1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
|
import contextlib
import inspect
from copy import copy
from datetime import datetime
import numpy as np
import pandas as pd
import pytest
import xarray as xr
import xarray.plot as xplt
from xarray import DataArray, Dataset
from xarray.plot.dataset_plot import _infer_meta_data
from xarray.plot.plot import _infer_interval_breaks
from xarray.plot.utils import (
_build_discrete_cmap,
_color_palette,
_determine_cmap_params,
get_axis,
label_from_attrs,
)
from . import (
assert_array_equal,
assert_equal,
has_nc_time_axis,
raises_regex,
requires_cartopy,
requires_cftime,
requires_matplotlib,
requires_nc_time_axis,
requires_seaborn,
)
# import mpl and change the backend before other mpl imports
try:
import matplotlib as mpl
import matplotlib.pyplot as plt
except ImportError:
pass
try:
import cartopy as ctpy # type: ignore
except ImportError:
ctpy = None
@contextlib.contextmanager
def figure_context(*args, **kwargs):
"""context manager which autocloses a figure (even if the test failed)"""
try:
yield None
finally:
plt.close("all")
@pytest.fixture(scope="module", autouse=True)
def test_all_figures_closed():
"""meta-test to ensure all figures are closed at the end of a test
Notes: Scope is kept to module (only invoke this function once per test
module) else tests cannot be run in parallel (locally). Disadvantage: only
catches one open figure per run. May still give a false positive if tests
are run in parallel.
"""
yield None
open_figs = len(plt.get_fignums())
if open_figs:
raise RuntimeError(
f"tests did not close all figures ({open_figs} figures open)"
)
@pytest.mark.flaky
@pytest.mark.skip(reason="maybe flaky")
def text_in_fig():
"""
Return the set of all text in the figure
"""
return {t.get_text() for t in plt.gcf().findobj(mpl.text.Text)}
def find_possible_colorbars():
# nb. this function also matches meshes from pcolormesh
return plt.gcf().findobj(mpl.collections.QuadMesh)
def substring_in_axes(substring, ax):
"""
Return True if a substring is found anywhere in an axes
"""
alltxt = {t.get_text() for t in ax.findobj(mpl.text.Text)}
for txt in alltxt:
if substring in txt:
return True
return False
def substring_not_in_axes(substring, ax):
"""
Return True if a substring is not found anywhere in an axes
"""
alltxt = {t.get_text() for t in ax.findobj(mpl.text.Text)}
check = [(substring not in txt) for txt in alltxt]
return all(check)
def easy_array(shape, start=0, stop=1):
"""
Make an array with desired shape using np.linspace
shape is a tuple like (2, 3)
"""
a = np.linspace(start, stop, num=np.prod(shape))
return a.reshape(shape)
def get_colorbar_label(colorbar):
if colorbar.orientation == "vertical":
return colorbar.ax.get_ylabel()
else:
return colorbar.ax.get_xlabel()
@requires_matplotlib
class PlotTestCase:
@pytest.fixture(autouse=True)
def setup(self):
yield
# Remove all matplotlib figures
plt.close("all")
def pass_in_axis(self, plotmethod):
fig, axes = plt.subplots(ncols=2)
plotmethod(ax=axes[0])
assert axes[0].has_data()
@pytest.mark.slow
def imshow_called(self, plotmethod):
plotmethod()
images = plt.gca().findobj(mpl.image.AxesImage)
return len(images) > 0
def contourf_called(self, plotmethod):
plotmethod()
paths = plt.gca().findobj(mpl.collections.PathCollection)
return len(paths) > 0
class TestPlot(PlotTestCase):
@pytest.fixture(autouse=True)
def setup_array(self):
self.darray = DataArray(easy_array((2, 3, 4)))
def test_accessor(self):
from ..plot.plot import _PlotMethods
assert DataArray.plot is _PlotMethods
assert isinstance(self.darray.plot, _PlotMethods)
def test_label_from_attrs(self):
da = self.darray.copy()
assert "" == label_from_attrs(da)
da.name = "a"
da.attrs["units"] = "a_units"
da.attrs["long_name"] = "a_long_name"
da.attrs["standard_name"] = "a_standard_name"
assert "a_long_name [a_units]" == label_from_attrs(da)
da.attrs.pop("long_name")
assert "a_standard_name [a_units]" == label_from_attrs(da)
da.attrs.pop("units")
assert "a_standard_name" == label_from_attrs(da)
da.attrs["units"] = "a_units"
da.attrs.pop("standard_name")
assert "a [a_units]" == label_from_attrs(da)
da.attrs.pop("units")
assert "a" == label_from_attrs(da)
def test1d(self):
self.darray[:, 0, 0].plot()
with raises_regex(ValueError, "x must be one of None, 'dim_0'"):
self.darray[:, 0, 0].plot(x="dim_1")
with raises_regex(TypeError, "complex128"):
(self.darray[:, 0, 0] + 1j).plot()
def test_1d_bool(self):
xr.ones_like(self.darray[:, 0, 0], dtype=bool).plot()
def test_1d_x_y_kw(self):
z = np.arange(10)
da = DataArray(np.cos(z), dims=["z"], coords=[z], name="f")
xy = [[None, None], [None, "z"], ["z", None]]
f, ax = plt.subplots(3, 1)
for aa, (x, y) in enumerate(xy):
da.plot(x=x, y=y, ax=ax.flat[aa])
with raises_regex(ValueError, "Cannot specify both"):
da.plot(x="z", y="z")
error_msg = "must be one of None, 'z'"
with raises_regex(ValueError, f"x {error_msg}"):
da.plot(x="f")
with raises_regex(ValueError, f"y {error_msg}"):
da.plot(y="f")
def test_multiindex_level_as_coord(self):
da = xr.DataArray(
np.arange(5),
dims="x",
coords=dict(a=("x", np.arange(5)), b=("x", np.arange(5, 10))),
)
da = da.set_index(x=["a", "b"])
for x in ["a", "b"]:
h = da.plot(x=x)[0]
assert_array_equal(h.get_xdata(), da[x].values)
for y in ["a", "b"]:
h = da.plot(y=y)[0]
assert_array_equal(h.get_ydata(), da[y].values)
# Test for bug in GH issue #2725
def test_infer_line_data(self):
current = DataArray(
name="I",
data=np.array([5, 8]),
dims=["t"],
coords={
"t": (["t"], np.array([0.1, 0.2])),
"V": (["t"], np.array([100, 200])),
},
)
# Plot current against voltage
line = current.plot.line(x="V")[0]
assert_array_equal(line.get_xdata(), current.coords["V"].values)
# Plot current against time
line = current.plot.line()[0]
assert_array_equal(line.get_xdata(), current.coords["t"].values)
def test_line_plot_along_1d_coord(self):
# Test for bug in GH #3334
x_coord = xr.DataArray(data=[0.1, 0.2], dims=["x"])
t_coord = xr.DataArray(data=[10, 20], dims=["t"])
da = xr.DataArray(
data=np.array([[0, 1], [5, 9]]),
dims=["x", "t"],
coords={"x": x_coord, "time": t_coord},
)
line = da.plot(x="time", hue="x")[0]
assert_array_equal(line.get_xdata(), da.coords["time"].values)
line = da.plot(y="time", hue="x")[0]
assert_array_equal(line.get_ydata(), da.coords["time"].values)
def test_2d_line(self):
with raises_regex(ValueError, "hue"):
self.darray[:, :, 0].plot.line()
self.darray[:, :, 0].plot.line(hue="dim_1")
self.darray[:, :, 0].plot.line(x="dim_1")
self.darray[:, :, 0].plot.line(y="dim_1")
self.darray[:, :, 0].plot.line(x="dim_0", hue="dim_1")
self.darray[:, :, 0].plot.line(y="dim_0", hue="dim_1")
with raises_regex(ValueError, "Cannot"):
self.darray[:, :, 0].plot.line(x="dim_1", y="dim_0", hue="dim_1")
def test_2d_line_accepts_legend_kw(self):
self.darray[:, :, 0].plot.line(x="dim_0", add_legend=False)
assert not plt.gca().get_legend()
plt.cla()
self.darray[:, :, 0].plot.line(x="dim_0", add_legend=True)
assert plt.gca().get_legend()
# check whether legend title is set
assert plt.gca().get_legend().get_title().get_text() == "dim_1"
def test_2d_line_accepts_x_kw(self):
self.darray[:, :, 0].plot.line(x="dim_0")
assert plt.gca().get_xlabel() == "dim_0"
plt.cla()
self.darray[:, :, 0].plot.line(x="dim_1")
assert plt.gca().get_xlabel() == "dim_1"
def test_2d_line_accepts_hue_kw(self):
self.darray[:, :, 0].plot.line(hue="dim_0")
assert plt.gca().get_legend().get_title().get_text() == "dim_0"
plt.cla()
self.darray[:, :, 0].plot.line(hue="dim_1")
assert plt.gca().get_legend().get_title().get_text() == "dim_1"
def test_2d_coords_line_plot(self):
lon, lat = np.meshgrid(np.linspace(-20, 20, 5), np.linspace(0, 30, 4))
lon += lat / 10
lat += lon / 10
da = xr.DataArray(
np.arange(20).reshape(4, 5),
dims=["y", "x"],
coords={"lat": (("y", "x"), lat), "lon": (("y", "x"), lon)},
)
with figure_context():
hdl = da.plot.line(x="lon", hue="x")
assert len(hdl) == 5
with figure_context():
hdl = da.plot.line(x="lon", hue="y")
assert len(hdl) == 4
with pytest.raises(ValueError, match="For 2D inputs, hue must be a dimension"):
da.plot.line(x="lon", hue="lat")
def test_2d_coord_line_plot_coords_transpose_invariant(self):
# checks for bug reported in GH #3933
x = np.arange(10)
y = np.arange(20)
ds = xr.Dataset(coords={"x": x, "y": y})
for z in [ds.y + ds.x, ds.x + ds.y]:
ds = ds.assign_coords(z=z)
ds["v"] = ds.x + ds.y
ds["v"].plot.line(y="z", hue="x")
def test_2d_before_squeeze(self):
a = DataArray(easy_array((1, 5)))
a.plot()
def test2d_uniform_calls_imshow(self):
assert self.imshow_called(self.darray[:, :, 0].plot.imshow)
@pytest.mark.slow
def test2d_nonuniform_calls_contourf(self):
a = self.darray[:, :, 0]
a.coords["dim_1"] = [2, 1, 89]
assert self.contourf_called(a.plot.contourf)
def test2d_1d_2d_coordinates_contourf(self):
sz = (20, 10)
depth = easy_array(sz)
a = DataArray(
easy_array(sz),
dims=["z", "time"],
coords={"depth": (["z", "time"], depth), "time": np.linspace(0, 1, sz[1])},
)
a.plot.contourf(x="time", y="depth")
a.plot.contourf(x="depth", y="time")
def test_contourf_cmap_set(self):
a = DataArray(easy_array((4, 4)), dims=["z", "time"])
cmap = mpl.cm.viridis
# use copy to ensure cmap is not changed by contourf()
# Set vmin and vmax so that _build_discrete_colormap is called with
# extend='both'. extend is passed to
# mpl.colors.from_levels_and_colors(), which returns a result with
# sensible under and over values if extend='both', but not if
# extend='neither' (but if extend='neither' the under and over values
# would not be used because the data would all be within the plotted
# range)
pl = a.plot.contourf(cmap=copy(cmap), vmin=0.1, vmax=0.9)
# check the set_bad color
assert_array_equal(
pl.cmap(np.ma.masked_invalid([np.nan]))[0],
cmap(np.ma.masked_invalid([np.nan]))[0],
)
# check the set_under color
assert pl.cmap(-np.inf) == cmap(-np.inf)
# check the set_over color
assert pl.cmap(np.inf) == cmap(np.inf)
def test_contourf_cmap_set_with_bad_under_over(self):
a = DataArray(easy_array((4, 4)), dims=["z", "time"])
