File: test_variable.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (2376 lines) | stat: -rw-r--r-- 88,118 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
import warnings
from copy import copy, deepcopy
from datetime import datetime, timedelta
from textwrap import dedent

import numpy as np
import pandas as pd
import pytest
import pytz

from xarray import Coordinate, Dataset, IndexVariable, Variable, set_options
from xarray.core import dtypes, duck_array_ops, indexing
from xarray.core.common import full_like, ones_like, zeros_like
from xarray.core.indexing import (
    BasicIndexer,
    CopyOnWriteArray,
    DaskIndexingAdapter,
    LazilyOuterIndexedArray,
    MemoryCachedArray,
    NumpyIndexingAdapter,
    OuterIndexer,
    PandasIndexAdapter,
    VectorizedIndexer,
)
from xarray.core.pycompat import dask_array_type
from xarray.core.utils import NDArrayMixin
from xarray.core.variable import as_compatible_data, as_variable
from xarray.tests import requires_bottleneck

from . import (
    assert_allclose,
    assert_array_equal,
    assert_equal,
    assert_identical,
    raises_regex,
    requires_dask,
    requires_sparse,
    source_ndarray,
)

_PAD_XR_NP_ARGS = [
    [{"x": (2, 1)}, ((2, 1), (0, 0), (0, 0))],
    [{"x": 1}, ((1, 1), (0, 0), (0, 0))],
    [{"y": (0, 3)}, ((0, 0), (0, 3), (0, 0))],
    [{"x": (3, 1), "z": (2, 0)}, ((3, 1), (0, 0), (2, 0))],
    [{"x": (3, 1), "z": 2}, ((3, 1), (0, 0), (2, 2))],
]


class VariableSubclassobjects:
    def test_properties(self):
        data = 0.5 * np.arange(10)
        v = self.cls(["time"], data, {"foo": "bar"})
        assert v.dims == ("time",)
        assert_array_equal(v.values, data)
        assert v.dtype == float
        assert v.shape == (10,)
        assert v.size == 10
        assert v.sizes == {"time": 10}
        assert v.nbytes == 80
        assert v.ndim == 1
        assert len(v) == 10
        assert v.attrs == {"foo": "bar"}

    def test_attrs(self):
        v = self.cls(["time"], 0.5 * np.arange(10))
        assert v.attrs == {}
        attrs = {"foo": "bar"}
        v.attrs = attrs
        assert v.attrs == attrs
        assert isinstance(v.attrs, dict)
        v.attrs["foo"] = "baz"
        assert v.attrs["foo"] == "baz"

    def test_getitem_dict(self):
        v = self.cls(["x"], np.random.randn(5))
        actual = v[{"x": 0}]
        expected = v[0]
        assert_identical(expected, actual)

    def test_getitem_1d(self):
        data = np.array([0, 1, 2])
        v = self.cls(["x"], data)

        v_new = v[dict(x=[0, 1])]
        assert v_new.dims == ("x",)
        assert_array_equal(v_new, data[[0, 1]])

        v_new = v[dict(x=slice(None))]
        assert v_new.dims == ("x",)
        assert_array_equal(v_new, data)

        v_new = v[dict(x=Variable("a", [0, 1]))]
        assert v_new.dims == ("a",)
        assert_array_equal(v_new, data[[0, 1]])

        v_new = v[dict(x=1)]
        assert v_new.dims == ()
        assert_array_equal(v_new, data[1])

        # tuple argument
        v_new = v[slice(None)]
        assert v_new.dims == ("x",)
        assert_array_equal(v_new, data)

    def test_getitem_1d_fancy(self):
        v = self.cls(["x"], [0, 1, 2])
        # 1d-variable should be indexable by multi-dimensional Variable
        ind = Variable(("a", "b"), [[0, 1], [0, 1]])
        v_new = v[ind]
        assert v_new.dims == ("a", "b")
        expected = np.array(v._data)[([0, 1], [0, 1]), ...]
        assert_array_equal(v_new, expected)

        # boolean indexing
        ind = Variable(("x",), [True, False, True])
        v_new = v[ind]
        assert_identical(v[[0, 2]], v_new)
        v_new = v[[True, False, True]]
        assert_identical(v[[0, 2]], v_new)

        with raises_regex(IndexError, "Boolean indexer should"):
            ind = Variable(("a",), [True, False, True])
            v[ind]

    def test_getitem_with_mask(self):
        v = self.cls(["x"], [0, 1, 2])
        assert_identical(v._getitem_with_mask(-1), Variable((), np.nan))
        assert_identical(
            v._getitem_with_mask([0, -1, 1]), self.cls(["x"], [0, np.nan, 1])
        )
        assert_identical(v._getitem_with_mask(slice(2)), self.cls(["x"], [0, 1]))
        assert_identical(
            v._getitem_with_mask([0, -1, 1], fill_value=-99),
            self.cls(["x"], [0, -99, 1]),
        )

    def test_getitem_with_mask_size_zero(self):
        v = self.cls(["x"], [])
        assert_identical(v._getitem_with_mask(-1), Variable((), np.nan))
        assert_identical(
            v._getitem_with_mask([-1, -1, -1]),
            self.cls(["x"], [np.nan, np.nan, np.nan]),
        )

    def test_getitem_with_mask_nd_indexer(self):
        v = self.cls(["x"], [0, 1, 2])
        indexer = Variable(("x", "y"), [[0, -1], [-1, 2]])
        assert_identical(v._getitem_with_mask(indexer, fill_value=-1), indexer)

    def _assertIndexedLikeNDArray(self, variable, expected_value0, expected_dtype=None):
        """Given a 1-dimensional variable, verify that the variable is indexed
        like a numpy.ndarray.
        """
        assert variable[0].shape == ()
        assert variable[0].ndim == 0
        assert variable[0].size == 1
        # test identity
        assert variable.equals(variable.copy())
        assert variable.identical(variable.copy())
        # check value is equal for both ndarray and Variable
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "In the future, 'NAT == x'")
            np.testing.assert_equal(variable.values[0], expected_value0)
            np.testing.assert_equal(variable[0].values, expected_value0)
        # check type or dtype is consistent for both ndarray and Variable
        if expected_dtype is None:
            # check output type instead of array dtype
            assert type(variable.values[0]) == type(expected_value0)
            assert type(variable[0].values) == type(expected_value0)
        elif expected_dtype is not False:
            assert variable.values[0].dtype == expected_dtype
            assert variable[0].values.dtype == expected_dtype

    def test_index_0d_int(self):
        for value, dtype in [(0, np.int_), (np.int32(0), np.int32)]:
            x = self.cls(["x"], [value])
            self._assertIndexedLikeNDArray(x, value, dtype)

    def test_index_0d_float(self):
        for value, dtype in [(0.5, np.float_), (np.float32(0.5), np.float32)]:
            x = self.cls(["x"], [value])
            self._assertIndexedLikeNDArray(x, value, dtype)

    def test_index_0d_string(self):
        value = "foo"
        dtype = np.dtype("U3")
        x = self.cls(["x"], [value])
        self._assertIndexedLikeNDArray(x, value, dtype)

    def test_index_0d_datetime(self):
        d = datetime(2000, 1, 1)
        x = self.cls(["x"], [d])
        self._assertIndexedLikeNDArray(x, np.datetime64(d))

        x = self.cls(["x"], [np.datetime64(d)])
        self._assertIndexedLikeNDArray(x, np.datetime64(d), "datetime64[ns]")

        x = self.cls(["x"], pd.DatetimeIndex([d]))
        self._assertIndexedLikeNDArray(x, np.datetime64(d), "datetime64[ns]")

    def test_index_0d_timedelta64(self):
        td = timedelta(hours=1)

        x = self.cls(["x"], [np.timedelta64(td)])
        self._assertIndexedLikeNDArray(x, np.timedelta64(td), "timedelta64[ns]")

        x = self.cls(["x"], pd.to_timedelta([td]))
        self._assertIndexedLikeNDArray(x, np.timedelta64(td), "timedelta64[ns]")

    def test_index_0d_not_a_time(self):
        d = np.datetime64("NaT", "ns")
        x = self.cls(["x"], [d])
        self._assertIndexedLikeNDArray(x, d)

    def test_index_0d_object(self):
        class HashableItemWrapper:
            def __init__(self, item):
                self.item = item

            def __eq__(self, other):
                return self.item == other.item

            def __hash__(self):
                return hash(self.item)

            def __repr__(self):
                return "{}(item={!r})".format(type(self).__name__, self.item)

        item = HashableItemWrapper((1, 2, 3))
        x = self.cls("x", [item])
        self._assertIndexedLikeNDArray(x, item, expected_dtype=False)

    def test_0d_object_array_with_list(self):
        listarray = np.empty((1,), dtype=object)
        listarray[0] = [1, 2, 3]
        x = self.cls("x", listarray)
        assert_array_equal(x.data, listarray)
        assert_array_equal(x[0].data, listarray.squeeze())
        assert_array_equal(x.squeeze().data, listarray.squeeze())

    def test_index_and_concat_datetime(self):
        # regression test for #125
        date_range = pd.date_range("2011-09-01", periods=10)
        for dates in [date_range, date_range.values, date_range.to_pydatetime()]:
            expected = self.cls("t", dates)
            for times in [
                [expected[i] for i in range(10)],
                [expected[i : (i + 1)] for i in range(10)],
                [expected[[i]] for i in range(10)],
            ]:
                actual = Variable.concat(times, "t")
                assert expected.dtype == actual.dtype
                assert_array_equal(expected, actual)

    def test_0d_time_data(self):
        # regression test for #105
        x = self.cls("time", pd.date_range("2000-01-01", periods=5))
        expected = np.datetime64("2000-01-01", "ns")
        assert x[0].values == expected

    def test_datetime64_conversion(self):
        times = pd.date_range("2000-01-01", periods=3)
        for values, preserve_source in [
            (times, True),
            (times.values, True),
            (times.values.astype("datetime64[s]"), False),
            (times.to_pydatetime(), False),
        ]:
            v = self.cls(["t"], values)
            assert v.dtype == np.dtype("datetime64[ns]")
            assert_array_equal(v.values, times.values)
            assert v.values.dtype == np.dtype("datetime64[ns]")
            same_source = source_ndarray(v.values) is source_ndarray(values)
            assert preserve_source == same_source

    def test_timedelta64_conversion(self):
        times = pd.timedelta_range(start=0, periods=3)
        for values, preserve_source in [
            (times, True),
            (times.values, True),
            (times.values.astype("timedelta64[s]"), False),
            (times.to_pytimedelta(), False),
        ]:
            v = self.cls(["t"], values)
            assert v.dtype == np.dtype("timedelta64[ns]")
            assert_array_equal(v.values, times.values)
            assert v.values.dtype == np.dtype("timedelta64[ns]")
            same_source = source_ndarray(v.values) is source_ndarray(values)
            assert preserve_source == same_source

    def test_object_conversion(self):
        data = np.arange(5).astype(str).astype(object)
        actual = self.cls("x", data)
        assert actual.dtype == data.dtype

    def test_datetime64_valid_range(self):
        data = np.datetime64("1250-01-01", "us")
        pderror = pd.errors.OutOfBoundsDatetime
        with raises_regex(pderror, "Out of bounds nanosecond"):
            self.cls(["t"], [data])

