1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
from datetime import datetime
from typing import Hashable
import numpy as np
import pandas as pd
import pytest
from xarray.coding.cftimeindex import CFTimeIndex
from xarray.core import duck_array_ops, utils
from xarray.core.utils import either_dict_or_kwargs
from . import assert_array_equal, raises_regex, requires_cftime, requires_dask
from .test_coding_times import _all_cftime_date_types
class TestAlias:
def test(self):
def new_method():
pass
old_method = utils.alias(new_method, "old_method")
assert "deprecated" in old_method.__doc__
with pytest.warns(Warning, match="deprecated"):
old_method()
def test_safe_cast_to_index():
dates = pd.date_range("2000-01-01", periods=10)
x = np.arange(5)
td = x * np.timedelta64(1, "D")
for expected, array in [
(dates, dates.values),
(pd.Index(x, dtype=object), x.astype(object)),
(pd.Index(td), td),
(pd.Index(td, dtype=object), td.astype(object)),
]:
actual = utils.safe_cast_to_index(array)
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
@requires_cftime
def test_safe_cast_to_index_cftimeindex():
date_types = _all_cftime_date_types()
for date_type in date_types.values():
dates = [date_type(1, 1, day) for day in range(1, 20)]
expected = CFTimeIndex(dates)
actual = utils.safe_cast_to_index(np.array(dates))
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
assert isinstance(actual, type(expected))
# Test that datetime.datetime objects are never used in a CFTimeIndex
@requires_cftime
def test_safe_cast_to_index_datetime_datetime():
dates = [datetime(1, 1, day) for day in range(1, 20)]
expected = pd.Index(dates)
actual = utils.safe_cast_to_index(np.array(dates))
assert_array_equal(expected, actual)
assert isinstance(actual, pd.Index)
def test_multiindex_from_product_levels():
result = utils.multiindex_from_product_levels(
[pd.Index(["b", "a"]), pd.Index([1, 3, 2])]
)
np.testing.assert_array_equal(
result.codes, [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
)
np.testing.assert_array_equal(result.levels[0], ["b", "a"])
np.testing.assert_array_equal(result.levels[1], [1, 3, 2])
other = pd.MultiIndex.from_product([["b", "a"], [1, 3, 2]])
np.testing.assert_array_equal(result.values, other.values)
def test_multiindex_from_product_levels_non_unique():
result = utils.multiindex_from_product_levels(
[pd.Index(["b", "a"]), pd.Index([1, 1, 2])]
)
np.testing.assert_array_equal(
result.codes, [[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1]]
)
np.testing.assert_array_equal(result.levels[0], ["b", "a"])
np.testing.assert_array_equal(result.levels[1], [1, 2])
class TestArrayEquiv:
def test_0d(self):
# verify our work around for pd.isnull not working for 0-dimensional
# object arrays
assert duck_array_ops.array_equiv(0, np.array(0, dtype=object))
assert duck_array_ops.array_equiv(np.nan, np.array(np.nan, dtype=object))
assert not duck_array_ops.array_equiv(0, np.array(1, dtype=object))
class TestDictionaries:
@pytest.fixture(autouse=True)
def setup(self):
self.x = {"a": "A", "b": "B"}
self.y = {"c": "C", "b": "B"}
self.z = {"a": "Z"}
def test_equivalent(self):
assert utils.equivalent(0, 0)
assert utils.equivalent(np.nan, np.nan)
assert utils.equivalent(0, np.array(0.0))
assert utils.equivalent([0], np.array([0]))
assert utils.equivalent(np.array([0]), [0])
assert utils.equivalent(np.arange(3), 1.0 * np.arange(3))
assert not utils.equivalent(0, np.zeros(3))
def test_safe(self):
# should not raise exception:
utils.update_safety_check(self.x, self.y)
def test_unsafe(self):
with pytest.raises(ValueError):
utils.update_safety_check(self.x, self.z)
def test_compat_dict_intersection(self):
assert {"b": "B"} == utils.compat_dict_intersection(self.x, self.y)
assert {} == utils.compat_dict_intersection(self.x, self.z)
def test_compat_dict_union(self):
assert {"a": "A", "b": "B", "c": "C"} == utils.compat_dict_union(self.x, self.y)
with raises_regex(
ValueError,
"unsafe to merge dictionaries without "
"overriding values; conflicting key",
):
utils.compat_dict_union(self.x, self.z)
def test_dict_equiv(self):
x = {}
x["a"] = 3
x["b"] = np.array([1, 2, 3])
y = {}
y["b"] = np.array([1.0, 2.0, 3.0])
y["a"] = 3
assert utils.dict_equiv(x, y) # two nparrays are equal