# make a copy here because we want a local cmap that we will modify.
cmap = copy(mpl.cm.viridis)
cmap.set_bad("w")
# check we actually changed the set_bad color
assert np.all(
cmap(np.ma.masked_invalid([np.nan]))[0]
!= mpl.cm.viridis(np.ma.masked_invalid([np.nan]))[0]
)
cmap.set_under("r")
# check we actually changed the set_under color
assert cmap(-np.inf) != mpl.cm.viridis(-np.inf)
cmap.set_over("g")
# check we actually changed the set_over color
assert cmap(np.inf) != mpl.cm.viridis(-np.inf)
# copy to ensure cmap is not changed by contourf()
pl = a.plot.contourf(cmap=copy(cmap))
# check the set_bad color has been kept
assert_array_equal(
pl.cmap(np.ma.masked_invalid([np.nan]))[0],
cmap(np.ma.masked_invalid([np.nan]))[0],
)
# check the set_under color has been kept
assert pl.cmap(-np.inf) == cmap(-np.inf)
# check the set_over color has been kept
assert pl.cmap(np.inf) == cmap(np.inf)
def test3d(self):
self.darray.plot()
def test_can_pass_in_axis(self):
self.pass_in_axis(self.darray.plot)
def test__infer_interval_breaks(self):
assert_array_equal([-0.5, 0.5, 1.5], _infer_interval_breaks([0, 1]))
assert_array_equal(
[-0.5, 0.5, 5.0, 9.5, 10.5], _infer_interval_breaks([0, 1, 9, 10])
)
assert_array_equal(
pd.date_range("20000101", periods=4) - np.timedelta64(12, "h"),
_infer_interval_breaks(pd.date_range("20000101", periods=3)),
)
# make a bounded 2D array that we will center and re-infer
xref, yref = np.meshgrid(np.arange(6), np.arange(5))
cx = (xref[1:, 1:] + xref[:-1, :-1]) / 2
cy = (yref[1:, 1:] + yref[:-1, :-1]) / 2
x = _infer_interval_breaks(cx, axis=1)
x = _infer_interval_breaks(x, axis=0)
y = _infer_interval_breaks(cy, axis=1)
y = _infer_interval_breaks(y, axis=0)
np.testing.assert_allclose(xref, x)
np.testing.assert_allclose(yref, y)
# test that ValueError is raised for non-monotonic 1D inputs
with pytest.raises(ValueError):
_infer_interval_breaks(np.array([0, 2, 1]), check_monotonic=True)
def test_geo_data(self):
# Regression test for gh2250
# Realistic coordinates taken from the example dataset
lat = np.array(
[
[16.28, 18.48, 19.58, 19.54, 18.35],
[28.07, 30.52, 31.73, 31.68, 30.37],
[39.65, 42.27, 43.56, 43.51, 42.11],
[50.52, 53.22, 54.55, 54.50, 53.06],
]
)
lon = np.array(
[
[-126.13, -113.69, -100.92, -88.04, -75.29],
[-129.27, -115.62, -101.54, -87.32, -73.26],
[-133.10, -118.00, -102.31, -86.42, -70.76],
[-137.85, -120.99, -103.28, -85.28, -67.62],
]
)
data = np.sqrt(lon ** 2 + lat ** 2)
da = DataArray(
data,
dims=("y", "x"),
coords={"lon": (("y", "x"), lon), "lat": (("y", "x"), lat)},
)
da.plot(x="lon", y="lat")
ax = plt.gca()
assert ax.has_data()
da.plot(x="lat", y="lon")
ax = plt.gca()
assert ax.has_data()
def test_datetime_dimension(self):
nrow = 3
ncol = 4
time = pd.date_range("2000-01-01", periods=nrow)
a = DataArray(
easy_array((nrow, ncol)), coords=[("time", time), ("y", range(ncol))]
)
a.plot()
ax = plt.gca()
assert ax.has_data()
@pytest.mark.slow
@pytest.mark.filterwarnings("ignore:tight_layout cannot")
def test_convenient_facetgrid(self):
a = easy_array((10, 15, 4))
d = DataArray(a, dims=["y", "x", "z"])
d.coords["z"] = list("abcd")
g = d.plot(x="x", y="y", col="z", col_wrap=2, cmap="cool")
assert_array_equal(g.axes.shape, [2, 2])
for ax in g.axes.flat:
assert ax.has_data()
with raises_regex(ValueError, "[Ff]acet"):
d.plot(x="x", y="y", col="z", ax=plt.gca())
with raises_regex(ValueError, "[Ff]acet"):
d[0].plot(x="x", y="y", col="z", ax=plt.gca())
@pytest.mark.slow
def test_subplot_kws(self):
a = easy_array((10, 15, 4))
d = DataArray(a, dims=["y", "x", "z"])
d.coords["z"] = list("abcd")
g = d.plot(
x="x",
y="y",
col="z",
col_wrap=2,
cmap="cool",
subplot_kws=dict(facecolor="r"),
)
for ax in g.axes.flat:
# mpl V2
assert ax.get_facecolor()[0:3] == mpl.colors.to_rgb("r")
@pytest.mark.slow
def test_plot_size(self):
self.darray[:, 0, 0].plot(figsize=(13, 5))
assert tuple(plt.gcf().get_size_inches()) == (13, 5)
self.darray.plot(figsize=(13, 5))
assert tuple(plt.gcf().get_size_inches()) == (13, 5)
self.darray.plot(size=5)
assert plt.gcf().get_size_inches()[1] == 5
self.darray.plot(size=5, aspect=2)
assert tuple(plt.gcf().get_size_inches()) == (10, 5)
with raises_regex(ValueError, "cannot provide both"):
self.darray.plot(ax=plt.gca(), figsize=(3, 4))
with raises_regex(ValueError, "cannot provide both"):
self.darray.plot(size=5, figsize=(3, 4))
with raises_regex(ValueError, "cannot provide both"):
self.darray.plot(size=5, ax=plt.gca())
with raises_regex(ValueError, "cannot provide `aspect`"):
self.darray.plot(aspect=1)
@pytest.mark.slow
@pytest.mark.filterwarnings("ignore:tight_layout cannot")
def test_convenient_facetgrid_4d(self):
a = easy_array((10, 15, 2, 3))
d = DataArray(a, dims=["y", "x", "columns", "rows"])
g = d.plot(x="x", y="y", col="columns", row="rows")
assert_array_equal(g.axes.shape, [3, 2])
for ax in g.axes.flat:
assert ax.has_data()
with raises_regex(ValueError, "[Ff]acet"):
d.plot(x="x", y="y", col="columns", ax=plt.gca())
def test_coord_with_interval(self):
"""Test line plot with intervals."""
bins = [-1, 0, 1, 2]
self.darray.groupby_bins("dim_0", bins).mean(...).plot()
def test_coord_with_interval_x(self):
"""Test line plot with intervals explicitly on x axis."""
bins = [-1, 0, 1, 2]
self.darray.groupby_bins("dim_0", bins).mean(...).plot(x="dim_0_bins")
def test_coord_with_interval_y(self):
"""Test line plot with intervals explicitly on y axis."""
bins = [-1, 0, 1, 2]
self.darray.groupby_bins("dim_0", bins).mean(...).plot(y="dim_0_bins")
def test_coord_with_interval_xy(self):
"""Test line plot with intervals on both x and y axes."""
bins = [-1, 0, 1, 2]
self.darray.groupby_bins("dim_0", bins).mean(...).dim_0_bins.plot()
class TestPlot1D(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
d = [0, 1.1, 0, 2]
self.darray = DataArray(d, coords={"period": range(len(d))}, dims="period")
self.darray.period.attrs["units"] = "s"
def test_xlabel_is_index_name(self):
self.darray.plot()
assert "period [s]" == plt.gca().get_xlabel()
def test_no_label_name_on_x_axis(self):
self.darray.plot(y="period")
assert "" == plt.gca().get_xlabel()
def test_no_label_name_on_y_axis(self):
self.darray.plot()
assert "" == plt.gca().get_ylabel()
def test_ylabel_is_data_name(self):
self.darray.name = "temperature"
self.darray.attrs["units"] = "degrees_Celsius"
self.darray.plot()
assert "temperature [degrees_Celsius]" == plt.gca().get_ylabel()
def test_xlabel_is_data_name(self):
self.darray.name = "temperature"
self.darray.attrs["units"] = "degrees_Celsius"
self.darray.plot(y="period")
assert "temperature [degrees_Celsius]" == plt.gca().get_xlabel()
def test_format_string(self):
self.darray.plot.line("ro")
def test_can_pass_in_axis(self):
self.pass_in_axis(self.darray.plot.line)
def test_nonnumeric_index_raises_typeerror(self):
a = DataArray([1, 2, 3], {"letter": ["a", "b", "c"]}, dims="letter")
with raises_regex(TypeError, r"[Pp]lot"):
a.plot.line()
def test_primitive_returned(self):
p = self.darray.plot.line()
assert isinstance(p[0], mpl.lines.Line2D)
@pytest.mark.slow
def test_plot_nans(self):
self.darray[1] = np.nan
self.darray.plot.line()
def test_x_ticks_are_rotated_for_time(self):
time = pd.date_range("2000-01-01", "2000-01-10")
a = DataArray(np.arange(len(time)), [("t", time)])
a.plot.line()
rotation = plt.gca().get_xticklabels()[0].get_rotation()
assert rotation != 0
def test_xyincrease_false_changes_axes(self):
self.darray.plot.line(xincrease=False, yincrease=False)
xlim = plt.gca().get_xlim()
ylim = plt.gca().get_ylim()
diffs = xlim[1] - xlim[0], ylim[1] - ylim[0]
assert all(x < 0 for x in diffs)
def test_slice_in_title(self):
self.darray.coords["d"] = 10
self.darray.plot.line()
title = plt.gca().get_title()
assert "d = 10" == title
class TestPlotStep(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
self.darray = DataArray(easy_array((2, 3, 4)))
def test_step(self):
hdl = self.darray[0, 0].plot.step()
assert "steps" in hdl[0].get_drawstyle()
@pytest.mark.parametrize("where", ["pre", "post", "mid"])
def test_step_with_where(self, where):
hdl = self.darray[0, 0].plot.step(where=where)
assert hdl[0].get_drawstyle() == f"steps-{where}"
def test_coord_with_interval_step(self):
"""Test step plot with intervals."""