    @pytest.mark.xfail(reason="pandas issue 36615")
    def test_timedelta64_valid_range(self):
        data = np.timedelta64("200000", "D")
        pderror = pd.errors.OutOfBoundsTimedelta
        with raises_regex(pderror, "Out of bounds nanosecond"):
            self.cls(["t"], [data])

    def test_pandas_data(self):
        v = self.cls(["x"], pd.Series([0, 1, 2], index=[3, 2, 1]))
        assert_identical(v, v[[0, 1, 2]])
        v = self.cls(["x"], pd.Index([0, 1, 2]))
        assert v[0].values == v.values[0]

    def test_pandas_period_index(self):
        v = self.cls(["x"], pd.period_range(start="2000", periods=20, freq="B"))
        v = v.load()  # for dask-based Variable
        assert v[0] == pd.Period("2000", freq="B")
        assert "Period('2000-01-03', 'B')" in repr(v)

    def test_1d_math(self):
        x = 1.0 * np.arange(5)
        y = np.ones(5)

        # should we need `.to_base_variable()`?
        # probably a break that `+v` changes type?
        v = self.cls(["x"], x)
        base_v = v.to_base_variable()
        # unary ops
        assert_identical(base_v, +v)
        assert_identical(base_v, abs(v))
        assert_array_equal((-v).values, -x)
        # binary ops with numbers
        assert_identical(base_v, v + 0)
        assert_identical(base_v, 0 + v)
        assert_identical(base_v, v * 1)
        # binary ops with numpy arrays
        assert_array_equal((v * x).values, x ** 2)
        assert_array_equal((x * v).values, x ** 2)
        assert_array_equal(v - y, v - 1)
        assert_array_equal(y - v, 1 - v)
        # verify attributes are dropped
        v2 = self.cls(["x"], x, {"units": "meters"})
        with set_options(keep_attrs=False):
            assert_identical(base_v, +v2)
        # binary ops with all variables
        assert_array_equal(v + v, 2 * v)
        w = self.cls(["x"], y, {"foo": "bar"})
        assert_identical(v + w, self.cls(["x"], x + y).to_base_variable())
        assert_array_equal((v * w).values, x * y)

        # something complicated
        assert_array_equal((v ** 2 * w - 1 + x).values, x ** 2 * y - 1 + x)
        # make sure dtype is preserved (for Index objects)
        assert float == (+v).dtype
        assert float == (+v).values.dtype
        assert float == (0 + v).dtype
        assert float == (0 + v).values.dtype
        # check types of returned data
        assert isinstance(+v, Variable)
        assert not isinstance(+v, IndexVariable)
        assert isinstance(0 + v, Variable)
        assert not isinstance(0 + v, IndexVariable)

    def test_1d_reduce(self):
        x = np.arange(5)
        v = self.cls(["x"], x)
        actual = v.sum()
        expected = Variable((), 10)
        assert_identical(expected, actual)
        assert type(actual) is Variable

    def test_array_interface(self):
        x = np.arange(5)
        v = self.cls(["x"], x)
        assert_array_equal(np.asarray(v), x)
        # test patched in methods
        assert_array_equal(v.astype(float), x.astype(float))
        # think this is a break, that argsort changes the type
        assert_identical(v.argsort(), v.to_base_variable())
        assert_identical(v.clip(2, 3), self.cls("x", x.clip(2, 3)).to_base_variable())
        # test ufuncs
        assert_identical(np.sin(v), self.cls(["x"], np.sin(x)).to_base_variable())
        assert isinstance(np.sin(v), Variable)
        assert not isinstance(np.sin(v), IndexVariable)

    def example_1d_objects(self):
        for data in [
            range(3),
            0.5 * np.arange(3),
            0.5 * np.arange(3, dtype=np.float32),
            pd.date_range("2000-01-01", periods=3),
            np.array(["a", "b", "c"], dtype=object),
        ]:
            yield (self.cls("x", data), data)

    def test___array__(self):
        for v, data in self.example_1d_objects():
            assert_array_equal(v.values, np.asarray(data))
            assert_array_equal(np.asarray(v), np.asarray(data))
            assert v[0].values == np.asarray(data)[0]
            assert np.asarray(v[0]) == np.asarray(data)[0]

    def test_equals_all_dtypes(self):
        for v, _ in self.example_1d_objects():
            v2 = v.copy()
            assert v.equals(v2)
            assert v.identical(v2)
            assert v.no_conflicts(v2)
            assert v[0].equals(v2[0])
            assert v[0].identical(v2[0])
            assert v[0].no_conflicts(v2[0])
            assert v[:2].equals(v2[:2])
            assert v[:2].identical(v2[:2])
            assert v[:2].no_conflicts(v2[:2])

    def test_eq_all_dtypes(self):
        # ensure that we don't choke on comparisons for which numpy returns
        # scalars
        expected = Variable("x", 3 * [False])
        for v, _ in self.example_1d_objects():
            actual = "z" == v
            assert_identical(expected, actual)
            actual = ~("z" != v)
            assert_identical(expected, actual)

    def test_encoding_preserved(self):
        expected = self.cls("x", range(3), {"foo": 1}, {"bar": 2})
        for actual in [
            expected.T,
            expected[...],
            expected.squeeze(),
            expected.isel(x=slice(None)),
            expected.set_dims({"x": 3}),
            expected.copy(deep=True),
            expected.copy(deep=False),
        ]:

            assert_identical(expected.to_base_variable(), actual.to_base_variable())
            assert expected.encoding == actual.encoding

    def test_concat(self):
        x = np.arange(5)
        y = np.arange(5, 10)
        v = self.cls(["a"], x)
        w = self.cls(["a"], y)
        assert_identical(
            Variable(["b", "a"], np.array([x, y])), Variable.concat([v, w], "b")
        )
        assert_identical(
            Variable(["b", "a"], np.array([x, y])), Variable.concat((v, w), "b")
        )
        assert_identical(
            Variable(["b", "a"], np.array([x, y])), Variable.concat((v, w), "b")
        )
        with raises_regex(ValueError, "Variable has dimensions"):
            Variable.concat([v, Variable(["c"], y)], "b")
        # test indexers
        actual = Variable.concat(
            [v, w], positions=[np.arange(0, 10, 2), np.arange(1, 10, 2)], dim="a"
        )
        expected = Variable("a", np.array([x, y]).ravel(order="F"))
        assert_identical(expected, actual)
        # test concatenating along a dimension
        v = Variable(["time", "x"], np.random.random((10, 8)))
        assert_identical(v, Variable.concat([v[:5], v[5:]], "time"))
        assert_identical(v, Variable.concat([v[:5], v[5:6], v[6:]], "time"))
        assert_identical(v, Variable.concat([v[:1], v[1:]], "time"))
        # test dimension order
        assert_identical(v, Variable.concat([v[:, :5], v[:, 5:]], "x"))
        with raises_regex(ValueError, "all input arrays must have"):
            Variable.concat([v[:, 0], v[:, 1:]], "x")

    def test_concat_attrs(self):
        # always keep attrs from first variable
        v = self.cls("a", np.arange(5), {"foo": "bar"})
        w = self.cls("a", np.ones(5))
        expected = self.cls(
            "a", np.concatenate([np.arange(5), np.ones(5)])
        ).to_base_variable()
        expected.attrs["foo"] = "bar"
        assert_identical(expected, Variable.concat([v, w], "a"))

    def test_concat_fixed_len_str(self):
        # regression test for #217
        for kind in ["S", "U"]:
            x = self.cls("animal", np.array(["horse"], dtype=kind))
            y = self.cls("animal", np.array(["aardvark"], dtype=kind))
            actual = Variable.concat([x, y], "animal")
            expected = Variable("animal", np.array(["horse", "aardvark"], dtype=kind))
            assert_equal(expected, actual)

    def test_concat_number_strings(self):
        # regression test for #305
        a = self.cls("x", ["0", "1", "2"])
        b = self.cls("x", ["3", "4"])
        actual = Variable.concat([a, b], dim="x")
        expected = Variable("x", np.arange(5).astype(str))
        assert_identical(expected, actual)
        assert actual.dtype.kind == expected.dtype.kind

    def test_concat_mixed_dtypes(self):
        a = self.cls("x", [0, 1])
        b = self.cls("x", ["two"])
        actual = Variable.concat([a, b], dim="x")
        expected = Variable("x", np.array([0, 1, "two"], dtype=object))
        assert_identical(expected, actual)
        assert actual.dtype == object

