1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
import pickle
import numpy as np
import pytest
import xarray as xr
import xarray.ufuncs as xu
from . import assert_array_equal
from . import assert_identical as assert_identical_
from . import mock, raises_regex
def assert_identical(a, b):
assert type(a) is type(b) or float(a) == float(b)
if isinstance(a, (xr.DataArray, xr.Dataset, xr.Variable)):
assert_identical_(a, b)
else:
assert_array_equal(a, b)
def test_unary():
args = [
0,
np.zeros(2),
xr.Variable(["x"], [0, 0]),
xr.DataArray([0, 0], dims="x"),
xr.Dataset({"y": ("x", [0, 0])}),
]
for a in args:
assert_identical(a + 1, np.cos(a))
def test_binary():
args = [
0,
np.zeros(2),
xr.Variable(["x"], [0, 0]),
xr.DataArray([0, 0], dims="x"),
xr.Dataset({"y": ("x", [0, 0])}),
]
for n, t1 in enumerate(args):
for t2 in args[n:]:
assert_identical(t2 + 1, np.maximum(t1, t2 + 1))
assert_identical(t2 + 1, np.maximum(t2, t1 + 1))
assert_identical(t2 + 1, np.maximum(t1 + 1, t2))
assert_identical(t2 + 1, np.maximum(t2 + 1, t1))
def test_binary_out():
args = [
1,
np.ones(2),
xr.Variable(["x"], [1, 1]),
xr.DataArray([1, 1], dims="x"),
xr.Dataset({"y": ("x", [1, 1])}),
]
for arg in args:
actual_mantissa, actual_exponent = np.frexp(arg)
assert_identical(actual_mantissa, 0.5 * arg)
assert_identical(actual_exponent, arg)
def test_groupby():
ds = xr.Dataset({"a": ("x", [0, 0, 0])}, {"c": ("x", [0, 0, 1])})
ds_grouped = ds.groupby("c")
group_mean = ds_grouped.mean("x")
arr_grouped = ds["a"].groupby("c")
assert_identical(ds, np.maximum(ds_grouped, group_mean))
assert_identical(ds, np.maximum(group_mean, ds_grouped))
assert_identical(ds, np.maximum(arr_grouped, group_mean))
assert_identical(ds, np.maximum(group_mean, arr_grouped))
assert_identical(ds, np.maximum(ds_grouped, group_mean["a"]))
assert_identical(ds, np.maximum(group_mean["a"], ds_grouped))
assert_identical(ds.a, np.maximum(arr_grouped, group_mean.a))
assert_identical(ds.a, np.maximum(group_mean.a, arr_grouped))
with raises_regex(ValueError, "mismatched lengths for dimension"):
np.maximum(ds.a.variable, ds_grouped)
def test_alignment():
ds1 = xr.Dataset({"a": ("x", [1, 2])}, {"x": [0, 1]})
ds2 = xr.Dataset({"a": ("x", [2, 3]), "b": 4}, {"x": [1, 2]})
actual = np.add(ds1, ds2)
expected = xr.Dataset({"a": ("x", [4])}, {"x": [1]})
assert_identical_(actual, expected)
with xr.set_options(arithmetic_join="outer"):
actual = np.add(ds1, ds2)
expected = xr.Dataset(
{"a": ("x", [np.nan, 4, np.nan]), "b": np.nan}, coords={"x": [0, 1, 2]}
)
assert_identical_(actual, expected)
def test_kwargs():
x = xr.DataArray(0)
result = np.add(x, 1, dtype=np.float64)
assert result.dtype == np.float64
def test_xarray_defers_to_unrecognized_type():
class Other:
def __array_ufunc__(self, *args, **kwargs):
return "other"
xarray_obj = xr.DataArray([1, 2, 3])
other = Other()
assert np.maximum(xarray_obj, other) == "other"
assert np.sin(xarray_obj, out=other) == "other"
def test_xarray_handles_dask():
da = pytest.importorskip("dask.array")
x = xr.DataArray(np.ones((2, 2)), dims=["x", "y"])
y = da.ones((2, 2), chunks=(2, 2))
result = np.add(x, y)
assert result.chunks == ((2,), (2,))
assert isinstance(result, xr.DataArray)
def test_dask_defers_to_xarray():
da = pytest.importorskip("dask.array")
x = xr.DataArray(np.ones((2, 2)), dims=["x", "y"])
y = da.ones((2, 2), chunks=(2, 2))
result = np.add(y, x)
assert result.chunks == ((2,), (2,))
assert isinstance(result, xr.DataArray)
def test_gufunc_methods():
xarray_obj = xr.DataArray([1, 2, 3])
with raises_regex(NotImplementedError, "reduce method"):
np.add.reduce(xarray_obj, 1)
def test_out():
xarray_obj = xr.DataArray([1, 2, 3])
# xarray out arguments should raise
with raises_regex(NotImplementedError, "`out` argument"):
np.add(xarray_obj, 1, out=xarray_obj)
# but non-xarray should be OK
other = np.zeros((3,))
np.add(other, xarray_obj, out=other)
assert_identical(other, np.array([1, 2, 3]))
def test_gufuncs():
xarray_obj = xr.DataArray([1, 2, 3])
fake_gufunc = mock.Mock(signature="(n)->()", autospec=np.sin)
with raises_regex(NotImplementedError, "generalized ufuncs"):
xarray_obj.__array_ufunc__(fake_gufunc, "__call__", xarray_obj)
def test_xarray_ufuncs_deprecation():
with pytest.warns(PendingDeprecationWarning, match="xarray.ufuncs"):
xu.cos(xr.DataArray([0, 1]))
with pytest.warns(None) as record:
xu.angle(xr.DataArray([0, 1]))
record = [el.message for el in record if el.category == PendingDeprecationWarning]
assert len(record) == 0
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
@pytest.mark.parametrize(
"name",
[
name
for name in dir(xu)
if (
not name.startswith("_")
and hasattr(np, name)
and name not in ["print_function", "absolute_import", "division"]
)
],
)
def test_numpy_ufuncs(name, request):
x = xr.DataArray([1, 1])
np_func = getattr(np, name)
if hasattr(np_func, "nin") and np_func.nin == 2:
args = (x, x)
else:
args = (x,)
y = np_func(*args)
if name in ["angle", "iscomplex"]:
# these functions need to be handled with __array_function__ protocol
assert isinstance(y, np.ndarray)
elif name in ["frexp"]:
# np.frexp returns a tuple
assert not isinstance(y, xr.DataArray)
else:
assert isinstance(y, xr.DataArray)
@pytest.mark.filterwarnings("ignore:xarray.ufuncs")
def test_xarray_ufuncs_pickle():
a = 1.0
cos_pickled = pickle.loads(pickle.dumps(xu.cos))
assert_identical(cos_pickled(a), xu.cos(a))
|