bins = [-1, 0, 1, 2]
self.darray.groupby_bins("dim_0", bins).mean(...).plot.step()
assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2)
def test_coord_with_interval_step_x(self):
"""Test step plot with intervals explicitly on x axis."""
bins = [-1, 0, 1, 2]
self.darray.groupby_bins("dim_0", bins).mean(...).plot.step(x="dim_0_bins")
assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2)
def test_coord_with_interval_step_y(self):
"""Test step plot with intervals explicitly on y axis."""
bins = [-1, 0, 1, 2]
self.darray.groupby_bins("dim_0", bins).mean(...).plot.step(y="dim_0_bins")
assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2)
class TestPlotHistogram(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
self.darray = DataArray(easy_array((2, 3, 4)))
def test_3d_array(self):
self.darray.plot.hist()
def test_xlabel_uses_name(self):
self.darray.name = "testpoints"
self.darray.attrs["units"] = "testunits"
self.darray.plot.hist()
assert "testpoints [testunits]" == plt.gca().get_xlabel()
def test_title_is_histogram(self):
self.darray.plot.hist()
assert "Histogram" == plt.gca().get_title()
def test_can_pass_in_kwargs(self):
nbins = 5
self.darray.plot.hist(bins=nbins)
assert nbins == len(plt.gca().patches)
def test_can_pass_in_axis(self):
self.pass_in_axis(self.darray.plot.hist)
def test_primitive_returned(self):
h = self.darray.plot.hist()
assert isinstance(h[-1][0], mpl.patches.Rectangle)
@pytest.mark.slow
def test_plot_nans(self):
self.darray[0, 0, 0] = np.nan
self.darray.plot.hist()
def test_hist_coord_with_interval(self):
(
self.darray.groupby_bins("dim_0", [-1, 0, 1, 2])
.mean(...)
.plot.hist(range=(-1, 2))
)
@requires_matplotlib
class TestDetermineCmapParams:
@pytest.fixture(autouse=True)
def setUp(self):
self.data = np.linspace(0, 1, num=100)
def test_robust(self):
cmap_params = _determine_cmap_params(self.data, robust=True)
assert cmap_params["vmin"] == np.percentile(self.data, 2)
assert cmap_params["vmax"] == np.percentile(self.data, 98)
assert cmap_params["cmap"] == "viridis"
assert cmap_params["extend"] == "both"
assert cmap_params["levels"] is None
assert cmap_params["norm"] is None
def test_center(self):
cmap_params = _determine_cmap_params(self.data, center=0.5)
assert cmap_params["vmax"] - 0.5 == 0.5 - cmap_params["vmin"]
assert cmap_params["cmap"] == "RdBu_r"
assert cmap_params["extend"] == "neither"
assert cmap_params["levels"] is None
assert cmap_params["norm"] is None
def test_cmap_sequential_option(self):
with xr.set_options(cmap_sequential="magma"):
cmap_params = _determine_cmap_params(self.data)
assert cmap_params["cmap"] == "magma"
def test_cmap_sequential_explicit_option(self):
with xr.set_options(cmap_sequential=mpl.cm.magma):
cmap_params = _determine_cmap_params(self.data)
assert cmap_params["cmap"] == mpl.cm.magma
def test_cmap_divergent_option(self):
with xr.set_options(cmap_divergent="magma"):
cmap_params = _determine_cmap_params(self.data, center=0.5)
assert cmap_params["cmap"] == "magma"
def test_nan_inf_are_ignored(self):
cmap_params1 = _determine_cmap_params(self.data)
data = self.data
data[50:55] = np.nan
data[56:60] = np.inf
cmap_params2 = _determine_cmap_params(data)
assert cmap_params1["vmin"] == cmap_params2["vmin"]
assert cmap_params1["vmax"] == cmap_params2["vmax"]
@pytest.mark.slow
def test_integer_levels(self):
data = self.data + 1
# default is to cover full data range but with no guarantee on Nlevels
for level in np.arange(2, 10, dtype=int):
cmap_params = _determine_cmap_params(data, levels=level)
assert cmap_params["vmin"] is None
assert cmap_params["vmax"] is None
assert cmap_params["norm"].vmin == cmap_params["levels"][0]
assert cmap_params["norm"].vmax == cmap_params["levels"][-1]
assert cmap_params["extend"] == "neither"
# with min max we are more strict
cmap_params = _determine_cmap_params(
data, levels=5, vmin=0, vmax=5, cmap="Blues"
)
assert cmap_params["vmin"] is None
assert cmap_params["vmax"] is None
assert cmap_params["norm"].vmin == 0
assert cmap_params["norm"].vmax == 5
assert cmap_params["norm"].vmin == cmap_params["levels"][0]
assert cmap_params["norm"].vmax == cmap_params["levels"][-1]
assert cmap_params["cmap"].name == "Blues"
assert cmap_params["extend"] == "neither"
assert cmap_params["cmap"].N == 4
assert cmap_params["norm"].N == 5
cmap_params = _determine_cmap_params(data, levels=5, vmin=0.5, vmax=1.5)
assert cmap_params["cmap"].name == "viridis"
assert cmap_params["extend"] == "max"
cmap_params = _determine_cmap_params(data, levels=5, vmin=1.5)
assert cmap_params["cmap"].name == "viridis"
assert cmap_params["extend"] == "min"
cmap_params = _determine_cmap_params(data, levels=5, vmin=1.3, vmax=1.5)
assert cmap_params["cmap"].name == "viridis"
assert cmap_params["extend"] == "both"
def test_list_levels(self):
data = self.data + 1
orig_levels = [0, 1, 2, 3, 4, 5]
# vmin and vmax should be ignored if levels are explicitly provided
cmap_params = _determine_cmap_params(data, levels=orig_levels, vmin=0, vmax=3)
assert cmap_params["vmin"] is None
assert cmap_params["vmax"] is None
assert cmap_params["norm"].vmin == 0
assert cmap_params["norm"].vmax == 5
assert cmap_params["cmap"].N == 5
assert cmap_params["norm"].N == 6
for wrap_levels in [list, np.array, pd.Index, DataArray]:
cmap_params = _determine_cmap_params(data, levels=wrap_levels(orig_levels))
assert_array_equal(cmap_params["levels"], orig_levels)
def test_divergentcontrol(self):
neg = self.data - 0.1
pos = self.data
# Default with positive data will be a normal cmap
cmap_params = _determine_cmap_params(pos)
assert cmap_params["vmin"] == 0
assert cmap_params["vmax"] == 1
assert cmap_params["cmap"] == "viridis"
# Default with negative data will be a divergent cmap
cmap_params = _determine_cmap_params(neg)
assert cmap_params["vmin"] == -0.9
assert cmap_params["vmax"] == 0.9
assert cmap_params["cmap"] == "RdBu_r"
# Setting vmin or vmax should prevent this only if center is false
cmap_params = _determine_cmap_params(neg, vmin=-0.1, center=False)
assert cmap_params["vmin"] == -0.1
assert cmap_params["vmax"] == 0.9
assert cmap_params["cmap"] == "viridis"
cmap_params = _determine_cmap_params(neg, vmax=0.5, center=False)
assert cmap_params["vmin"] == -0.1
assert cmap_params["vmax"] == 0.5
assert cmap_params["cmap"] == "viridis"
# Setting center=False too
cmap_params = _determine_cmap_params(neg, center=False)
assert cmap_params["vmin"] == -0.1
assert cmap_params["vmax"] == 0.9
assert cmap_params["cmap"] == "viridis"
# However, I should still be able to set center and have a div cmap
cmap_params = _determine_cmap_params(neg, center=0)
assert cmap_params["vmin"] == -0.9
assert cmap_params["vmax"] == 0.9
assert cmap_params["cmap"] == "RdBu_r"
# Setting vmin or vmax alone will force symmetric bounds around center
cmap_params = _determine_cmap_params(neg, vmin=-0.1)
assert cmap_params["vmin"] == -0.1
assert cmap_params["vmax"] == 0.1
assert cmap_params["cmap"] == "RdBu_r"
cmap_params = _determine_cmap_params(neg, vmax=0.5)
assert cmap_params["vmin"] == -0.5
assert cmap_params["vmax"] == 0.5
assert cmap_params["cmap"] == "RdBu_r"
cmap_params = _determine_cmap_params(neg, vmax=0.6, center=0.1)
assert cmap_params["vmin"] == -0.4
assert cmap_params["vmax"] == 0.6
assert cmap_params["cmap"] == "RdBu_r"
# But this is only true if vmin or vmax are negative
cmap_params = _determine_cmap_params(pos, vmin=-0.1)
assert cmap_params["vmin"] == -0.1
assert cmap_params["vmax"] == 0.1
assert cmap_params["cmap"] == "RdBu_r"
cmap_params = _determine_cmap_params(pos, vmin=0.1)
assert cmap_params["vmin"] == 0.1
assert cmap_params["vmax"] == 1
assert cmap_params["cmap"] == "viridis"
cmap_params = _determine_cmap_params(pos, vmax=0.5)
assert cmap_params["vmin"] == 0
assert cmap_params["vmax"] == 0.5
assert cmap_params["cmap"] == "viridis"
# If both vmin and vmax are provided, output is non-divergent
cmap_params = _determine_cmap_params(neg, vmin=-0.2, vmax=0.6)
assert cmap_params["vmin"] == -0.2
assert cmap_params["vmax"] == 0.6
assert cmap_params["cmap"] == "viridis"