    @pytest.mark.parametrize("deep", [True, False])
    @pytest.mark.parametrize("astype", [float, int, str])
    def test_copy(self, deep, astype):
        v = self.cls("x", (0.5 * np.arange(10)).astype(astype), {"foo": "bar"})
        w = v.copy(deep=deep)
        assert type(v) is type(w)
        assert_identical(v, w)
        assert v.dtype == w.dtype
        if self.cls is Variable:
            if deep:
                assert source_ndarray(v.values) is not source_ndarray(w.values)
            else:
                assert source_ndarray(v.values) is source_ndarray(w.values)
        assert_identical(v, copy(v))

    def test_copy_index(self):
        midx = pd.MultiIndex.from_product(
            [["a", "b"], [1, 2], [-1, -2]], names=("one", "two", "three")
        )
        v = self.cls("x", midx)
        for deep in [True, False]:
            w = v.copy(deep=deep)
            assert isinstance(w._data, PandasIndexAdapter)
            assert isinstance(w.to_index(), pd.MultiIndex)
            assert_array_equal(v._data.array, w._data.array)

    def test_copy_with_data(self):
        orig = Variable(("x", "y"), [[1.5, 2.0], [3.1, 4.3]], {"foo": "bar"})
        new_data = np.array([[2.5, 5.0], [7.1, 43]])
        actual = orig.copy(data=new_data)
        expected = orig.copy()
        expected.data = new_data
        assert_identical(expected, actual)

    def test_copy_with_data_errors(self):
        orig = Variable(("x", "y"), [[1.5, 2.0], [3.1, 4.3]], {"foo": "bar"})
        new_data = [2.5, 5.0]
        with raises_regex(ValueError, "must match shape of object"):
            orig.copy(data=new_data)

    def test_copy_index_with_data(self):
        orig = IndexVariable("x", np.arange(5))
        new_data = np.arange(5, 10)
        actual = orig.copy(data=new_data)
        expected = IndexVariable("x", np.arange(5, 10))
        assert_identical(expected, actual)

    def test_copy_index_with_data_errors(self):
        orig = IndexVariable("x", np.arange(5))
        new_data = np.arange(5, 20)
        with raises_regex(ValueError, "must match shape of object"):
            orig.copy(data=new_data)
        with raises_regex(ValueError, "Cannot assign to the .data"):
            orig.data = new_data
        with raises_regex(ValueError, "Cannot assign to the .values"):
            orig.values = new_data

    def test_replace(self):
        var = Variable(("x", "y"), [[1.5, 2.0], [3.1, 4.3]], {"foo": "bar"})
        result = var._replace()
        assert_identical(result, var)

        new_data = np.arange(4).reshape(2, 2)
        result = var._replace(data=new_data)
        assert_array_equal(result.data, new_data)

    def test_real_and_imag(self):
        v = self.cls("x", np.arange(3) - 1j * np.arange(3), {"foo": "bar"})
        expected_re = self.cls("x", np.arange(3), {"foo": "bar"})
        assert_identical(v.real, expected_re)

        expected_im = self.cls("x", -np.arange(3), {"foo": "bar"})
        assert_identical(v.imag, expected_im)

        expected_abs = self.cls("x", np.sqrt(2 * np.arange(3) ** 2)).to_base_variable()
        assert_allclose(abs(v), expected_abs)

    def test_aggregate_complex(self):
        # should skip NaNs
        v = self.cls("x", [1, 2j, np.nan])
        expected = Variable((), 0.5 + 1j)
        assert_allclose(v.mean(), expected)

    def test_pandas_cateogrical_dtype(self):
        data = pd.Categorical(np.arange(10, dtype="int64"))
        v = self.cls("x", data)
        print(v)  # should not error
        assert v.dtype == "int64"

    def test_pandas_datetime64_with_tz(self):
        data = pd.date_range(
            start="2000-01-01",
            tz=pytz.timezone("America/New_York"),
            periods=10,
            freq="1h",
        )
        v = self.cls("x", data)
        print(v)  # should not error
        if "America/New_York" in str(data.dtype):
            # pandas is new enough that it has datetime64 with timezone dtype
            assert v.dtype == "object"

    def test_multiindex(self):
        idx = pd.MultiIndex.from_product([list("abc"), [0, 1]])
        v = self.cls("x", idx)
        assert_identical(Variable((), ("a", 0)), v[0])
        assert_identical(v, v[:])

    def test_load(self):
        array = self.cls("x", np.arange(5))
        orig_data = array._data
        copied = array.copy(deep=True)
        if array.chunks is None:
            array.load()
            assert type(array._data) is type(orig_data)
            assert type(copied._data) is type(orig_data)
            assert_identical(array, copied)

    def test_getitem_advanced(self):
        v = self.cls(["x", "y"], [[0, 1, 2], [3, 4, 5]])
        v_data = v.compute().data

        # orthogonal indexing
        v_new = v[([0, 1], [1, 0])]
        assert v_new.dims == ("x", "y")
        assert_array_equal(v_new, v_data[[0, 1]][:, [1, 0]])

        v_new = v[[0, 1]]
        assert v_new.dims == ("x", "y")
        assert_array_equal(v_new, v_data[[0, 1]])

        # with mixed arguments
        ind = Variable(["a"], [0, 1])
        v_new = v[dict(x=[0, 1], y=ind)]
        assert v_new.dims == ("x", "a")
        assert_array_equal(v_new, v_data[[0, 1]][:, [0, 1]])

        # boolean indexing
        v_new = v[dict(x=[True, False], y=[False, True, False])]
        assert v_new.dims == ("x", "y")
        assert_array_equal(v_new, v_data[0][1])

        # with scalar variable
        ind = Variable((), 2)
        v_new = v[dict(y=ind)]
        expected = v[dict(y=2)]
        assert_array_equal(v_new, expected)

        # with boolean variable with wrong shape
        ind = np.array([True, False])
        with raises_regex(IndexError, "Boolean array size 2 is "):
            v[Variable(("a", "b"), [[0, 1]]), ind]

        # boolean indexing with different dimension
        ind = Variable(["a"], [True, False, False])
        with raises_regex(IndexError, "Boolean indexer should be"):
            v[dict(y=ind)]

    def test_getitem_uint_1d(self):
        # regression test for #1405
        v = self.cls(["x"], [0, 1, 2])
        v_data = v.compute().data

        v_new = v[np.array([0])]
        assert_array_equal(v_new, v_data[0])
        v_new = v[np.array([0], dtype="uint64")]
        assert_array_equal(v_new, v_data[0])

    def test_getitem_uint(self):
        # regression test for #1405
        v = self.cls(["x", "y"], [[0, 1, 2], [3, 4, 5]])
        v_data = v.compute().data

        v_new = v[np.array([0])]
        assert_array_equal(v_new, v_data[[0], :])
        v_new = v[np.array([0], dtype="uint64")]
        assert_array_equal(v_new, v_data[[0], :])

        v_new = v[np.uint64(0)]
        assert_array_equal(v_new, v_data[0, :])

    def test_getitem_0d_array(self):
        # make sure 0d-np.array can be used as an indexer
        v = self.cls(["x"], [0, 1, 2])
        v_data = v.compute().data

        v_new = v[np.array([0])[0]]
        assert_array_equal(v_new, v_data[0])

        v_new = v[np.array(0)]
        assert_array_equal(v_new, v_data[0])

        v_new = v[Variable((), np.array(0))]
        assert_array_equal(v_new, v_data[0])

    def test_getitem_fancy(self):
        v = self.cls(["x", "y"], [[0, 1, 2], [3, 4, 5]])
        v_data = v.compute().data

        ind = Variable(["a", "b"], [[0, 1, 1], [1, 1, 0]])
        v_new = v[ind]
        assert v_new.dims == ("a", "b", "y")
        assert_array_equal(v_new, v_data[[[0, 1, 1], [1, 1, 0]], :])

        # It would be ok if indexed with the multi-dimensional array including
        # the same name
        ind = Variable(["x", "b"], [[0, 1, 1], [1, 1, 0]])
        v_new = v[ind]
        assert v_new.dims == ("x", "b", "y")
        assert_array_equal(v_new, v_data[[[0, 1, 1], [1, 1, 0]], :])

        ind = Variable(["a", "b"], [[0, 1, 2], [2, 1, 0]])
        v_new = v[dict(y=ind)]
        assert v_new.dims == ("x", "a", "b")
        assert_array_equal(v_new, v_data[:, ([0, 1, 2], [2, 1, 0])])

        ind = Variable(["a", "b"], [[0, 0], [1, 1]])
        v_new = v[dict(x=[1, 0], y=ind)]
        assert v_new.dims == ("x", "a", "b")
        assert_array_equal(v_new, v_data[[1, 0]][:, ind])

        # along diagonal
        ind = Variable(["a"], [0, 1])
        v_new = v[ind, ind]
        assert v_new.dims == ("a",)
        assert_array_equal(v_new, v_data[[0, 1], [0, 1]])

        # with integer
        ind = Variable(["a", "b"], [[0, 0], [1, 1]])
        v_new = v[dict(x=0, y=ind)]
        assert v_new.dims == ("a", "b")
        assert_array_equal(v_new[0], v_data[0][[0, 0]])
        assert_array_equal(v_new[1], v_data[0][[1, 1]])

        # with slice
        ind = Variable(["a", "b"], [[0, 0], [1, 1]])
        v_new = v[dict(x=slice(None), y=ind)]
        assert v_new.dims == ("x", "a", "b")
        assert_array_equal(v_new, v_data[:, [[0, 0], [1, 1]]])

        ind = Variable(["a", "b"], [[0, 0], [1, 1]])
        v_new = v[dict(x=ind, y=slice(None))]
        assert v_new.dims == ("a", "b", "y")
        assert_array_equal(v_new, v_data[[[0, 0], [1, 1]], :])

        ind = Variable(["a", "b"], [[0, 0], [1, 1]])
        v_new = v[dict(x=ind, y=slice(None, 1))]
        assert v_new.dims == ("a", "b", "y")
        assert_array_equal(v_new, v_data[[[0, 0], [1, 1]], slice(None, 1)])