y["b"] = [1, 2, 3] # np.array not the same as a list
assert utils.dict_equiv(x, y) # nparray == list
x["b"] = [1.0, 2.0, 3.0]
assert utils.dict_equiv(x, y) # list vs. list
x["c"] = None
assert not utils.dict_equiv(x, y) # new key in x
x["c"] = np.nan
y["c"] = np.nan
assert utils.dict_equiv(x, y) # as intended, nan is nan
x["c"] = np.inf
y["c"] = np.inf
assert utils.dict_equiv(x, y) # inf == inf
y = dict(y)
assert utils.dict_equiv(x, y) # different dictionary types are fine
y["b"] = 3 * np.arange(3)
assert not utils.dict_equiv(x, y) # not equal when arrays differ
def test_frozen(self):
x = utils.Frozen(self.x)
with pytest.raises(TypeError):
x["foo"] = "bar"
with pytest.raises(TypeError):
del x["a"]
with pytest.raises(AttributeError):
x.update(self.y)
assert x.mapping == self.x
assert repr(x) in (
"Frozen({'a': 'A', 'b': 'B'})",
"Frozen({'b': 'B', 'a': 'A'})",
)
def test_sorted_keys_dict(self):
x = {"a": 1, "b": 2, "c": 3}
y = utils.SortedKeysDict(x)
assert list(y) == ["a", "b", "c"]
assert repr(utils.SortedKeysDict()) == "SortedKeysDict({})"
def test_repr_object():
obj = utils.ReprObject("foo")
assert repr(obj) == "foo"
assert isinstance(obj, Hashable)
assert not isinstance(obj, str)
def test_repr_object_magic_methods():
o1 = utils.ReprObject("foo")
o2 = utils.ReprObject("foo")
o3 = utils.ReprObject("bar")
o4 = "foo"
assert o1 == o2
assert o1 != o3
assert o1 != o4
assert hash(o1) == hash(o2)
assert hash(o1) != hash(o3)
assert hash(o1) != hash(o4)
def test_is_remote_uri():
assert utils.is_remote_uri("http://example.com")
assert utils.is_remote_uri("https://example.com")
assert not utils.is_remote_uri(" http://example.com")
assert not utils.is_remote_uri("example.nc")
def test_is_grib_path():
assert not utils.is_grib_path("example.nc")
assert not utils.is_grib_path("example.grib ")
assert utils.is_grib_path("example.grib")
assert utils.is_grib_path("example.grib2")
assert utils.is_grib_path("example.grb")
assert utils.is_grib_path("example.grb2")
class Test_is_uniform_and_sorted:
def test_sorted_uniform(self):
assert utils.is_uniform_spaced(np.arange(5))
def test_sorted_not_uniform(self):
assert not utils.is_uniform_spaced([-2, 1, 89])
def test_not_sorted_uniform(self):
assert not utils.is_uniform_spaced([1, -1, 3])
def test_not_sorted_not_uniform(self):
assert not utils.is_uniform_spaced([4, 1, 89])
def test_two_numbers(self):
assert utils.is_uniform_spaced([0, 1.7])
def test_relative_tolerance(self):
assert utils.is_uniform_spaced([0, 0.97, 2], rtol=0.1)
class Test_hashable:
def test_hashable(self):
for v in [False, 1, (2,), (3, 4), "four"]:
assert utils.hashable(v)
for v in [[5, 6], ["seven", "8"], {9: "ten"}]:
assert not utils.hashable(v)
@requires_dask
def test_dask_array_is_scalar():
# regression test for GH1684
import dask.array as da
y = da.arange(8, chunks=4)
assert not utils.is_scalar(y)
def test_hidden_key_dict():
hidden_key = "_hidden_key"
data = {"a": 1, "b": 2, hidden_key: 3}
data_expected = {"a": 1, "b": 2}
hkd = utils.HiddenKeyDict(data, [hidden_key])
assert len(hkd) == 2
assert hidden_key not in hkd
for k, v in data_expected.items():
assert hkd[k] == v
with pytest.raises(KeyError):
hkd[hidden_key]
with pytest.raises(KeyError):
del hkd[hidden_key]
def test_either_dict_or_kwargs():
result = either_dict_or_kwargs(dict(a=1), None, "foo")
expected = dict(a=1)
assert result == expected
result = either_dict_or_kwargs(None, dict(a=1), "foo")
expected = dict(a=1)
assert result == expected
with pytest.raises(ValueError, match=r"foo"):
result = either_dict_or_kwargs(dict(a=1), dict(a=1), "foo")
@pytest.mark.parametrize(
["supplied", "all_", "expected"],
[
(list("abc"), list("abc"), list("abc")),
(["a", ..., "c"], list("abc"), list("abc")),
(["a", ...], list("abc"), list("abc")),
(["c", ...], list("abc"), list("cab")),
([..., "b"], list("abc"), list("acb")),
([...], list("abc"), list("abc")),
],
)
def test_infix_dims(supplied, all_, expected):
result = list(utils.infix_dims(supplied, all_))
assert result == expected
@pytest.mark.parametrize(
["supplied", "all_"], [([..., ...], list("abc")), ([...], list("aac"))]
)
def test_infix_dims_errors(supplied, all_):
with pytest.raises(ValueError):
list(utils.infix_dims(supplied, all_))
|