# regression test for GH3524
# infer diverging colormap from divergent levels
cmap_params = _determine_cmap_params(pos, levels=[-0.1, 0, 1])
# specifying levels makes cmap a Colormap object
assert cmap_params["cmap"].name == "RdBu_r"
def test_norm_sets_vmin_vmax(self):
vmin = self.data.min()
vmax = self.data.max()
for norm, extend, levels in zip(
[
mpl.colors.Normalize(),
mpl.colors.Normalize(),
mpl.colors.Normalize(vmin + 0.1, vmax - 0.1),
mpl.colors.Normalize(None, vmax - 0.1),
mpl.colors.Normalize(vmin + 0.1, None),
],
["neither", "neither", "both", "max", "min"],
[7, None, None, None, None],
):
test_min = vmin if norm.vmin is None else norm.vmin
test_max = vmax if norm.vmax is None else norm.vmax
cmap_params = _determine_cmap_params(self.data, norm=norm, levels=levels)
assert cmap_params["vmin"] is None
assert cmap_params["vmax"] is None
assert cmap_params["norm"].vmin == test_min
assert cmap_params["norm"].vmax == test_max
assert cmap_params["extend"] == extend
assert cmap_params["norm"] == norm
@requires_matplotlib
class TestDiscreteColorMap:
@pytest.fixture(autouse=True)
def setUp(self):
x = np.arange(start=0, stop=10, step=2)
y = np.arange(start=9, stop=-7, step=-3)
xy = np.dstack(np.meshgrid(x, y))
distance = np.linalg.norm(xy, axis=2)
self.darray = DataArray(distance, list(zip(("y", "x"), (y, x))))
self.data_min = distance.min()
self.data_max = distance.max()
yield
# Remove all matplotlib figures
plt.close("all")
@pytest.mark.slow
def test_recover_from_seaborn_jet_exception(self):
pal = _color_palette("jet", 4)
assert type(pal) == np.ndarray
assert len(pal) == 4
@pytest.mark.slow
def test_build_discrete_cmap(self):
for (cmap, levels, extend, filled) in [
("jet", [0, 1], "both", False),
("hot", [-4, 4], "max", True),
]:
ncmap, cnorm = _build_discrete_cmap(cmap, levels, extend, filled)
assert ncmap.N == len(levels) - 1
assert len(ncmap.colors) == len(levels) - 1
assert cnorm.N == len(levels)
assert_array_equal(cnorm.boundaries, levels)
assert max(levels) == cnorm.vmax
assert min(levels) == cnorm.vmin
if filled:
assert ncmap.colorbar_extend == extend
else:
assert ncmap.colorbar_extend == "max"
@pytest.mark.slow
def test_discrete_colormap_list_of_levels(self):
for extend, levels in [
("max", [-1, 2, 4, 8, 10]),
("both", [2, 5, 10, 11]),
("neither", [0, 5, 10, 15]),
("min", [2, 5, 10, 15]),
]:
for kind in ["imshow", "pcolormesh", "contourf", "contour"]:
primitive = getattr(self.darray.plot, kind)(levels=levels)
assert_array_equal(levels, primitive.norm.boundaries)
assert max(levels) == primitive.norm.vmax
assert min(levels) == primitive.norm.vmin
if kind != "contour":
assert extend == primitive.cmap.colorbar_extend
else:
assert "max" == primitive.cmap.colorbar_extend
assert len(levels) - 1 == len(primitive.cmap.colors)
@pytest.mark.slow
def test_discrete_colormap_int_levels(self):
for extend, levels, vmin, vmax, cmap in [
("neither", 7, None, None, None),
("neither", 7, None, 20, mpl.cm.RdBu),
("both", 7, 4, 8, None),
("min", 10, 4, 15, None),
]:
for kind in ["imshow", "pcolormesh", "contourf", "contour"]:
primitive = getattr(self.darray.plot, kind)(
levels=levels, vmin=vmin, vmax=vmax, cmap=cmap
)
assert levels >= len(primitive.norm.boundaries) - 1
if vmax is None:
assert primitive.norm.vmax >= self.data_max
else:
assert primitive.norm.vmax >= vmax
if vmin is None:
assert primitive.norm.vmin <= self.data_min
else:
assert primitive.norm.vmin <= vmin
if kind != "contour":
assert extend == primitive.cmap.colorbar_extend
else:
assert "max" == primitive.cmap.colorbar_extend
assert levels >= len(primitive.cmap.colors)
def test_discrete_colormap_list_levels_and_vmin_or_vmax(self):
levels = [0, 5, 10, 15]
primitive = self.darray.plot(levels=levels, vmin=-3, vmax=20)
assert primitive.norm.vmax == max(levels)
assert primitive.norm.vmin == min(levels)
def test_discrete_colormap_provided_boundary_norm(self):
norm = mpl.colors.BoundaryNorm([0, 5, 10, 15], 4)
primitive = self.darray.plot.contourf(norm=norm)
np.testing.assert_allclose(primitive.levels, norm.boundaries)
class Common2dMixin:
"""
Common tests for 2d plotting go here.
These tests assume that a staticmethod for `self.plotfunc` exists.
Should have the same name as the method.
"""
@pytest.fixture(autouse=True)
def setUp(self):
da = DataArray(
easy_array((10, 15), start=-1),
dims=["y", "x"],
coords={"y": np.arange(10), "x": np.arange(15)},
)
# add 2d coords
ds = da.to_dataset(name="testvar")
x, y = np.meshgrid(da.x.values, da.y.values)
ds["x2d"] = DataArray(x, dims=["y", "x"])
ds["y2d"] = DataArray(y, dims=["y", "x"])
ds = ds.set_coords(["x2d", "y2d"])
# set darray and plot method
self.darray = ds.testvar
# Add CF-compliant metadata
self.darray.attrs["long_name"] = "a_long_name"
self.darray.attrs["units"] = "a_units"
self.darray.x.attrs["long_name"] = "x_long_name"
self.darray.x.attrs["units"] = "x_units"
self.darray.y.attrs["long_name"] = "y_long_name"
self.darray.y.attrs["units"] = "y_units"
self.plotmethod = getattr(self.darray.plot, self.plotfunc.__name__)
def test_label_names(self):
self.plotmethod()
assert "x_long_name [x_units]" == plt.gca().get_xlabel()
assert "y_long_name [y_units]" == plt.gca().get_ylabel()
def test_1d_raises_valueerror(self):
with raises_regex(ValueError, r"DataArray must be 2d"):
self.plotfunc(self.darray[0, :])
def test_bool(self):
xr.ones_like(self.darray, dtype=bool).plot()
def test_complex_raises_typeerror(self):
with raises_regex(TypeError, "complex128"):
(self.darray + 1j).plot()
def test_3d_raises_valueerror(self):
a = DataArray(easy_array((2, 3, 4)))
if self.plotfunc.__name__ == "imshow":
pytest.skip()
with raises_regex(ValueError, r"DataArray must be 2d"):
self.plotfunc(a)
def test_nonnumeric_index_raises_typeerror(self):
a = DataArray(easy_array((3, 2)), coords=[["a", "b", "c"], ["d", "e"]])
with raises_regex(TypeError, r"[Pp]lot"):
self.plotfunc(a)
def test_multiindex_raises_typeerror(self):
a = DataArray(
easy_array((3, 2)),
dims=("x", "y"),
coords=dict(x=("x", [0, 1, 2]), a=("y", [0, 1]), b=("y", [2, 3])),
)
a = a.set_index(y=("a", "b"))
with raises_regex(TypeError, r"[Pp]lot"):
self.plotfunc(a)
def test_can_pass_in_axis(self):
self.pass_in_axis(self.plotmethod)
def test_xyincrease_defaults(self):
# With default settings the axis must be ordered regardless
# of the coords order.
self.plotfunc(DataArray(easy_array((3, 2)), coords=[[1, 2, 3], [1, 2]]))
bounds = plt.gca().get_ylim()
assert bounds[0] < bounds[1]
bounds = plt.gca().get_xlim()
assert bounds[0] < bounds[1]
# Inverted coords
self.plotfunc(DataArray(easy_array((3, 2)), coords=[[3, 2, 1], [2, 1]]))
bounds = plt.gca().get_ylim()
assert bounds[0] < bounds[1]
bounds = plt.gca().get_xlim()
assert bounds[0] < bounds[1]
def test_xyincrease_false_changes_axes(self):
self.plotmethod(xincrease=False, yincrease=False)
xlim = plt.gca().get_xlim()
ylim = plt.gca().get_ylim()
diffs = xlim[0] - 14, xlim[1] - 0, ylim[0] - 9, ylim[1] - 0
assert all(abs(x) < 1 for x in diffs)
def test_xyincrease_true_changes_axes(self):
self.plotmethod(xincrease=True, yincrease=True)
xlim = plt.gca().get_xlim()
ylim = plt.gca().get_ylim()
diffs = xlim[0] - 0, xlim[1] - 14, ylim[0] - 0, ylim[1] - 9
assert all(abs(x) < 1 for x in diffs)
def test_x_ticks_are_rotated_for_time(self):
time = pd.date_range("2000-01-01", "2000-01-10")
a = DataArray(np.random.randn(2, len(time)), [("xx", [1, 2]), ("t", time)])
a.plot(x="t")
rotation = plt.gca().get_xticklabels()[0].get_rotation()
assert rotation != 0
def test_plot_nans(self):
x1 = self.darray[:5]
x2 = self.darray.copy()
x2[5:] = np.nan
clim1 = self.plotfunc(x1).get_clim()
clim2 = self.plotfunc(x2).get_clim()
assert clim1 == clim2
@pytest.mark.filterwarnings("ignore::UserWarning")
@pytest.mark.filterwarnings("ignore:invalid value encountered")
def test_can_plot_all_nans(self):
# regression test for issue #1780
self.plotfunc(DataArray(np.full((2, 2), np.nan)))
@pytest.mark.filterwarnings("ignore: Attempting to set")
def test_can_plot_axis_size_one(self):
if self.plotfunc.__name__ not in ("contour", "contourf"):
self.plotfunc(DataArray(np.ones((1, 1))))
def test_disallows_rgb_arg(self):
with pytest.raises(ValueError):