        # slice matches explicit dimension
        ind = Variable(["y"], [0, 1])
        v_new = v[ind, :2]
        assert v_new.dims == ("y",)
        assert_array_equal(v_new, v_data[[0, 1], [0, 1]])

        # with multiple slices
        v = self.cls(["x", "y", "z"], [[[1, 2, 3], [4, 5, 6]]])
        ind = Variable(["a", "b"], [[0]])
        v_new = v[ind, :, :]
        expected = Variable(["a", "b", "y", "z"], v.data[np.newaxis, ...])
        assert_identical(v_new, expected)

        v = Variable(["w", "x", "y", "z"], [[[[1, 2, 3], [4, 5, 6]]]])
        ind = Variable(["y"], [0])
        v_new = v[ind, :, 1:2, 2]
        expected = Variable(["y", "x"], [[6]])
        assert_identical(v_new, expected)

        # slice and vector mixed indexing resulting in the same dimension
        v = Variable(["x", "y", "z"], np.arange(60).reshape(3, 4, 5))
        ind = Variable(["x"], [0, 1, 2])
        v_new = v[:, ind]
        expected = Variable(("x", "z"), np.zeros((3, 5)))
        expected[0] = v.data[0, 0]
        expected[1] = v.data[1, 1]
        expected[2] = v.data[2, 2]
        assert_identical(v_new, expected)

        v_new = v[:, ind.data]
        assert v_new.shape == (3, 3, 5)

    def test_getitem_error(self):
        v = self.cls(["x", "y"], [[0, 1, 2], [3, 4, 5]])

        with raises_regex(IndexError, "labeled multi-"):
            v[[[0, 1], [1, 2]]]

        ind_x = Variable(["a"], [0, 1, 1])
        ind_y = Variable(["a"], [0, 1])
        with raises_regex(IndexError, "Dimensions of indexers "):
            v[ind_x, ind_y]

        ind = Variable(["a", "b"], [[True, False], [False, True]])
        with raises_regex(IndexError, "2-dimensional boolean"):
            v[dict(x=ind)]

        v = Variable(["x", "y", "z"], np.arange(60).reshape(3, 4, 5))
        ind = Variable(["x"], [0, 1])
        with raises_regex(IndexError, "Dimensions of indexers mis"):
            v[:, ind]

    @pytest.mark.parametrize(
        "mode",
        [
            "mean",
            pytest.param(
                "median",
                marks=pytest.mark.xfail(reason="median is not implemented by Dask"),
            ),
            pytest.param(
                "reflect", marks=pytest.mark.xfail(reason="dask.array.pad bug")
            ),
            "edge",
            pytest.param(
                "linear_ramp",
                marks=pytest.mark.xfail(
                    reason="pint bug: https://github.com/hgrecco/pint/issues/1026"
                ),
            ),
            "maximum",
            "minimum",
            "symmetric",
            "wrap",
        ],
    )
    @pytest.mark.parametrize("xr_arg, np_arg", _PAD_XR_NP_ARGS)
    def test_pad(self, mode, xr_arg, np_arg):
        data = np.arange(4 * 3 * 2).reshape(4, 3, 2)
        v = self.cls(["x", "y", "z"], data)

        actual = v.pad(mode=mode, **xr_arg)
        expected = np.pad(data, np_arg, mode=mode)

        assert_array_equal(actual, expected)
        assert isinstance(actual._data, type(v._data))

    @pytest.mark.parametrize("xr_arg, np_arg", _PAD_XR_NP_ARGS)
    def test_pad_constant_values(self, xr_arg, np_arg):
        data = np.arange(4 * 3 * 2).reshape(4, 3, 2)
        v = self.cls(["x", "y", "z"], data)

        actual = v.pad(**xr_arg)
        expected = np.pad(
            np.array(v.data.astype(float)),
            np_arg,
            mode="constant",
            constant_values=np.nan,
        )
        assert_array_equal(actual, expected)
        assert isinstance(actual._data, type(v._data))

        # for the boolean array, we pad False
        data = np.full_like(data, False, dtype=bool).reshape(4, 3, 2)
        v = self.cls(["x", "y", "z"], data)

        actual = v.pad(mode="constant", constant_values=False, **xr_arg)
        expected = np.pad(
            np.array(v.data), np_arg, mode="constant", constant_values=False
        )
        assert_array_equal(actual, expected)

    def test_rolling_window(self):
        # Just a working test. See test_nputils for the algorithm validation
        v = self.cls(["x", "y", "z"], np.arange(40 * 30 * 2).reshape(40, 30, 2))
        for (d, w) in [("x", 3), ("y", 5)]:
            v_rolling = v.rolling_window(d, w, d + "_window")
            assert v_rolling.dims == ("x", "y", "z", d + "_window")
            assert v_rolling.shape == v.shape + (w,)

            v_rolling = v.rolling_window(d, w, d + "_window", center=True)
            assert v_rolling.dims == ("x", "y", "z", d + "_window")
            assert v_rolling.shape == v.shape + (w,)

            # dask and numpy result should be the same
            v_loaded = v.load().rolling_window(d, w, d + "_window", center=True)
            assert_array_equal(v_rolling, v_loaded)

            # numpy backend should not be over-written
            if isinstance(v._data, np.ndarray):
                with pytest.raises(ValueError):
                    v_loaded[0] = 1.0


class TestVariable(VariableSubclassobjects):
    cls = staticmethod(Variable)

    @pytest.fixture(autouse=True)
    def setup(self):
        self.d = np.random.random((10, 3)).astype(np.float64)

    def test_data_and_values(self):
        v = Variable(["time", "x"], self.d)
        assert_array_equal(v.data, self.d)
        assert_array_equal(v.values, self.d)
        assert source_ndarray(v.values) is self.d
        with pytest.raises(ValueError):
            # wrong size
            v.values = np.random.random(5)
        d2 = np.random.random((10, 3))
        v.values = d2
        assert source_ndarray(v.values) is d2
        d3 = np.random.random((10, 3))
        v.data = d3
        assert source_ndarray(v.data) is d3

    def test_numpy_same_methods(self):
        v = Variable([], np.float32(0.0))
        assert v.item() == 0
        assert type(v.item()) is float

        v = IndexVariable("x", np.arange(5))
        assert 2 == v.searchsorted(2)

    def test_datetime64_conversion_scalar(self):
        expected = np.datetime64("2000-01-01", "ns")
        for values in [
            np.datetime64("2000-01-01"),
            pd.Timestamp("2000-01-01T00"),
            datetime(2000, 1, 1),
        ]:
            v = Variable([], values)
            assert v.dtype == np.dtype("datetime64[ns]")
            assert v.values == expected
            assert v.values.dtype == np.dtype("datetime64[ns]")

    def test_timedelta64_conversion_scalar(self):
        expected = np.timedelta64(24 * 60 * 60 * 10 ** 9, "ns")
        for values in [
            np.timedelta64(1, "D"),
            pd.Timedelta("1 day"),
            timedelta(days=1),
        ]:
            v = Variable([], values)
            assert v.dtype == np.dtype("timedelta64[ns]")
            assert v.values == expected
            assert v.values.dtype == np.dtype("timedelta64[ns]")

    def test_0d_str(self):
        v = Variable([], "foo")
        assert v.dtype == np.dtype("U3")
        assert v.values == "foo"

        v = Variable([], np.string_("foo"))
        assert v.dtype == np.dtype("S3")
        assert v.values == bytes("foo", "ascii")

    def test_0d_datetime(self):
        v = Variable([], pd.Timestamp("2000-01-01"))
        assert v.dtype == np.dtype("datetime64[ns]")
        assert v.values == np.datetime64("2000-01-01", "ns")

    def test_0d_timedelta(self):
        for td in [pd.to_timedelta("1s"), np.timedelta64(1, "s")]:
            v = Variable([], td)
            assert v.dtype == np.dtype("timedelta64[ns]")
            assert v.values == np.timedelta64(10 ** 9, "ns")

    def test_equals_and_identical(self):
        d = np.random.rand(10, 3)
        d[0, 0] = np.nan
        v1 = Variable(("dim1", "dim2"), data=d, attrs={"att1": 3, "att2": [1, 2, 3]})
        v2 = Variable(("dim1", "dim2"), data=d, attrs={"att1": 3, "att2": [1, 2, 3]})
        assert v1.equals(v2)
        assert v1.identical(v2)

        v3 = Variable(("dim1", "dim3"), data=d)
        assert not v1.equals(v3)

        v4 = Variable(("dim1", "dim2"), data=d)
        assert v1.equals(v4)
        assert not v1.identical(v4)

        v5 = deepcopy(v1)
        v5.values[:] = np.random.rand(10, 3)
        assert not v1.equals(v5)

        assert not v1.equals(None)
        assert not v1.equals(d)

        assert not v1.identical(None)
        assert not v1.identical(d)

    def test_broadcast_equals(self):
        v1 = Variable((), np.nan)
        v2 = Variable(("x"), [np.nan, np.nan])
        assert v1.broadcast_equals(v2)
        assert not v1.equals(v2)
        assert not v1.identical(v2)

        v3 = Variable(("x"), [np.nan])
        assert v1.broadcast_equals(v3)
        assert not v1.equals(v3)
        assert not v1.identical(v3)

        assert not v1.broadcast_equals(None)

        v4 = Variable(("x"), [np.nan] * 3)
        assert not v2.broadcast_equals(v4)

    def test_no_conflicts(self):
        v1 = Variable(("x"), [1, 2, np.nan, np.nan])
        v2 = Variable(("x"), [np.nan, 2, 3, np.nan])
        assert v1.no_conflicts(v2)
        assert not v1.equals(v2)
        assert not v1.broadcast_equals(v2)
        assert not v1.identical(v2)

        assert not v1.no_conflicts(None)

        v3 = Variable(("y"), [np.nan, 2, 3, np.nan])
        assert not v3.no_conflicts(v1)

        d = np.array([1, 2, np.nan, np.nan])
        assert not v1.no_conflicts(d)
        assert not v2.no_conflicts(d)

