File: test_testing.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (129 lines) | stat: -rw-r--r-- 3,262 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import pytest

import xarray as xr
from xarray.core.npcompat import IS_NEP18_ACTIVE

from . import has_dask

try:
    from dask.array import from_array as dask_from_array
except ImportError:
    dask_from_array = lambda x: x

try:
    import pint

    unit_registry = pint.UnitRegistry(force_ndarray_like=True)

    def quantity(x):
        return unit_registry.Quantity(x, "m")

    has_pint = True
except ImportError:

    def quantity(x):
        return x

    has_pint = False


def test_allclose_regression():
    x = xr.DataArray(1.01)
    y = xr.DataArray(1.02)
    xr.testing.assert_allclose(x, y, atol=0.01)


@pytest.mark.parametrize(
    "obj1,obj2",
    (
        pytest.param(
            xr.Variable("x", [1e-17, 2]), xr.Variable("x", [0, 3]), id="Variable"
        ),
        pytest.param(
            xr.DataArray([1e-17, 2], dims="x"),
            xr.DataArray([0, 3], dims="x"),
            id="DataArray",
        ),
        pytest.param(
            xr.Dataset({"a": ("x", [1e-17, 2]), "b": ("y", [-2e-18, 2])}),
            xr.Dataset({"a": ("x", [0, 2]), "b": ("y", [0, 1])}),
            id="Dataset",
        ),
    ),
)
def test_assert_allclose(obj1, obj2):
    with pytest.raises(AssertionError):
        xr.testing.assert_allclose(obj1, obj2)


@pytest.mark.filterwarnings("error")
@pytest.mark.parametrize(
    "duckarray",
    (
        pytest.param(np.array, id="numpy"),
        pytest.param(
            dask_from_array,
            id="dask",
            marks=pytest.mark.skipif(not has_dask, reason="requires dask"),
        ),
        pytest.param(
            quantity,
            id="pint",
            marks=pytest.mark.skipif(not has_pint, reason="requires pint"),
        ),
    ),
)
@pytest.mark.parametrize(
    ["obj1", "obj2"],
    (
        pytest.param([1e-10, 2], [0.0, 2.0], id="both arrays"),
        pytest.param([1e-17, 2], 0.0, id="second scalar"),
        pytest.param(0.0, [1e-17, 2], id="first scalar"),
    ),
)
def test_assert_duckarray_equal_failing(duckarray, obj1, obj2):
    # TODO: actually check the repr
    a = duckarray(obj1)
    b = duckarray(obj2)
    with pytest.raises(AssertionError):
        xr.testing.assert_duckarray_equal(a, b)


@pytest.mark.filterwarnings("error")
@pytest.mark.parametrize(
    "duckarray",
    (
        pytest.param(
            np.array,
            id="numpy",
            marks=pytest.mark.skipif(
                not IS_NEP18_ACTIVE,
                reason="NUMPY_EXPERIMENTAL_ARRAY_FUNCTION is not enabled",
            ),
        ),
        pytest.param(
            dask_from_array,
            id="dask",
            marks=pytest.mark.skipif(not has_dask, reason="requires dask"),
        ),
        pytest.param(
            quantity,
            id="pint",
            marks=pytest.mark.skipif(not has_pint, reason="requires pint"),
        ),
    ),
)
@pytest.mark.parametrize(
    ["obj1", "obj2"],
    (
        pytest.param([0, 2], [0.0, 2.0], id="both arrays"),
        pytest.param([0, 0], 0.0, id="second scalar"),
        pytest.param(0.0, [0, 0], id="first scalar"),
    ),
)
def test_assert_duckarray_equal(duckarray, obj1, obj2):
    a = duckarray(obj1)
    b = duckarray(obj2)

    xr.testing.assert_duckarray_equal(a, b)