# Always invalid for most plots. Invalid for imshow with 2D data.
self.plotfunc(DataArray(np.ones((2, 2))), rgb="not None")
def test_viridis_cmap(self):
cmap_name = self.plotmethod(cmap="viridis").get_cmap().name
assert "viridis" == cmap_name
def test_default_cmap(self):
cmap_name = self.plotmethod().get_cmap().name
assert "RdBu_r" == cmap_name
cmap_name = self.plotfunc(abs(self.darray)).get_cmap().name
assert "viridis" == cmap_name
@requires_seaborn
def test_seaborn_palette_as_cmap(self):
cmap_name = self.plotmethod(levels=2, cmap="husl").get_cmap().name
assert "husl" == cmap_name
def test_can_change_default_cmap(self):
cmap_name = self.plotmethod(cmap="Blues").get_cmap().name
assert "Blues" == cmap_name
def test_diverging_color_limits(self):
artist = self.plotmethod()
vmin, vmax = artist.get_clim()
assert round(abs(-vmin - vmax), 7) == 0
def test_xy_strings(self):
self.plotmethod("y", "x")
ax = plt.gca()
assert "y_long_name [y_units]" == ax.get_xlabel()
assert "x_long_name [x_units]" == ax.get_ylabel()
def test_positional_coord_string(self):
self.plotmethod(y="x")
ax = plt.gca()
assert "x_long_name [x_units]" == ax.get_ylabel()
assert "y_long_name [y_units]" == ax.get_xlabel()
self.plotmethod(x="x")
ax = plt.gca()
assert "x_long_name [x_units]" == ax.get_xlabel()
assert "y_long_name [y_units]" == ax.get_ylabel()
def test_bad_x_string_exception(self):
with raises_regex(ValueError, "x and y cannot be equal."):
self.plotmethod(x="y", y="y")
error_msg = "must be one of None, 'x', 'x2d', 'y', 'y2d'"
with raises_regex(ValueError, f"x {error_msg}"):
self.plotmethod("not_a_real_dim", "y")
with raises_regex(ValueError, f"x {error_msg}"):
self.plotmethod(x="not_a_real_dim")
with raises_regex(ValueError, f"y {error_msg}"):
self.plotmethod(y="not_a_real_dim")
self.darray.coords["z"] = 100
def test_coord_strings(self):
# 1d coords (same as dims)
assert {"x", "y"} == set(self.darray.dims)
self.plotmethod(y="y", x="x")
def test_non_linked_coords(self):
# plot with coordinate names that are not dimensions
self.darray.coords["newy"] = self.darray.y + 150
# Normal case, without transpose
self.plotfunc(self.darray, x="x", y="newy")
ax = plt.gca()
assert "x_long_name [x_units]" == ax.get_xlabel()
assert "newy" == ax.get_ylabel()
# ax limits might change between plotfuncs
# simply ensure that these high coords were passed over
assert np.min(ax.get_ylim()) > 100.0
def test_non_linked_coords_transpose(self):
# plot with coordinate names that are not dimensions,
# and with transposed y and x axes
# This used to raise an error with pcolormesh and contour
# https://github.com/pydata/xarray/issues/788
self.darray.coords["newy"] = self.darray.y + 150
self.plotfunc(self.darray, x="newy", y="x")
ax = plt.gca()
assert "newy" == ax.get_xlabel()
assert "x_long_name [x_units]" == ax.get_ylabel()
# ax limits might change between plotfuncs
# simply ensure that these high coords were passed over
assert np.min(ax.get_xlim()) > 100.0
def test_multiindex_level_as_coord(self):
da = DataArray(
easy_array((3, 2)),
dims=("x", "y"),
coords=dict(x=("x", [0, 1, 2]), a=("y", [0, 1]), b=("y", [2, 3])),
)
da = da.set_index(y=["a", "b"])
for x, y in (("a", "x"), ("b", "x"), ("x", "a"), ("x", "b")):
self.plotfunc(da, x=x, y=y)
ax = plt.gca()
assert x == ax.get_xlabel()
assert y == ax.get_ylabel()
with raises_regex(ValueError, "levels of the same MultiIndex"):
self.plotfunc(da, x="a", y="b")
with raises_regex(ValueError, "y must be one of None, 'a', 'b', 'x'"):
self.plotfunc(da, x="a", y="y")
def test_default_title(self):
a = DataArray(easy_array((4, 3, 2)), dims=["a", "b", "c"])
a.coords["c"] = [0, 1]
a.coords["d"] = "foo"
self.plotfunc(a.isel(c=1))
title = plt.gca().get_title()
assert "c = 1, d = foo" == title or "d = foo, c = 1" == title
def test_colorbar_default_label(self):
self.plotmethod(add_colorbar=True)
assert "a_long_name [a_units]" in text_in_fig()
def test_no_labels(self):
self.darray.name = "testvar"
self.darray.attrs["units"] = "test_units"
self.plotmethod(add_labels=False)
alltxt = text_in_fig()
for string in [
"x_long_name [x_units]",
"y_long_name [y_units]",
"testvar [test_units]",
]:
assert string not in alltxt
def test_colorbar_kwargs(self):
# replace label
self.darray.attrs.pop("long_name")
self.darray.attrs["units"] = "test_units"
# check default colorbar label
self.plotmethod(add_colorbar=True)
alltxt = text_in_fig()
assert "testvar [test_units]" in alltxt
self.darray.attrs.pop("units")
self.darray.name = "testvar"
self.plotmethod(add_colorbar=True, cbar_kwargs={"label": "MyLabel"})
alltxt = text_in_fig()
assert "MyLabel" in alltxt
assert "testvar" not in alltxt
# you can use anything accepted by the dict constructor as well
self.plotmethod(add_colorbar=True, cbar_kwargs=(("label", "MyLabel"),))
alltxt = text_in_fig()
assert "MyLabel" in alltxt
assert "testvar" not in alltxt
# change cbar ax
fig, (ax, cax) = plt.subplots(1, 2)
self.plotmethod(
ax=ax, cbar_ax=cax, add_colorbar=True, cbar_kwargs={"label": "MyBar"}
)
assert ax.has_data()
assert cax.has_data()
alltxt = text_in_fig()
assert "MyBar" in alltxt
assert "testvar" not in alltxt
# note that there are two ways to achieve this
fig, (ax, cax) = plt.subplots(1, 2)
self.plotmethod(
ax=ax, add_colorbar=True, cbar_kwargs={"label": "MyBar", "cax": cax}
)
assert ax.has_data()
assert cax.has_data()
alltxt = text_in_fig()
assert "MyBar" in alltxt
assert "testvar" not in alltxt
# see that no colorbar is respected
self.plotmethod(add_colorbar=False)
assert "testvar" not in text_in_fig()
# check that error is raised
pytest.raises(
ValueError,
self.plotmethod,
add_colorbar=False,
cbar_kwargs={"label": "label"},
)
def test_verbose_facetgrid(self):
a = easy_array((10, 15, 3))
d = DataArray(a, dims=["y", "x", "z"])
g = xplt.FacetGrid(d, col="z")
g.map_dataarray(self.plotfunc, "x", "y")
for ax in g.axes.flat:
assert ax.has_data()
def test_2d_function_and_method_signature_same(self):
func_sig = inspect.getcallargs(self.plotfunc, self.darray)
method_sig = inspect.getcallargs(self.plotmethod)
del method_sig["_PlotMethods_obj"]
del func_sig["darray"]
assert func_sig == method_sig
@pytest.mark.filterwarnings("ignore:tight_layout cannot")
def test_convenient_facetgrid(self):
a = easy_array((10, 15, 4))
d = DataArray(a, dims=["y", "x", "z"])
g = self.plotfunc(d, x="x", y="y", col="z", col_wrap=2)
assert_array_equal(g.axes.shape, [2, 2])
for (y, x), ax in np.ndenumerate(g.axes):
assert ax.has_data()
if x == 0:
assert "y" == ax.get_ylabel()
else:
assert "" == ax.get_ylabel()
if y == 1:
assert "x" == ax.get_xlabel()
else:
assert "" == ax.get_xlabel()
# Infering labels
g = self.plotfunc(d, col="z", col_wrap=2)
assert_array_equal(g.axes.shape, [2, 2])
for (y, x), ax in np.ndenumerate(g.axes):
assert ax.has_data()
if x == 0:
assert "y" == ax.get_ylabel()
else:
assert "" == ax.get_ylabel()
if y == 1:
assert "x" == ax.get_xlabel()
else:
assert "" == ax.get_xlabel()
@pytest.mark.filterwarnings("ignore:tight_layout cannot")
def test_convenient_facetgrid_4d(self):
a = easy_array((10, 15, 2, 3))
d = DataArray(a, dims=["y", "x", "columns", "rows"])
g = self.plotfunc(d, x="x", y="y", col="columns", row="rows")
assert_array_equal(g.axes.shape, [3, 2])
for ax in g.axes.flat:
assert ax.has_data()
@pytest.mark.filterwarnings("ignore:This figure includes")
def test_facetgrid_map_only_appends_mappables(self):
a = easy_array((10, 15, 2, 3))
d = DataArray(a, dims=["y", "x", "columns", "rows"])
g = self.plotfunc(d, x="x", y="y", col="columns", row="rows")
expected = g._mappables
g.map(lambda: plt.plot(1, 1))
actual = g._mappables
assert expected == actual
def test_facetgrid_cmap(self):
# Regression test for GH592
data = np.random.random(size=(20, 25, 12)) + np.linspace(-3, 3, 12)
d = DataArray(data, dims=["x", "y", "time"])
fg = d.plot.pcolormesh(col="time")
# check that all color limits are the same
assert len({m.get_clim() for m in fg._mappables}) == 1
# check that all colormaps are the same
assert len({m.get_cmap().name for m in fg._mappables}) == 1
def test_facetgrid_cbar_kwargs(self):
a = easy_array((10, 15, 2, 3))
d = DataArray(a, dims=["y", "x", "columns", "rows"])
g = self.plotfunc(
d,
x="x",
y="y",
col="columns",
row="rows",
cbar_kwargs={"label": "test_label"},
)
# catch contour case
if hasattr(g, "cbar"):
assert get_colorbar_label(g.cbar) == "test_label"
def test_facetgrid_no_cbar_ax(self):
a = easy_array((10, 15, 2, 3))
d = DataArray(a, dims=["y", "x", "columns", "rows"])
with pytest.raises(ValueError):
self.plotfunc(d, x="x", y="y", col="columns", row="rows", cbar_ax=1)
def test_cmap_and_color_both(self):
with pytest.raises(ValueError):
self.plotmethod(colors="k", cmap="RdBu")
def test_2d_coord_with_interval(self):
for dim in self.darray.dims:
gp = self.darray.groupby_bins(dim, range(15), restore_coord_dims=True).mean(
dim
)
for kind in ["imshow", "pcolormesh", "contourf", "contour"]:
getattr(gp.plot, kind)()
def test_colormap_error_norm_and_vmin_vmax(self):
norm = mpl.colors.LogNorm(0.1, 1e1)
with pytest.raises(ValueError):
self.darray.plot(norm=norm, vmin=2)
with pytest.raises(ValueError):
self.darray.plot(norm=norm, vmax=2)
@pytest.mark.slow
class TestContourf(Common2dMixin, PlotTestCase):
plotfunc = staticmethod(xplt.contourf)
@pytest.mark.slow
def test_contourf_called(self):