        v4 = Variable(("w", "x"), [d])
        assert v1.no_conflicts(v4)

    def test_as_variable(self):
        data = np.arange(10)
        expected = Variable("x", data)
        expected_extra = Variable(
            "x", data, attrs={"myattr": "val"}, encoding={"scale_factor": 1}
        )

        assert_identical(expected, as_variable(expected))

        ds = Dataset({"x": expected})
        var = as_variable(ds["x"]).to_base_variable()
        assert_identical(expected, var)
        assert not isinstance(ds["x"], Variable)
        assert isinstance(as_variable(ds["x"]), Variable)

        xarray_tuple = (
            expected_extra.dims,
            expected_extra.values,
            expected_extra.attrs,
            expected_extra.encoding,
        )
        assert_identical(expected_extra, as_variable(xarray_tuple))

        with raises_regex(TypeError, "tuple of form"):
            as_variable(tuple(data))
        with raises_regex(ValueError, "tuple of form"):  # GH1016
            as_variable(("five", "six", "seven"))
        with raises_regex(TypeError, "without an explicit list of dimensions"):
            as_variable(data)

        actual = as_variable(data, name="x")
        assert_identical(expected.to_index_variable(), actual)

        actual = as_variable(0)
        expected = Variable([], 0)
        assert_identical(expected, actual)

        data = np.arange(9).reshape((3, 3))
        expected = Variable(("x", "y"), data)
        with raises_regex(ValueError, "without explicit dimension names"):
            as_variable(data, name="x")
        with raises_regex(ValueError, "has more than 1-dimension"):
            as_variable(expected, name="x")

        # test datetime, timedelta conversion
        dt = np.array([datetime(1999, 1, 1) + timedelta(days=x) for x in range(10)])
        assert as_variable(dt, "time").dtype.kind == "M"
        td = np.array([timedelta(days=x) for x in range(10)])
        assert as_variable(td, "time").dtype.kind == "m"

    def test_repr(self):
        v = Variable(["time", "x"], [[1, 2, 3], [4, 5, 6]], {"foo": "bar"})
        expected = dedent(
            """
        <xarray.Variable (time: 2, x: 3)>
        array([[1, 2, 3],
               [4, 5, 6]])
        Attributes:
            foo:      bar
        """
        ).strip()
        assert expected == repr(v)

    def test_repr_lazy_data(self):
        v = Variable("x", LazilyOuterIndexedArray(np.arange(2e5)))
        assert "200000 values with dtype" in repr(v)
        assert isinstance(v._data, LazilyOuterIndexedArray)

    def test_detect_indexer_type(self):
        """ Tests indexer type was correctly detected. """
        data = np.random.random((10, 11))
        v = Variable(["x", "y"], data)

        _, ind, _ = v._broadcast_indexes((0, 1))
        assert type(ind) == indexing.BasicIndexer

        _, ind, _ = v._broadcast_indexes((0, slice(0, 8, 2)))
        assert type(ind) == indexing.BasicIndexer

        _, ind, _ = v._broadcast_indexes((0, [0, 1]))
        assert type(ind) == indexing.OuterIndexer

        _, ind, _ = v._broadcast_indexes(([0, 1], 1))
        assert type(ind) == indexing.OuterIndexer

        _, ind, _ = v._broadcast_indexes(([0, 1], [1, 2]))
        assert type(ind) == indexing.OuterIndexer

        _, ind, _ = v._broadcast_indexes(([0, 1], slice(0, 8, 2)))
        assert type(ind) == indexing.OuterIndexer

        vind = Variable(("a",), [0, 1])
        _, ind, _ = v._broadcast_indexes((vind, slice(0, 8, 2)))
        assert type(ind) == indexing.OuterIndexer

        vind = Variable(("y",), [0, 1])
        _, ind, _ = v._broadcast_indexes((vind, 3))
        assert type(ind) == indexing.OuterIndexer

        vind = Variable(("a",), [0, 1])
        _, ind, _ = v._broadcast_indexes((vind, vind))
        assert type(ind) == indexing.VectorizedIndexer

        vind = Variable(("a", "b"), [[0, 2], [1, 3]])
        _, ind, _ = v._broadcast_indexes((vind, 3))
        assert type(ind) == indexing.VectorizedIndexer

    def test_indexer_type(self):
        # GH:issue:1688. Wrong indexer type induces NotImplementedError
        data = np.random.random((10, 11))
        v = Variable(["x", "y"], data)

        def assert_indexer_type(key, object_type):
            dims, index_tuple, new_order = v._broadcast_indexes(key)
            assert isinstance(index_tuple, object_type)

        # should return BasicIndexer
        assert_indexer_type((0, 1), BasicIndexer)
        assert_indexer_type((0, slice(None, None)), BasicIndexer)
        assert_indexer_type((Variable([], 3), slice(None, None)), BasicIndexer)
        assert_indexer_type((Variable([], 3), (Variable([], 6))), BasicIndexer)

        # should return OuterIndexer
        assert_indexer_type(([0, 1], 1), OuterIndexer)
        assert_indexer_type(([0, 1], [1, 2]), OuterIndexer)
        assert_indexer_type((Variable(("x"), [0, 1]), 1), OuterIndexer)
        assert_indexer_type((Variable(("x"), [0, 1]), slice(None, None)), OuterIndexer)
        assert_indexer_type(
            (Variable(("x"), [0, 1]), Variable(("y"), [0, 1])), OuterIndexer
        )

        # should return VectorizedIndexer
        assert_indexer_type((Variable(("y"), [0, 1]), [0, 1]), VectorizedIndexer)
        assert_indexer_type(
            (Variable(("z"), [0, 1]), Variable(("z"), [0, 1])), VectorizedIndexer
        )
        assert_indexer_type(
            (
                Variable(("a", "b"), [[0, 1], [1, 2]]),
                Variable(("a", "b"), [[0, 1], [1, 2]]),
            ),
            VectorizedIndexer,
        )

    def test_items(self):
        data = np.random.random((10, 11))
        v = Variable(["x", "y"], data)
        # test slicing
        assert_identical(v, v[:])
        assert_identical(v, v[...])
        assert_identical(Variable(["y"], data[0]), v[0])
        assert_identical(Variable(["x"], data[:, 0]), v[:, 0])
        assert_identical(Variable(["x", "y"], data[:3, :2]), v[:3, :2])
        # test array indexing
        x = Variable(["x"], np.arange(10))
        y = Variable(["y"], np.arange(11))
        assert_identical(v, v[x.values])
        assert_identical(v, v[x])
        assert_identical(v[:3], v[x < 3])
        assert_identical(v[:, 3:], v[:, y >= 3])
        assert_identical(v[:3, 3:], v[x < 3, y >= 3])
        assert_identical(v[:3, :2], v[x[:3], y[:2]])
        assert_identical(v[:3, :2], v[range(3), range(2)])
        # test iteration
        for n, item in enumerate(v):
            assert_identical(Variable(["y"], data[n]), item)
        with raises_regex(TypeError, "iteration over a 0-d"):
            iter(Variable([], 0))
        # test setting
        v.values[:] = 0
        assert np.all(v.values == 0)
        # test orthogonal setting
        v[range(10), range(11)] = 1
        assert_array_equal(v.values, np.ones((10, 11)))

    def test_getitem_basic(self):
        v = self.cls(["x", "y"], [[0, 1, 2], [3, 4, 5]])

        # int argument
        v_new = v[0]
        assert v_new.dims == ("y",)
        assert_array_equal(v_new, v._data[0])

        # slice argument
        v_new = v[:2]
        assert v_new.dims == ("x", "y")
        assert_array_equal(v_new, v._data[:2])

        # list arguments
        v_new = v[[0]]
        assert v_new.dims == ("x", "y")
        assert_array_equal(v_new, v._data[[0]])

        v_new = v[[]]
        assert v_new.dims == ("x", "y")
        assert_array_equal(v_new, v._data[[]])

        # dict arguments
        v_new = v[dict(x=0)]
        assert v_new.dims == ("y",)
        assert_array_equal(v_new, v._data[0])

        v_new = v[dict(x=0, y=slice(None))]
        assert v_new.dims == ("y",)
        assert_array_equal(v_new, v._data[0])

        v_new = v[dict(x=0, y=1)]
        assert v_new.dims == ()
        assert_array_equal(v_new, v._data[0, 1])

        v_new = v[dict(y=1)]
        assert v_new.dims == ("x",)
        assert_array_equal(v_new, v._data[:, 1])

        # tuple argument
        v_new = v[(slice(None), 1)]
        assert v_new.dims == ("x",)
        assert_array_equal(v_new, v._data[:, 1])

        # test that we obtain a modifiable view when taking a 0d slice
        v_new = v[0, 0]
        v_new[...] += 99
        assert_array_equal(v_new, v._data[0, 0])

    def test_getitem_with_mask_2d_input(self):
        v = Variable(("x", "y"), [[0, 1, 2], [3, 4, 5]])
        assert_identical(
            v._getitem_with_mask(([-1, 0], [1, -1])),
            Variable(("x", "y"), [[np.nan, np.nan], [1, np.nan]]),
        )
        assert_identical(v._getitem_with_mask((slice(2), [0, 1, 2])), v)

    def test_isel(self):
        v = Variable(["time", "x"], self.d)
        assert_identical(v.isel(time=slice(None)), v)
        assert_identical(v.isel(time=0), v[0])
        assert_identical(v.isel(time=slice(0, 3)), v[:3])
        assert_identical(v.isel(x=0), v[:, 0])
        assert_identical(v.isel(x=[0, 2]), v[:, [0, 2]])
        assert_identical(v.isel(time=[]), v[[]])
        with raises_regex(
            ValueError,
            r"dimensions {'not_a_dim'} do not exist. Expected one or more of "
            r"\('time', 'x'\)",
        ):
            v.isel(not_a_dim=0)
        with pytest.warns(
            UserWarning,
            match=r"dimensions {'not_a_dim'} do not exist. Expected one or more of "
            r"\('time', 'x'\)",
        ):
            v.isel(not_a_dim=0, missing_dims="warn")
        assert_identical(v, v.isel(not_a_dim=0, missing_dims="ignore"))

    def test_index_0d_numpy_string(self):
        # regression test to verify our work around for indexing 0d strings
        v = Variable([], np.string_("asdf"))
        assert_identical(v[()], v)

        v = Variable([], np.unicode_("asdf"))
        assert_identical(v[()], v)

    def test_indexing_0d_unicode(self):
        # regression test for GH568
        actual = Variable(("x"), ["tmax"])[0][()]
        expected = Variable((), "tmax")
        assert_identical(actual, expected)

