc):
    x = np.linspace(0, 10, 101)
    h = np.linspace(3, 7, 101)
    s = np.linspace(0, 1, 51)
    z = s[:, np.newaxis] * h[np.newaxis, :]
    da = xr.DataArray(
        np.sin(x) * np.cos(z),
        dims=["s", "x"],
        coords={"x": x, "s": s, "z": (("s", "x"), z), "zt": (("x", "s"), z.T)},
    )
    with figure_context():
        getattr(da.plot, plotfunc)(x="x", y="zt")
    with figure_context():
        getattr(da.plot, plotfunc)(x="zt", y="x")


@requires_matplotlib
@pytest.mark.parametrize("plotfunc", ["pcolormesh", "imshow"])
def test_plot_transposes_properly(plotfunc):
    # test that we aren't mistakenly transposing when the 2 dimensions have equal sizes.
    da = xr.DataArray([np.sin(2 * np.pi / 10 * np.arange(10))] * 10, dims=("y", "x"))
    with figure_context():
        hdl = getattr(da.plot, plotfunc)(x="x", y="y")
        # get_array doesn't work for contour, contourf. It returns the colormap intervals.
        # pcolormesh returns 1D array but imshow returns a 2D array so it is necessary
        # to ravel() on the LHS
        assert_array_equal(hdl.get_array().ravel(), da.to_masked_array().ravel())


@requires_matplotlib
def test_facetgrid_single_contour():
    # regression test for GH3569
    x, y = np.meshgrid(np.arange(12), np.arange(12))
    z = xr.DataArray(np.sqrt(x ** 2 + y ** 2))
    z2 = xr.DataArray(np.sqrt(x ** 2 + y ** 2) + 1)
    ds = xr.concat([z, z2], dim="time")
    ds["time"] = [0, 1]

    with figure_context():
        ds.plot.contour(col="time", levels=[4], colors=["k"])


@requires_matplotlib
def test_get_axis():
    # test get_axis works with different args combinations
    # and return the right type

    # cannot provide both ax and figsize
    with pytest.raises(ValueError, match="both `figsize` and `ax`"):
        get_axis(figsize=[4, 4], size=None, aspect=None, ax="something")

    # cannot provide both ax and size
    with pytest.raises(ValueError, match="both `size` and `ax`"):
        get_axis(figsize=None, size=200, aspect=4 / 3, ax="something")

    # cannot provide both size and figsize
    with pytest.raises(ValueError, match="both `figsize` and `size`"):
        get_axis(figsize=[4, 4], size=200, aspect=None, ax=None)

    # cannot provide aspect and size
    with pytest.raises(ValueError, match="`aspect` argument without `size`"):
        get_axis(figsize=None, size=None, aspect=4 / 3, ax=None)

    with figure_context():
        ax = get_axis()
        assert isinstance(ax, mpl.axes.Axes)


@requires_cartopy
def test_get_axis_cartopy():

    kwargs = {"projection": ctpy.crs.PlateCarree()}
    with figure_context():
        ax = get_axis(**kwargs)
        assert isinstance(ax, ctpy.mpl.geoaxes.GeoAxesSubplot)