# Having both statements ensures the test works properly
assert not self.contourf_called(self.darray.plot.imshow)
assert self.contourf_called(self.darray.plot.contourf)
def test_primitive_artist_returned(self):
artist = self.plotmethod()
assert isinstance(artist, mpl.contour.QuadContourSet)
@pytest.mark.slow
def test_extend(self):
artist = self.plotmethod()
assert artist.extend == "neither"
self.darray[0, 0] = -100
self.darray[-1, -1] = 100
artist = self.plotmethod(robust=True)
assert artist.extend == "both"
self.darray[0, 0] = 0
self.darray[-1, -1] = 0
artist = self.plotmethod(vmin=-0, vmax=10)
assert artist.extend == "min"
artist = self.plotmethod(vmin=-10, vmax=0)
assert artist.extend == "max"
@pytest.mark.slow
def test_2d_coord_names(self):
self.plotmethod(x="x2d", y="y2d")
# make sure labels came out ok
ax = plt.gca()
assert "x2d" == ax.get_xlabel()
assert "y2d" == ax.get_ylabel()
@pytest.mark.slow
def test_levels(self):
artist = self.plotmethod(levels=[-0.5, -0.4, 0.1])
assert artist.extend == "both"
artist = self.plotmethod(levels=3)
assert artist.extend == "neither"
@pytest.mark.slow
class TestContour(Common2dMixin, PlotTestCase):
plotfunc = staticmethod(xplt.contour)
# matplotlib cmap.colors gives an rgbA ndarray
# when seaborn is used, instead we get an rgb tuple
@staticmethod
def _color_as_tuple(c):
return tuple(c[:3])
def test_colors(self):
# with single color, we don't want rgb array
artist = self.plotmethod(colors="k")
assert artist.cmap.colors[0] == "k"
artist = self.plotmethod(colors=["k", "b"])
assert self._color_as_tuple(artist.cmap.colors[1]) == (0.0, 0.0, 1.0)
artist = self.darray.plot.contour(
levels=[-0.5, 0.0, 0.5, 1.0], colors=["k", "r", "w", "b"]
)
assert self._color_as_tuple(artist.cmap.colors[1]) == (1.0, 0.0, 0.0)
assert self._color_as_tuple(artist.cmap.colors[2]) == (1.0, 1.0, 1.0)
# the last color is now under "over"
assert self._color_as_tuple(artist.cmap._rgba_over) == (0.0, 0.0, 1.0)
def test_colors_np_levels(self):
# https://github.com/pydata/xarray/issues/3284
levels = np.array([-0.5, 0.0, 0.5, 1.0])
artist = self.darray.plot.contour(levels=levels, colors=["k", "r", "w", "b"])
assert self._color_as_tuple(artist.cmap.colors[1]) == (1.0, 0.0, 0.0)
assert self._color_as_tuple(artist.cmap.colors[2]) == (1.0, 1.0, 1.0)
# the last color is now under "over"
assert self._color_as_tuple(artist.cmap._rgba_over) == (0.0, 0.0, 1.0)
def test_cmap_and_color_both(self):
with pytest.raises(ValueError):
self.plotmethod(colors="k", cmap="RdBu")
def list_of_colors_in_cmap_raises_error(self):
with raises_regex(ValueError, "list of colors"):
self.plotmethod(cmap=["k", "b"])
@pytest.mark.slow
def test_2d_coord_names(self):
self.plotmethod(x="x2d", y="y2d")
# make sure labels came out ok
ax = plt.gca()
assert "x2d" == ax.get_xlabel()
assert "y2d" == ax.get_ylabel()
def test_single_level(self):
# this used to raise an error, but not anymore since
# add_colorbar defaults to false
self.plotmethod(levels=[0.1])
self.plotmethod(levels=1)
class TestPcolormesh(Common2dMixin, PlotTestCase):
plotfunc = staticmethod(xplt.pcolormesh)
def test_primitive_artist_returned(self):
artist = self.plotmethod()
assert isinstance(artist, mpl.collections.QuadMesh)
def test_everything_plotted(self):
artist = self.plotmethod()
assert artist.get_array().size == self.darray.size
@pytest.mark.slow
def test_2d_coord_names(self):
self.plotmethod(x="x2d", y="y2d")
# make sure labels came out ok
ax = plt.gca()
assert "x2d" == ax.get_xlabel()
assert "y2d" == ax.get_ylabel()
def test_dont_infer_interval_breaks_for_cartopy(self):
# Regression for GH 781
ax = plt.gca()
# Simulate a Cartopy Axis
setattr(ax, "projection", True)
artist = self.plotmethod(x="x2d", y="y2d", ax=ax)
assert isinstance(artist, mpl.collections.QuadMesh)
# Let cartopy handle the axis limits and artist size
assert artist.get_array().size <= self.darray.size
@pytest.mark.slow
class TestImshow(Common2dMixin, PlotTestCase):
plotfunc = staticmethod(xplt.imshow)
@pytest.mark.slow
def test_imshow_called(self):
# Having both statements ensures the test works properly
assert not self.imshow_called(self.darray.plot.contourf)
assert self.imshow_called(self.darray.plot.imshow)
def test_xy_pixel_centered(self):
self.darray.plot.imshow(yincrease=False)
assert np.allclose([-0.5, 14.5], plt.gca().get_xlim())
assert np.allclose([9.5, -0.5], plt.gca().get_ylim())
def test_default_aspect_is_auto(self):
self.darray.plot.imshow()
assert "auto" == plt.gca().get_aspect()
@pytest.mark.slow
def test_cannot_change_mpl_aspect(self):
with raises_regex(ValueError, "not available in xarray"):
self.darray.plot.imshow(aspect="equal")
# with numbers we fall back to fig control
self.darray.plot.imshow(size=5, aspect=2)
assert "auto" == plt.gca().get_aspect()
assert tuple(plt.gcf().get_size_inches()) == (10, 5)
@pytest.mark.slow
def test_primitive_artist_returned(self):
artist = self.plotmethod()
assert isinstance(artist, mpl.image.AxesImage)
@pytest.mark.slow
@requires_seaborn
def test_seaborn_palette_needs_levels(self):
with pytest.raises(ValueError):
self.plotmethod(cmap="husl")
def test_2d_coord_names(self):
with raises_regex(ValueError, "requires 1D coordinates"):
self.plotmethod(x="x2d", y="y2d")
def test_plot_rgb_image(self):
DataArray(
easy_array((10, 15, 3), start=0), dims=["y", "x", "band"]
).plot.imshow()
assert 0 == len(find_possible_colorbars())
def test_plot_rgb_image_explicit(self):
DataArray(
easy_array((10, 15, 3), start=0), dims=["y", "x", "band"]
).plot.imshow(y="y", x="x", rgb="band")
assert 0 == len(find_possible_colorbars())
def test_plot_rgb_faceted(self):
DataArray(
easy_array((2, 2, 10, 15, 3), start=0), dims=["a", "b", "y", "x", "band"]
).plot.imshow(row="a", col="b")
assert 0 == len(find_possible_colorbars())
def test_plot_rgba_image_transposed(self):
# We can handle the color axis being in any position
DataArray(
easy_array((4, 10, 15), start=0), dims=["band", "y", "x"]
).plot.imshow()
def test_warns_ambigious_dim(self):
arr = DataArray(easy_array((3, 3, 3)), dims=["y", "x", "band"])
with pytest.warns(UserWarning):
arr.plot.imshow()
# but doesn't warn if dimensions specified
arr.plot.imshow(rgb="band")
arr.plot.imshow(x="x", y="y")
def test_rgb_errors_too_many_dims(self):
arr = DataArray(easy_array((3, 3, 3, 3)), dims=["y", "x", "z", "band"])
with pytest.raises(ValueError):
arr.plot.imshow(rgb="band")
def test_rgb_errors_bad_dim_sizes(self):
arr = DataArray(easy_array((5, 5, 5)), dims=["y", "x", "band"])
with pytest.raises(ValueError):
arr.plot.imshow(rgb="band")
def test_normalize_rgb_imshow(self):
for kwargs in (
dict(vmin=-1),
dict(vmax=2),
dict(vmin=-1, vmax=1),
dict(vmin=0, vmax=0),
dict(vmin=0, robust=True),
dict(vmax=-1, robust=True),
):
da = DataArray(easy_array((5, 5, 3), start=-0.6, stop=1.4))
arr = da.plot.imshow(**kwargs).get_array()
assert 0 <= arr.min() <= arr.max() <= 1, kwargs
def test_normalize_rgb_one_arg_error(self):
da = DataArray(easy_array((5, 5, 3), start=-0.6, stop=1.4))
# If passed one bound that implies all out of range, error:
for kwargs in [dict(vmax=-1), dict(vmin=2)]:
with pytest.raises(ValueError):
da.plot.imshow(**kwargs)
# If passed two that's just moving the range, *not* an error:
for kwargs in [dict(vmax=-1, vmin=-1.2), dict(vmin=2, vmax=2.1)]:
da.plot.imshow(**kwargs)
def test_imshow_rgb_values_in_valid_range(self):
da = DataArray(np.arange(75, dtype="uint8").reshape((5, 5, 3)))
_, ax = plt.subplots()
out = da.plot.imshow(ax=ax).get_array()
assert out.dtype == np.uint8
assert (out[..., :3] == da.values).all() # Compare without added alpha
@pytest.mark.filterwarnings("ignore:Several dimensions of this array")
def test_regression_rgb_imshow_dim_size_one(self):
# Regression: https://github.com/pydata/xarray/issues/1966
da = DataArray(easy_array((1, 3, 3), start=0.0, stop=1.0))
da.plot.imshow()
def test_origin_overrides_xyincrease(self):
da = DataArray(easy_array((3, 2)), coords=[[-2, 0, 2], [-1, 1]])
with figure_context():
da.plot.imshow(origin="upper")
assert plt.xlim()[0] < 0
assert plt.ylim()[1] < 0
with figure_context():
da.plot.imshow(origin="lower")
assert plt.xlim()[0] < 0
assert plt.ylim()[0] < 0
class TestFacetGrid(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
d = easy_array((10, 15, 3))
self.darray = DataArray(d, dims=["y", "x", "z"], coords={"z": ["a", "b", "c"]})
self.g = xplt.FacetGrid(self.darray, col="z")
@pytest.mark.slow
def test_no_args(self):
self.g.map_dataarray(xplt.contourf, "x", "y")
# Don't want colorbar labeled with 'None'
alltxt = text_in_fig()
assert "None" not in alltxt
for ax in self.g.axes.flat:
assert ax.has_data()
@pytest.mark.slow
def test_names_appear_somewhere(self):
self.darray.name = "testvar"
self.g.map_dataarray(xplt.contourf, "x", "y")
for k, ax in zip("abc", self.g.axes.flat):
assert f"z = {k}" == ax.get_title()
alltxt = text_in_fig()
assert self.darray.name in alltxt
for label in ["x", "y"]:
assert label in alltxt
@pytest.mark.slow
def test_text_not_super_long(self):
self.darray.coords["z"] = [100 * letter for letter in "abc"]
g = xplt.FacetGrid(self.darray, col="z")
g.map_dataarray(xplt.contour, "x", "y")
alltxt = text_in_fig()
maxlen = max(len(txt) for txt in alltxt)
assert maxlen < 50
t0 = g.axes[0, 0].get_title()
assert t0.endswith("...")