    @pytest.mark.parametrize("fill_value", [dtypes.NA, 2, 2.0])
    def test_shift(self, fill_value):
        v = Variable("x", [1, 2, 3, 4, 5])

        assert_identical(v, v.shift(x=0))
        assert v is not v.shift(x=0)

        expected = Variable("x", [np.nan, np.nan, 1, 2, 3])
        assert_identical(expected, v.shift(x=2))

        if fill_value == dtypes.NA:
            # if we supply the default, we expect the missing value for a
            # float array
            fill_value_exp = np.nan
        else:
            fill_value_exp = fill_value

        expected = Variable("x", [fill_value_exp, 1, 2, 3, 4])
        assert_identical(expected, v.shift(x=1, fill_value=fill_value))

        expected = Variable("x", [2, 3, 4, 5, fill_value_exp])
        assert_identical(expected, v.shift(x=-1, fill_value=fill_value))

        expected = Variable("x", [fill_value_exp] * 5)
        assert_identical(expected, v.shift(x=5, fill_value=fill_value))
        assert_identical(expected, v.shift(x=6, fill_value=fill_value))

        with raises_regex(ValueError, "dimension"):
            v.shift(z=0)

        v = Variable("x", [1, 2, 3, 4, 5], {"foo": "bar"})
        assert_identical(v, v.shift(x=0))

        expected = Variable("x", [fill_value_exp, 1, 2, 3, 4], {"foo": "bar"})
        assert_identical(expected, v.shift(x=1, fill_value=fill_value))

    def test_shift2d(self):
        v = Variable(("x", "y"), [[1, 2], [3, 4]])
        expected = Variable(("x", "y"), [[np.nan, np.nan], [np.nan, 1]])
        assert_identical(expected, v.shift(x=1, y=1))

    def test_roll(self):
        v = Variable("x", [1, 2, 3, 4, 5])

        assert_identical(v, v.roll(x=0))
        assert v is not v.roll(x=0)

        expected = Variable("x", [5, 1, 2, 3, 4])
        assert_identical(expected, v.roll(x=1))
        assert_identical(expected, v.roll(x=-4))
        assert_identical(expected, v.roll(x=6))

        expected = Variable("x", [4, 5, 1, 2, 3])
        assert_identical(expected, v.roll(x=2))
        assert_identical(expected, v.roll(x=-3))

        with raises_regex(ValueError, "dimension"):
            v.roll(z=0)

    def test_roll_consistency(self):
        v = Variable(("x", "y"), np.random.randn(5, 6))

        for axis, dim in [(0, "x"), (1, "y")]:
            for shift in [-3, 0, 1, 7, 11]:
                expected = np.roll(v.values, shift, axis=axis)
                actual = v.roll(**{dim: shift}).values
                assert_array_equal(expected, actual)

    def test_transpose(self):
        v = Variable(["time", "x"], self.d)
        v2 = Variable(["x", "time"], self.d.T)
        assert_identical(v, v2.transpose())
        assert_identical(v.transpose(), v.T)
        x = np.random.randn(2, 3, 4, 5)
        w = Variable(["a", "b", "c", "d"], x)
        w2 = Variable(["d", "b", "c", "a"], np.einsum("abcd->dbca", x))
        assert w2.shape == (5, 3, 4, 2)
        assert_identical(w2, w.transpose("d", "b", "c", "a"))
        assert_identical(w2, w.transpose("d", ..., "a"))
        assert_identical(w2, w.transpose("d", "b", "c", ...))
        assert_identical(w2, w.transpose(..., "b", "c", "a"))
        assert_identical(w, w2.transpose("a", "b", "c", "d"))
        w3 = Variable(["b", "c", "d", "a"], np.einsum("abcd->bcda", x))
        assert_identical(w, w3.transpose("a", "b", "c", "d"))

    def test_transpose_0d(self):
        for value in [
            3.5,
            ("a", 1),
            np.datetime64("2000-01-01"),
            np.timedelta64(1, "h"),
            None,
            object(),
        ]:
            variable = Variable([], value)
            actual = variable.transpose()
            assert actual.identical(variable)

    def test_squeeze(self):
        v = Variable(["x", "y"], [[1]])
        assert_identical(Variable([], 1), v.squeeze())
        assert_identical(Variable(["y"], [1]), v.squeeze("x"))
        assert_identical(Variable(["y"], [1]), v.squeeze(["x"]))
        assert_identical(Variable(["x"], [1]), v.squeeze("y"))
        assert_identical(Variable([], 1), v.squeeze(["x", "y"]))

        v = Variable(["x", "y"], [[1, 2]])
        assert_identical(Variable(["y"], [1, 2]), v.squeeze())
        assert_identical(Variable(["y"], [1, 2]), v.squeeze("x"))
        with raises_regex(ValueError, "cannot select a dimension"):
            v.squeeze("y")

    def test_get_axis_num(self):
        v = Variable(["x", "y", "z"], np.random.randn(2, 3, 4))
        assert v.get_axis_num("x") == 0
        assert v.get_axis_num(["x"]) == (0,)
        assert v.get_axis_num(["x", "y"]) == (0, 1)
        assert v.get_axis_num(["z", "y", "x"]) == (2, 1, 0)
        with raises_regex(ValueError, "not found in array dim"):
            v.get_axis_num("foobar")

    def test_set_dims(self):
        v = Variable(["x"], [0, 1])
        actual = v.set_dims(["x", "y"])
        expected = Variable(["x", "y"], [[0], [1]])
        assert_identical(actual, expected)

        actual = v.set_dims(["y", "x"])
        assert_identical(actual, expected.T)

        actual = v.set_dims({"x": 2, "y": 2})
        expected = Variable(["x", "y"], [[0, 0], [1, 1]])
        assert_identical(actual, expected)

        v = Variable(["foo"], [0, 1])
        actual = v.set_dims("foo")
        expected = v
        assert_identical(actual, expected)

        with raises_regex(ValueError, "must be a superset"):
            v.set_dims(["z"])

    def test_set_dims_object_dtype(self):
        v = Variable([], ("a", 1))
        actual = v.set_dims(("x",), (3,))
        exp_values = np.empty((3,), dtype=object)
        for i in range(3):
            exp_values[i] = ("a", 1)
        expected = Variable(["x"], exp_values)
        assert actual.identical(expected)

    def test_stack(self):
        v = Variable(["x", "y"], [[0, 1], [2, 3]], {"foo": "bar"})
        actual = v.stack(z=("x", "y"))
        expected = Variable("z", [0, 1, 2, 3], v.attrs)
        assert_identical(actual, expected)

        actual = v.stack(z=("x",))
        expected = Variable(("y", "z"), v.data.T, v.attrs)
        assert_identical(actual, expected)

        actual = v.stack(z=())
        assert_identical(actual, v)

        actual = v.stack(X=("x",), Y=("y",)).transpose("X", "Y")
        expected = Variable(("X", "Y"), v.data, v.attrs)
        assert_identical(actual, expected)

    def test_stack_errors(self):
        v = Variable(["x", "y"], [[0, 1], [2, 3]], {"foo": "bar"})

        with raises_regex(ValueError, "invalid existing dim"):
            v.stack(z=("x1",))
        with raises_regex(ValueError, "cannot create a new dim"):
            v.stack(x=("x",))

    def test_unstack(self):
        v = Variable("z", [0, 1, 2, 3], {"foo": "bar"})
        actual = v.unstack(z={"x": 2, "y": 2})
        expected = Variable(("x", "y"), [[0, 1], [2, 3]], v.attrs)
        assert_identical(actual, expected)

        actual = v.unstack(z={"x": 4, "y": 1})
        expected = Variable(("x", "y"), [[0], [1], [2], [3]], v.attrs)
        assert_identical(actual, expected)

        actual = v.unstack(z={"x": 4})
        expected = Variable("x", [0, 1, 2, 3], v.attrs)
        assert_identical(actual, expected)

    def test_unstack_errors(self):
        v = Variable("z", [0, 1, 2, 3])
        with raises_regex(ValueError, "invalid existing dim"):
            v.unstack(foo={"x": 4})
        with raises_regex(ValueError, "cannot create a new dim"):
            v.stack(z=("z",))
        with raises_regex(ValueError, "the product of the new dim"):
            v.unstack(z={"x": 5})

    def test_unstack_2d(self):
        v = Variable(["x", "y"], [[0, 1], [2, 3]])
        actual = v.unstack(y={"z": 2})
        expected = Variable(["x", "z"], v.data)
        assert_identical(actual, expected)

        actual = v.unstack(x={"z": 2})
        expected = Variable(["y", "z"], v.data.T)
        assert_identical(actual, expected)

    def test_stack_unstack_consistency(self):
        v = Variable(["x", "y"], [[0, 1], [2, 3]])
        actual = v.stack(z=("x", "y")).unstack(z={"x": 2, "y": 2})
        assert_identical(actual, v)

    def test_broadcasting_math(self):
        x = np.random.randn(2, 3)
        v = Variable(["a", "b"], x)
        # 1d to 2d broadcasting
        assert_identical(v * v, Variable(["a", "b"], np.einsum("ab,ab->ab", x, x)))
        assert_identical(v * v[0], Variable(["a", "b"], np.einsum("ab,b->ab", x, x[0])))
        assert_identical(v[0] * v, Variable(["b", "a"], np.einsum("b,ab->ba", x[0], x)))
        assert_identical(
            v[0] * v[:, 0], Variable(["b", "a"], np.einsum("b,a->ba", x[0], x[:, 0]))
        )
        # higher dim broadcasting
        y = np.random.randn(3, 4, 5)
        w = Variable(["b", "c", "d"], y)
        assert_identical(
            v * w, Variable(["a", "b", "c", "d"], np.einsum("ab,bcd->abcd", x, y))
        )
        assert_identical(
            w * v, Variable(["b", "c", "d", "a"], np.einsum("bcd,ab->bcda", y, x))
        )
        assert_identical(
            v * w[0], Variable(["a", "b", "c", "d"], np.einsum("ab,cd->abcd", x, y[0]))
        )

    def test_broadcasting_failures(self):
        a = Variable(["x"], np.arange(10))
        b = Variable(["x"], np.arange(5))
        c = Variable(["x", "x"], np.arange(100).reshape(10, 10))
        with raises_regex(ValueError, "mismatched lengths"):
            a + b
        with raises_regex(ValueError, "duplicate dimensions"):
            a + c

    def test_inplace_math(self):
        x = np.arange(5)
        v = Variable(["x"], x)
        v2 = v
        v2 += 1
        assert v is v2
        # since we provided an ndarray for data, it is also modified in-place
        assert source_ndarray(v.values) is x
        assert_array_equal(v.values, np.arange(5) + 1)

        with raises_regex(ValueError, "dimensions cannot change"):
            v += Variable("y", np.arange(5))

    def test_reduce(self):
        v = Variable(["x", "y"], self.d, {"ignored": "attributes"})
        assert_identical(v.reduce(np.std, "x"), Variable(["y"], self.d.std(axis=0)))
        assert_identical(v.reduce(np.std, axis=0), v.reduce(np.std, dim="x"))
        assert_identical(
            v.reduce(np.std, ["y", "x"]), Variable([], self.d.std(axis=(0, 1)))
        )
        assert_identical(v.reduce(np.std), Variable([], self.d.std()))
        assert_identical(
            v.reduce(np.mean, "x").reduce(np.std, "y"),
            Variable([], self.d.mean(axis=0).std()),
        )
        assert_allclose(v.mean("x"), v.reduce(np.mean, "x"))

        with raises_regex(ValueError, "cannot supply both"):
            v.mean(dim="x", axis=0)

    @pytest.mark.parametrize("skipna", [True, False])
    @pytest.mark.parametrize("q", [0.25, [0.50], [0.25, 0.75]])
    @pytest.mark.parametrize(
        "axis, dim", zip([None, 0, [0], [0, 1]], [None, "x", ["x"], ["x", "y"]])
    )
    def test_quantile(self, q, axis, dim, skipna):
        v = Variable(["x", "y"], self.d)
        actual = v.quantile(q, dim=dim, skipna=skipna)
        _percentile_func = np.nanpercentile if skipna else np.percentile
        expected = _percentile_func(self.d, np.array(q) * 100, axis=axis)
        np.testing.assert_allclose(actual.values, expected)

    @requires_dask
    @pytest.mark.parametrize("q", [0.25, [0.50], [0.25, 0.75]])
    @pytest.mark.parametrize("axis, dim", [[1, "y"], [[1], ["y"]]])
    def test_quantile_dask(self, q, axis, dim):
        v = Variable(["x", "y"], self.d).chunk({"x": 2})
        actual = v.quantile(q, dim=dim)
        assert isinstance(actual.data, dask_array_type)
        expected = np.nanpercentile(self.d, np.array(q) * 100, axis=axis)
        np.testing.assert_allclose(actual.values, expected)

    @requires_dask
    def test_quantile_chunked_dim_error(self):
        v = Variable(["x", "y"], self.d).chunk({"x": 2})

        # this checks for ValueError in dask.array.apply_gufunc
        with raises_regex(ValueError, "consists of multiple chunks"):
            v.quantile(0.5, dim="x")

    @pytest.mark.parametrize("q", [-0.1, 1.1, [2], [0.25, 2]])
    def test_quantile_out_of_bounds(self, q):
        v = Variable(["x", "y"], self.d)

        # escape special characters
        with raises_regex(ValueError, r"Quantiles must be in the range \[0, 1\]"):
            v.quantile(q, dim="x")

    @requires_dask
    @requires_bottleneck
    def test_rank_dask_raises(self):
        v = Variable(["x"], [3.0, 1.0, np.nan, 2.0, 4.0]).chunk(2)
        with raises_regex(TypeError, "arrays stored as dask"):
            v.rank("x")

    @requires_bottleneck
    def test_rank(self):
        import bottleneck as bn

        # floats
        v = Variable(["x", "y"], [[3, 4, np.nan, 1]])
        expect_0 = bn.nanrankdata(v.data, axis=0)
        expect_1 = bn.nanrankdata(v.data, axis=1)
        np.testing.assert_allclose(v.rank("x").values, expect_0)
        np.testing.assert_allclose(v.rank("y").values, expect_1)
        # int
        v = Variable(["x"], [3, 2, 1])
        expect = bn.rankdata(v.data, axis=0)
        np.testing.assert_allclose(v.rank("x").values, expect)
        # str
        v = Variable(["x"], ["c", "b", "a"])
        expect = bn.rankdata(v.data, axis=0)
        np.testing.assert_allclose(v.rank("x").values, expect)
        # pct
        v = Variable(["x"], [3.0, 1.0, np.nan, 2.0, 4.0])
        v_expect = Variable(["x"], [0.75, 0.25, np.nan, 0.5, 1.0])
        assert_equal(v.rank("x", pct=True), v_expect)
        # invalid dim
        with raises_regex(ValueError, "not found"):
            v.rank("y")

    def test_big_endian_reduce(self):
        # regression test for GH489
        data = np.ones(5, dtype=">f4")
        v = Variable(["x"], data)
        expected = Variable([], 5)
        assert_identical(expected, v.sum())

    def test_reduce_funcs(self):
        v = Variable("x", np.array([1, np.nan, 2, 3]))
        assert_identical(v.mean(), Variable([], 2))
        assert_identical(v.mean(skipna=True), Variable([], 2))
        assert_identical(v.mean(skipna=False), Variable([], np.nan))
        assert_identical(np.mean(v), Variable([], 2))

        assert_identical(v.prod(), Variable([], 6))
        assert_identical(v.cumsum(axis=0), Variable("x", np.array([1, 1, 3, 6])))
        assert_identical(v.cumprod(axis=0), Variable("x", np.array([1, 1, 2, 6])))
        assert_identical(v.var(), Variable([], 2.0 / 3))
        assert_identical(v.median(), Variable([], 2))

        v = Variable("x", [True, False, False])
        assert_identical(v.any(), Variable([], True))
        assert_identical(v.all(dim="x"), Variable([], False))

        v = Variable("t", pd.date_range("2000-01-01", periods=3))
        assert v.argmax(skipna=True, dim="t") == 2

        assert_identical(v.max(), Variable([], pd.Timestamp("2000-01-03")))

    def test_reduce_keepdims(self):
        v = Variable(["x", "y"], self.d)

        assert_identical(
            v.mean(keepdims=True), Variable(v.dims, np.mean(self.d, keepdims=True))
        )
        assert_identical(
            v.mean(dim="x", keepdims=True),
            Variable(v.dims, np.mean(self.d, axis=0, keepdims=True)),
        )
        assert_identical(
            v.mean(dim="y", keepdims=True),
            Variable(v.dims, np.mean(self.d, axis=1, keepdims=True)),
        )
        assert_identical(
            v.mean(dim=["y", "x"], keepdims=True),
            Variable(v.dims, np.mean(self.d, axis=(1, 0), keepdims=True)),
        )

        v = Variable([], 1.0)
        assert_identical(
            v.mean(keepdims=True), Variable([], np.mean(v.data, keepdims=True))
        )

    @requires_dask
    def test_reduce_keepdims_dask(self):
        import dask.array

        v = Variable(["x", "y"], self.d).chunk()

        actual = v.mean(keepdims=True)
        assert isinstance(actual.data, dask.array.Array)

        expected = Variable(v.dims, np.mean(self.d, keepdims=True))
        assert_identical(actual, expected)

        actual = v.mean(dim="y", keepdims=True)
        assert isinstance(actual.data, dask.array.Array)

        expected = Variable(v.dims, np.mean(self.d, axis=1, keepdims=True))
        assert_identical(actual, expected)

    def test_reduce_keep_attrs(self):
        _attrs = {"units": "test", "long_name": "testing"}

        v = Variable(["x", "y"], self.d, _attrs)

        # Test dropped attrs
        vm = v.mean()
        assert len(vm.attrs) == 0
        assert vm.attrs == {}

        # Test kept attrs
        vm = v.mean(keep_attrs=True)
        assert len(vm.attrs) == len(_attrs)
        assert vm.attrs == _attrs

    def test_binary_ops_keep_attrs(self):
        _attrs = {"units": "test", "long_name": "testing"}
        a = Variable(["x", "y"], np.random.randn(3, 3), _attrs)
        b = Variable(["x", "y"], np.random.randn(3, 3), _attrs)
        # Test dropped attrs
        d = a - b  # just one operation
        assert d.attrs == {}
        # Test kept attrs
        with set_options(keep_attrs=True):
            d = a - b
        assert d.attrs == _attrs

    def test_count(self):
        expected = Variable([], 3)
        actual = Variable(["x"], [1, 2, 3, np.nan]).count()
        assert_identical(expected, actual)

        v = Variable(["x"], np.array(["1", "2", "3", np.nan], dtype=object))
        actual = v.count()
        assert_identical(expected, actual)

        actual = Variable(["x"], [True, False, True]).count()
        assert_identical(expected, actual)
        assert actual.dtype == int

        expected = Variable(["x"], [2, 3])
        actual = Variable(["x", "y"], [[1, 0, np.nan], [1, 1, 1]]).count("y")
        assert_identical(expected, actual)

    def test_setitem(self):
        v = Variable(["x", "y"], [[0, 3, 2], [3, 4, 5]])
        v[0, 1] = 1
        assert v[0, 1] == 1

        v = Variable(["x", "y"], [[0, 3, 2], [3, 4, 5]])
        v[dict(x=[0, 1])] = 1
        assert_array_equal(v[[0, 1]], np.ones_like(v[[0, 1]]))