@pytest.mark.slow
def test_colorbar(self):
vmin = self.darray.values.min()
vmax = self.darray.values.max()
expected = np.array((vmin, vmax))
self.g.map_dataarray(xplt.imshow, "x", "y")
for image in plt.gcf().findobj(mpl.image.AxesImage):
clim = np.array(image.get_clim())
assert np.allclose(expected, clim)
assert 1 == len(find_possible_colorbars())
@pytest.mark.slow
def test_empty_cell(self):
g = xplt.FacetGrid(self.darray, col="z", col_wrap=2)
g.map_dataarray(xplt.imshow, "x", "y")
bottomright = g.axes[-1, -1]
assert not bottomright.has_data()
assert not bottomright.get_visible()
@pytest.mark.slow
def test_norow_nocol_error(self):
with raises_regex(ValueError, r"[Rr]ow"):
xplt.FacetGrid(self.darray)
@pytest.mark.slow
def test_groups(self):
self.g.map_dataarray(xplt.imshow, "x", "y")
upperleft_dict = self.g.name_dicts[0, 0]
upperleft_array = self.darray.loc[upperleft_dict]
z0 = self.darray.isel(z=0)
assert_equal(upperleft_array, z0)
@pytest.mark.slow
def test_float_index(self):
self.darray.coords["z"] = [0.1, 0.2, 0.4]
g = xplt.FacetGrid(self.darray, col="z")
g.map_dataarray(xplt.imshow, "x", "y")
@pytest.mark.slow
def test_nonunique_index_error(self):
self.darray.coords["z"] = [0.1, 0.2, 0.2]
with raises_regex(ValueError, r"[Uu]nique"):
xplt.FacetGrid(self.darray, col="z")
@pytest.mark.slow
def test_robust(self):
z = np.zeros((20, 20, 2))
darray = DataArray(z, dims=["y", "x", "z"])
darray[:, :, 1] = 1
darray[2, 0, 0] = -1000
darray[3, 0, 0] = 1000
g = xplt.FacetGrid(darray, col="z")
g.map_dataarray(xplt.imshow, "x", "y", robust=True)
# Color limits should be 0, 1
# The largest number displayed in the figure should be less than 21
numbers = set()
alltxt = text_in_fig()
for txt in alltxt:
try:
numbers.add(float(txt))
except ValueError:
pass
largest = max(abs(x) for x in numbers)
assert largest < 21
@pytest.mark.slow
def test_can_set_vmin_vmax(self):
vmin, vmax = 50.0, 1000.0
expected = np.array((vmin, vmax))
self.g.map_dataarray(xplt.imshow, "x", "y", vmin=vmin, vmax=vmax)
for image in plt.gcf().findobj(mpl.image.AxesImage):
clim = np.array(image.get_clim())
assert np.allclose(expected, clim)
@pytest.mark.slow
def test_vmin_vmax_equal(self):
# regression test for GH3734
fg = self.g.map_dataarray(xplt.imshow, "x", "y", vmin=50, vmax=50)
for mappable in fg._mappables:
assert mappable.norm.vmin != mappable.norm.vmax
@pytest.mark.slow
@pytest.mark.filterwarnings("ignore")
def test_can_set_norm(self):
norm = mpl.colors.SymLogNorm(0.1)
self.g.map_dataarray(xplt.imshow, "x", "y", norm=norm)
for image in plt.gcf().findobj(mpl.image.AxesImage):
assert image.norm is norm
@pytest.mark.slow
def test_figure_size(self):
assert_array_equal(self.g.fig.get_size_inches(), (10, 3))
g = xplt.FacetGrid(self.darray, col="z", size=6)
assert_array_equal(g.fig.get_size_inches(), (19, 6))
g = self.darray.plot.imshow(col="z", size=6)
assert_array_equal(g.fig.get_size_inches(), (19, 6))
g = xplt.FacetGrid(self.darray, col="z", size=4, aspect=0.5)
assert_array_equal(g.fig.get_size_inches(), (7, 4))
g = xplt.FacetGrid(self.darray, col="z", figsize=(9, 4))
assert_array_equal(g.fig.get_size_inches(), (9, 4))
with raises_regex(ValueError, "cannot provide both"):
g = xplt.plot(self.darray, row=2, col="z", figsize=(6, 4), size=6)
with raises_regex(ValueError, "Can't use"):
g = xplt.plot(self.darray, row=2, col="z", ax=plt.gca(), size=6)
@pytest.mark.slow
def test_num_ticks(self):
nticks = 99
maxticks = nticks + 1
self.g.map_dataarray(xplt.imshow, "x", "y")
self.g.set_ticks(max_xticks=nticks, max_yticks=nticks)
for ax in self.g.axes.flat:
xticks = len(ax.get_xticks())
yticks = len(ax.get_yticks())
assert xticks <= maxticks
assert yticks <= maxticks
assert xticks >= nticks / 2.0
assert yticks >= nticks / 2.0
@pytest.mark.slow
def test_map(self):
assert self.g._finalized is False
self.g.map(plt.contourf, "x", "y", Ellipsis)
assert self.g._finalized is True
self.g.map(lambda: None)
@pytest.mark.slow
def test_map_dataset(self):
g = xplt.FacetGrid(self.darray.to_dataset(name="foo"), col="z")
g.map(plt.contourf, "x", "y", "foo")
alltxt = text_in_fig()
for label in ["x", "y"]:
assert label in alltxt
# everything has a label
assert "None" not in alltxt
# colorbar can't be inferred automatically
assert "foo" not in alltxt
assert 0 == len(find_possible_colorbars())
g.add_colorbar(label="colors!")
assert "colors!" in text_in_fig()
assert 1 == len(find_possible_colorbars())
@pytest.mark.slow
def test_set_axis_labels(self):
g = self.g.map_dataarray(xplt.contourf, "x", "y")
g.set_axis_labels("longitude", "latitude")
alltxt = text_in_fig()
for label in ["longitude", "latitude"]:
assert label in alltxt
@pytest.mark.slow
def test_facetgrid_colorbar(self):
a = easy_array((10, 15, 4))
d = DataArray(a, dims=["y", "x", "z"], name="foo")
d.plot.imshow(x="x", y="y", col="z")
assert 1 == len(find_possible_colorbars())
d.plot.imshow(x="x", y="y", col="z", add_colorbar=True)
assert 1 == len(find_possible_colorbars())
d.plot.imshow(x="x", y="y", col="z", add_colorbar=False)
assert 0 == len(find_possible_colorbars())
@pytest.mark.slow
def test_facetgrid_polar(self):
# test if polar projection in FacetGrid does not raise an exception
self.darray.plot.pcolormesh(
col="z", subplot_kws=dict(projection="polar"), sharex=False, sharey=False
)
@pytest.mark.filterwarnings("ignore:tight_layout cannot")
class TestFacetGrid4d(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
a = easy_array((10, 15, 3, 2))
darray = DataArray(a, dims=["y", "x", "col", "row"])
darray.coords["col"] = np.array(
["col" + str(x) for x in darray.coords["col"].values]
)
darray.coords["row"] = np.array(
["row" + str(x) for x in darray.coords["row"].values]
)
self.darray = darray
@pytest.mark.slow
def test_default_labels(self):
g = xplt.FacetGrid(self.darray, col="col", row="row")
assert (2, 3) == g.axes.shape
g.map_dataarray(xplt.imshow, "x", "y")
# Rightmost column should be labeled
for label, ax in zip(self.darray.coords["row"].values, g.axes[:, -1]):
assert substring_in_axes(label, ax)
# Top row should be labeled
for label, ax in zip(self.darray.coords["col"].values, g.axes[0, :]):
assert substring_in_axes(label, ax)
# ensure that row & col labels can be changed
g.set_titles("abc={value}")
for label, ax in zip(self.darray.coords["row"].values, g.axes[:, -1]):
assert substring_in_axes(f"abc={label}", ax)
# previous labels were "row=row0" etc.
assert substring_not_in_axes("row=", ax)
for label, ax in zip(self.darray.coords["col"].values, g.axes[0, :]):
assert substring_in_axes(f"abc={label}", ax)
# previous labels were "col=row0" etc.
assert substring_not_in_axes("col=", ax)
@pytest.mark.filterwarnings("ignore:tight_layout cannot")
class TestFacetedLinePlotsLegend(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
self.darray = xr.tutorial.scatter_example_dataset()
def test_legend_labels(self):
fg = self.darray.A.plot.line(col="x", row="w", hue="z")
all_legend_labels = [t.get_text() for t in fg.figlegend.texts]
# labels in legend should be ['0', '1', '2', '3']
assert sorted(all_legend_labels) == ["0", "1", "2", "3"]
@pytest.mark.filterwarnings("ignore:tight_layout cannot")
class TestFacetedLinePlots(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
self.darray = DataArray(
np.random.randn(10, 6, 3, 4),
dims=["hue", "x", "col", "row"],
coords=[range(10), range(6), range(3), ["A", "B", "C", "C++"]],
name="Cornelius Ortega the 1st",
)
self.darray.hue.name = "huename"
self.darray.hue.attrs["units"] = "hunits"
self.darray.x.attrs["units"] = "xunits"
self.darray.col.attrs["units"] = "colunits"
self.darray.row.attrs["units"] = "rowunits"
def test_facetgrid_shape(self):
g = self.darray.plot(row="row", col="col", hue="hue")
assert g.axes.shape == (len(self.darray.row), len(self.darray.col))
g = self.darray.plot(row="col", col="row", hue="hue")
assert g.axes.shape == (len(self.darray.col), len(self.darray.row))
def test_unnamed_args(self):
g = self.darray.plot.line("o--", row="row", col="col", hue="hue")
lines = [
q for q in g.axes.flat[0].get_children() if isinstance(q, mpl.lines.Line2D)
]
# passing 'o--' as argument should set marker and linestyle
assert lines[0].get_marker() == "o"
assert lines[0].get_linestyle() == "--"
def test_default_labels(self):
g = self.darray.plot(row="row", col="col", hue="hue")
# Rightmost column should be labeled
for label, ax in zip(self.darray.coords["row"].values, g.axes[:, -1]):
assert substring_in_axes(label, ax)
# Top row should be labeled
for label, ax in zip(self.darray.coords["col"].values, g.axes[0, :]):
assert substring_in_axes(str(label), ax)
# Leftmost column should have array name
for ax in g.axes[:, 0]:
assert substring_in_axes(self.darray.name, ax)
def test_test_empty_cell(self):
g = (
self.darray.isel(row=1)
.drop_vars("row")
.plot(col="col", hue="hue", col_wrap=2)
)
bottomright = g.axes[-1, -1]
assert not bottomright.has_data()
assert not bottomright.get_visible()
def test_set_axis_labels(self):
g = self.darray.plot(row="row", col="col", hue="hue")
g.set_axis_labels("longitude", "latitude")
alltxt = text_in_fig()
assert "longitude" in alltxt
assert "latitude" in alltxt
def test_axes_in_faceted_plot(self):
with pytest.raises(ValueError):
self.darray.plot.line(row="row", col="col", x="x", ax=plt.axes())
def test_figsize_and_size(self):
with pytest.raises(ValueError):
self.darray.plot.line(row="row", col="col", x="x", size=3, figsize=4)
def test_wrong_num_of_dimensions(self):
with pytest.raises(ValueError):
self.darray.plot(row="row", hue="hue")
self.darray.plot.line(row="row", hue="hue")
@requires_matplotlib
class TestDatasetScatterPlots(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
das = [
DataArray(
np.random.randn(3, 3, 4, 4),
dims=["x", "row", "col", "hue"],
coords=[range(k) for k in [3, 3, 4, 4]],
)
for _ in [1, 2]
]
ds = Dataset({"A": das[0], "B": das[1]})
ds.hue.name = "huename"
ds.hue.attrs["units"] = "hunits"
ds.x.attrs["units"] = "xunits"
ds.col.attrs["units"] = "colunits"
ds.row.attrs["units"] = "rowunits"
ds.A.attrs["units"] = "Aunits"
ds.B.attrs["units"] = "Bunits"
self.ds = ds
def test_accessor(self):
from ..plot.dataset_plot import _Dataset_PlotMethods
assert Dataset.plot is _Dataset_PlotMethods
assert isinstance(self.ds.plot, _Dataset_PlotMethods)
@pytest.mark.parametrize(
"add_guide, hue_style, legend, colorbar",
[
(None, None, False, True),
(False, None, False, False),
(True, None, False, True),
(True, "continuous", False, True),
(False, "discrete", False, False),
(True, "discrete", True, False),
],
)
def test_add_guide(self, add_guide, hue_style, legend, colorbar):
meta_data = _infer_meta_data(
self.ds, x="A", y="B", hue="hue", hue_style=hue_style, add_guide=add_guide
)
assert meta_data["add_legend"] is legend
assert meta_data["add_colorbar"] is colorbar
def test_facetgrid_shape(self):
g = self.ds.plot.scatter(x="A", y="B", row="row", col="col")
assert g.axes.shape == (len(self.ds.row), len(self.ds.col))
g = self.ds.plot.scatter(x="A", y="B", row="col", col="row")
assert g.axes.shape == (len(self.ds.col), len(self.ds.row))
def test_default_labels(self):
g = self.ds.plot.scatter("A", "B", row="row", col="col", hue="hue")
# Top row should be labeled
for label, ax in zip(self.ds.coords["col"].values, g.axes[0, :]):
assert substring_in_axes(str(label), ax)
# Bottom row should have name of x array name and units
for ax in g.axes[-1, :]:
assert ax.get_xlabel() == "A [Aunits]"
# Leftmost column should have name of y array name and units
for ax in g.axes[:, 0]:
assert ax.get_ylabel() == "B [Bunits]"
def test_axes_in_faceted_plot(self):
with pytest.raises(ValueError):
self.ds.plot.scatter(x="A", y="B", row="row", ax=plt.axes())
def test_figsize_and_size(self):
with pytest.raises(ValueError):
self.ds.plot.scatter(x="A", y="B", row="row", size=3, figsize=4)
@pytest.mark.parametrize(
"x, y, hue_style, add_guide",
[
("A", "B", "something", True),
("A", "B", "discrete", True),
("A", "B", None, True),
("A", "The Spanish Inquisition", None, None),
("The Spanish Inquisition", "B", None, True),
],
)
def test_bad_args(self, x, y, hue_style, add_guide):
with pytest.raises(ValueError):
self.ds.plot.scatter(x, y, hue_style=hue_style, add_guide=add_guide)
@pytest.mark.xfail(reason="datetime,timedelta hue variable not supported.")
@pytest.mark.parametrize("hue_style", ["discrete", "continuous"])
def test_datetime_hue(self, hue_style):
ds2 = self.ds.copy()
ds2["hue"] = pd.date_range("2000-1-1", periods=4)
ds2.plot.scatter(x="A", y="B", hue="hue", hue_style=hue_style)
ds2["hue"] = pd.timedelta_range("-1D", periods=4, freq="D")
ds2.plot.scatter(x="A", y="B", hue="hue", hue_style=hue_style)
def test_facetgrid_hue_style(self):
# Can't move this to pytest.mark.parametrize because py36-bare-minimum
# doesn't have matplotlib.
for hue_style, map_type in (
("discrete", list),
("continuous", mpl.collections.PathCollection),
):
g = self.ds.plot.scatter(
x="A", y="B", row="row", col="col", hue="hue", hue_style=hue_style
)
# for 'discrete' a list is appended to _mappables
# for 'continuous', should be single PathCollection
assert isinstance(g._mappables[-1], map_type)
@pytest.mark.parametrize(
"x, y, hue, markersize", [("A", "B", "x", "col"), ("x", "row", "A", "B")]
)
def test_scatter(self, x, y, hue, markersize):
self.ds.plot.scatter(x, y, hue=hue, markersize=markersize)
def test_non_numeric_legend(self):
ds2 = self.ds.copy()
ds2["hue"] = ["a", "b", "c", "d"]
lines = ds2.plot.scatter(x="A", y="B", hue="hue")
# should make a discrete legend
assert lines[0].axes.legend_ is not None
# and raise an error if explicitly not allowed to do so
with pytest.raises(ValueError):
ds2.plot.scatter(x="A", y="B", hue="hue", hue_style="continuous")
def test_legend_labels(self):
# regression test for #4126: incorrect legend labels
ds2 = self.ds.copy()
ds2["hue"] = ["a", "a", "b", "b"]
lines = ds2.plot.scatter(x="A", y="B", hue="hue")
assert [t.get_text() for t in lines[0].axes.get_legend().texts] == ["a", "b"]
def test_add_legend_by_default(self):
sc = self.ds.plot.scatter(x="A", y="B", hue="hue")
assert len(sc.figure.axes) == 2
class TestDatetimePlot(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
"""
Create a DataArray with a time-axis that contains datetime objects.
"""
month = np.arange(1, 13, 1)
data = np.sin(2 * np.pi * month / 12.0)
darray = DataArray(data, dims=["time"])
darray.coords["time"] = np.array([datetime(2017, m, 1) for m in month])
self.darray = darray
def test_datetime_line_plot(self):
# test if line plot raises no Exception
self.darray.plot.line()
@pytest.mark.filterwarnings("ignore:setting an array element with a sequence")
@requires_nc_time_axis
@requires_cftime
class TestCFDatetimePlot(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
"""
Create a DataArray with a time-axis that contains cftime.datetime
objects.
"""
# case for 1d array
data = np.random.rand(4, 12)
time = xr.cftime_range(start="2017", periods=12, freq="1M", calendar="noleap")
darray = DataArray(data, dims=["x", "time"])
darray.coords["time"] = time
self.darray = darray
def test_cfdatetime_line_plot(self):
self.darray.isel(x=0).plot.line()
def test_cfdatetime_pcolormesh_plot(self):
self.darray.plot.pcolormesh()
def test_cfdatetime_contour_plot(self):
self.darray.plot.contour()
@requires_cftime
@pytest.mark.skipif(has_nc_time_axis, reason="nc_time_axis is installed")
class TestNcAxisNotInstalled(PlotTestCase):
@pytest.fixture(autouse=True)
def setUp(self):
"""
Create a DataArray with a time-axis that contains cftime.datetime
objects.
"""
month = np.arange(1, 13, 1)
data = np.sin(2 * np.pi * month / 12.0)
darray = DataArray(data, dims=["time"])
darray.coords["time"] = xr.cftime_range(
start="2017", periods=12, freq="1M", calendar="noleap"
)
self.darray = darray
def test_ncaxis_notinstalled_line_plot(self):
with raises_regex(ImportError, "optional `nc-time-axis`"):
self.darray.plot.line()
test_da_list = [
DataArray(easy_array((10,))),
DataArray(easy_array((10, 3))),
DataArray(easy_array((10, 3, 2))),
]
@requires_matplotlib
class TestAxesKwargs:
@pytest.mark.parametrize("da", test_da_list)
@pytest.mark.parametrize("xincrease", [True, False])
def test_xincrease_kwarg(self, da, xincrease):
with figure_context():
da.plot(xincrease=xincrease)
assert plt.gca().xaxis_inverted() == (not xincrease)
@pytest.mark.parametrize("da", test_da_list)
@pytest.mark.parametrize("yincrease", [True, False])
def test_yincrease_kwarg(self, da, yincrease):
with figure_context():
da.plot(yincrease=yincrease)
assert plt.gca().yaxis_inverted() == (not yincrease)
@pytest.mark.parametrize("da", test_da_list)
@pytest.mark.parametrize("xscale", ["linear", "log", "logit", "symlog"])
def test_xscale_kwarg(self, da, xscale):
with figure_context():
da.plot(xscale=xscale)
assert plt.gca().get_xscale() == xscale
@pytest.mark.parametrize(
"da", [DataArray(easy_array((10,))), DataArray(easy_array((10, 3)))]
)
@pytest.mark.parametrize("yscale", ["linear", "log", "logit", "symlog"])
def test_yscale_kwarg(self, da, yscale):
with figure_context():
da.plot(yscale=yscale)
assert plt.gca().get_yscale() == yscale
@pytest.mark.parametrize("da", test_da_list)
def test_xlim_kwarg(self, da):
with figure_context():
expected = (0.0, 1000.0)
da.plot(xlim=[0, 1000])
assert plt.gca().get_xlim() == expected
@pytest.mark.parametrize("da", test_da_list)
def test_ylim_kwarg(self, da):
with figure_context():
da.plot(ylim=[0, 1000])
expected = (0.0, 1000.0)
assert plt.gca().get_ylim() == expected
@pytest.mark.parametrize("da", test_da_list)
def test_xticks_kwarg(self, da):
with figure_context():
da.plot(xticks=np.arange(5))
expected = np.arange(5).tolist()
assert_array_equal(plt.gca().get_xticks(), expected)
@pytest.mark.parametrize("da", test_da_list)
def test_yticks_kwarg(self, da):
with figure_context():
da.plot(yticks=np.arange(5))
expected = np.arange(5)
assert_array_equal(plt.gca().get_yticks(), expected)
@requires_matplotlib
@pytest.mark.parametrize("plotfunc", ["pcolormesh", "contourf", "contour"])
def test_plot_transposed_nondim_coord(plotfunc):
x = np.linspace(0, 10, 101)
h = np.linspace(3, 7, 101)
s = np.linspace(0, 1, 51)
z = s[:, np.newaxis] * h[np.newaxis, :]
da = xr.DataArray(
np.sin(x) * np.cos(z),
dims=["s", "x"],
coords={"x": x, "s": s, "z": (("s", "x"), z), "zt": (("x", "s"), z.T)},
)
with figure_context():
getattr(da.plot, plotfunc)(x="x", y="zt")
with figure_context():
getattr(da.plot, plotfunc)(x="zt", y="x")
@requires_matplotlib
@pytest.mark.parametrize("plotfunc", ["pcolormesh", "imshow"])
def test_plot_transposes_properly(plotfunc):
# test that we aren't mistakenly transposing when the 2 dimensions have equal sizes.
da = xr.DataArray([np.sin(2 * np.pi / 10 * np.arange(10))] * 10, dims=("y", "x"))
with figure_context():
hdl = getattr(da.plot, plotfunc)(x="x", y="y")
# get_array doesn't work for contour, contourf. It returns the colormap intervals.
# pcolormesh returns 1D array but imshow returns a 2D array so it is necessary
# to ravel() on the LHS
assert_array_equal(hdl.get_array().ravel(), da.to_masked_array().ravel())
@requires_matplotlib
def test_facetgrid_single_contour():
# regression test for GH3569
x, y = np.meshgrid(np.arange(12), np.arange(12))
z = xr.DataArray(np.sqrt(x ** 2 + y ** 2))
z2 = xr.DataArray(np.sqrt(x ** 2 + y ** 2) + 1)
ds = xr.concat([z, z2], dim="time")
ds["time"] = [0, 1]
with figure_context():
ds.plot.contour(col="time", levels=[4], colors=["k"])
@requires_matplotlib
def test_get_axis():
# test get_axis works with different args combinations
# and return the right type
# cannot provide both ax and figsize
with pytest.raises(ValueError, match="both `figsize` and `ax`"):
get_axis(figsize=[4, 4], size=None, aspect=None, ax="something")
# cannot provide both ax and size
with pytest.raises(ValueError, match="both `size` and `ax`"):
get_axis(figsize=None, size=200, aspect=4 / 3, ax="something")
# cannot provide both size and figsize
with pytest.raises(ValueError, match="both `figsize` and `size`"):
get_axis(figsize=[4, 4], size=200, aspect=None, ax=None)
# cannot provide aspect and size
with pytest.raises(ValueError, match="`aspect` argument without `size`"):
get_axis(figsize=None, size=None, aspect=4 / 3, ax=None)
with figure_context():
ax = get_axis()
assert isinstance(ax, mpl.axes.Axes)
@requires_cartopy
def test_get_axis_cartopy():
kwargs = {"projection": ctpy.crs.PlateCarree()}
with figure_context():
ax = get_axis(**kwargs)
assert isinstance(ax, ctpy.mpl.geoaxes.GeoAxesSubplot)
|