        # boolean indexing
        v = Variable(["x", "y"], [[0, 3, 2], [3, 4, 5]])
        v[dict(x=[True, False])] = 1

        assert_array_equal(v[0], np.ones_like(v[0]))
        v = Variable(["x", "y"], [[0, 3, 2], [3, 4, 5]])
        v[dict(x=[True, False], y=[False, True, False])] = 1
        assert v[0, 1] == 1

    def test_setitem_fancy(self):
        # assignment which should work as np.ndarray does
        def assert_assigned_2d(array, key_x, key_y, values):
            expected = array.copy()
            expected[key_x, key_y] = values
            v = Variable(["x", "y"], array)
            v[dict(x=key_x, y=key_y)] = values
            assert_array_equal(expected, v)

        # 1d vectorized indexing
        assert_assigned_2d(
            np.random.randn(4, 3),
            key_x=Variable(["a"], [0, 1]),
            key_y=Variable(["a"], [0, 1]),
            values=0,
        )
        assert_assigned_2d(
            np.random.randn(4, 3),
            key_x=Variable(["a"], [0, 1]),
            key_y=Variable(["a"], [0, 1]),
            values=Variable((), 0),
        )
        assert_assigned_2d(
            np.random.randn(4, 3),
            key_x=Variable(["a"], [0, 1]),
            key_y=Variable(["a"], [0, 1]),
            values=Variable(("a"), [3, 2]),
        )
        assert_assigned_2d(
            np.random.randn(4, 3),
            key_x=slice(None),
            key_y=Variable(["a"], [0, 1]),
            values=Variable(("a"), [3, 2]),
        )

        # 2d-vectorized indexing
        assert_assigned_2d(
            np.random.randn(4, 3),
            key_x=Variable(["a", "b"], [[0, 1]]),
            key_y=Variable(["a", "b"], [[1, 0]]),
            values=0,
        )
        assert_assigned_2d(
            np.random.randn(4, 3),
            key_x=Variable(["a", "b"], [[0, 1]]),
            key_y=Variable(["a", "b"], [[1, 0]]),
            values=[0],
        )
        assert_assigned_2d(
            np.random.randn(5, 4),
            key_x=Variable(["a", "b"], [[0, 1], [2, 3]]),
            key_y=Variable(["a", "b"], [[1, 0], [3, 3]]),
            values=[2, 3],
        )

        # vindex with slice
        v = Variable(["x", "y", "z"], np.ones((4, 3, 2)))
        ind = Variable(["a"], [0, 1])
        v[dict(x=ind, z=ind)] = 0
        expected = Variable(["x", "y", "z"], np.ones((4, 3, 2)))
        expected[0, :, 0] = 0
        expected[1, :, 1] = 0
        assert_identical(expected, v)

        # dimension broadcast
        v = Variable(["x", "y"], np.ones((3, 2)))
        ind = Variable(["a", "b"], [[0, 1]])
        v[ind, :] = 0
        expected = Variable(["x", "y"], [[0, 0], [0, 0], [1, 1]])
        assert_identical(expected, v)

        with raises_regex(ValueError, "shape mismatch"):
            v[ind, ind] = np.zeros((1, 2, 1))

        v = Variable(["x", "y"], [[0, 3, 2], [3, 4, 5]])
        ind = Variable(["a"], [0, 1])
        v[dict(x=ind)] = Variable(["a", "y"], np.ones((2, 3), dtype=int) * 10)
        assert_array_equal(v[0], np.ones_like(v[0]) * 10)
        assert_array_equal(v[1], np.ones_like(v[1]) * 10)
        assert v.dims == ("x", "y")  # dimension should not change

        # increment
        v = Variable(["x", "y"], np.arange(6).reshape(3, 2))
        ind = Variable(["a"], [0, 1])
        v[dict(x=ind)] += 1
        expected = Variable(["x", "y"], [[1, 2], [3, 4], [4, 5]])
        assert_identical(v, expected)

        ind = Variable(["a"], [0, 0])
        v[dict(x=ind)] += 1
        expected = Variable(["x", "y"], [[2, 3], [3, 4], [4, 5]])
        assert_identical(v, expected)

    def test_coarsen(self):
        v = self.cls(["x"], [0, 1, 2, 3, 4])
        actual = v.coarsen({"x": 2}, boundary="pad", func="mean")
        expected = self.cls(["x"], [0.5, 2.5, 4])
        assert_identical(actual, expected)

        actual = v.coarsen({"x": 2}, func="mean", boundary="pad", side="right")
        expected = self.cls(["x"], [0, 1.5, 3.5])
        assert_identical(actual, expected)

        actual = v.coarsen({"x": 2}, func=np.mean, side="right", boundary="trim")
        expected = self.cls(["x"], [1.5, 3.5])
        assert_identical(actual, expected)

        # working test
        v = self.cls(["x", "y", "z"], np.arange(40 * 30 * 2).reshape(40, 30, 2))
        for windows, func, side, boundary in [
            ({"x": 2}, np.mean, "left", "trim"),
            ({"x": 2}, np.median, {"x": "left"}, "pad"),
            ({"x": 2, "y": 3}, np.max, "left", {"x": "pad", "y": "trim"}),
        ]:
            v.coarsen(windows, func, boundary, side)

    def test_coarsen_2d(self):
        # 2d-mean should be the same with the successive 1d-mean
        v = self.cls(["x", "y"], np.arange(6 * 12).reshape(6, 12))
        actual = v.coarsen({"x": 3, "y": 4}, func="mean")
        expected = v.coarsen({"x": 3}, func="mean").coarsen({"y": 4}, func="mean")
        assert_equal(actual, expected)

        v = self.cls(["x", "y"], np.arange(7 * 12).reshape(7, 12))
        actual = v.coarsen({"x": 3, "y": 4}, func="mean", boundary="trim")
        expected = v.coarsen({"x": 3}, func="mean", boundary="trim").coarsen(
            {"y": 4}, func="mean", boundary="trim"
        )
        assert_equal(actual, expected)

        # if there is nan, the two should be different
        v = self.cls(["x", "y"], 1.0 * np.arange(6 * 12).reshape(6, 12))
        v[2, 4] = np.nan
        v[3, 5] = np.nan
        actual = v.coarsen({"x": 3, "y": 4}, func="mean", boundary="trim")
        expected = (
            v.coarsen({"x": 3}, func="sum", boundary="trim").coarsen(
                {"y": 4}, func="sum", boundary="trim"
            )
            / 12
        )
        assert not actual.equals(expected)
        # adjusting the nan count
        expected[0, 1] *= 12 / 11
        expected[1, 1] *= 12 / 11
        assert_allclose(actual, expected)

        v = self.cls(("x", "y"), np.arange(4 * 4, dtype=np.float32).reshape(4, 4))
        actual = v.coarsen(dict(x=2, y=2), func="count", boundary="exact")
        expected = self.cls(("x", "y"), 4 * np.ones((2, 2)))
        assert_equal(actual, expected)

        v[0, 0] = np.nan
        v[-1, -1] = np.nan
        expected[0, 0] = 3
        expected[-1, -1] = 3
        actual = v.coarsen(dict(x=2, y=2), func="count", boundary="exact")
        assert_equal(actual, expected)

        actual = v.coarsen(dict(x=2, y=2), func="sum", boundary="exact", skipna=False)
        expected = self.cls(("x", "y"), [[np.nan, 18], [42, np.nan]])
        assert_equal(actual, expected)

        actual = v.coarsen(dict(x=2, y=2), func="sum", boundary="exact", skipna=True)
        expected = self.cls(("x", "y"), [[10, 18], [42, 35]])
        assert_equal(actual, expected)

    # perhaps @pytest.mark.parametrize("operation", [f for f in duck_array_ops])
    def test_coarsen_keep_attrs(self, operation="mean"):
        _attrs = {"units": "test", "long_name": "testing"}

        test_func = getattr(duck_array_ops, operation, None)

        # Test dropped attrs
        with set_options(keep_attrs=False):
            new = Variable(["coord"], np.linspace(1, 10, 100), attrs=_attrs).coarsen(
                windows={"coord": 1}, func=test_func, boundary="exact", side="left"
            )
        assert new.attrs == {}

        # Test kept attrs
        with set_options(keep_attrs=True):
            new = Variable(["coord"], np.linspace(1, 10, 100), attrs=_attrs).coarsen(
                windows={"coord": 1},
                func=test_func,
                boundary="exact",
                side="left",
            )
        assert new.attrs == _attrs


@requires_dask
class TestVariableWithDask(VariableSubclassobjects):
    cls = staticmethod(lambda *args: Variable(*args).chunk())

    @pytest.mark.xfail
    def test_0d_object_array_with_list(self):
        super().test_0d_object_array_with_list()

    @pytest.mark.xfail
    def test_array_interface(self):
        # dask array does not have `argsort`
        super().test_array_interface()

    @pytest.mark.xfail
    def test_copy_index(self):
        super().test_copy_index()

    @pytest.mark.xfail
    def test_eq_all_dtypes(self):
        super().test_eq_all_dtypes()

    def test_getitem_fancy(self):
        super().test_getitem_fancy()

    def test_getitem_1d_fancy(self):
        super().test_getitem_1d_fancy()

    def test_getitem_with_mask_nd_indexer(self):
        import dask.array as da

        v = Variable(["x"], da.arange(3, chunks=3))
        indexer = Variable(("x", "y"), [[0, -1], [-1, 2]])
        assert_identical(
            v._getitem_with_mask(indexer, fill_value=-1),
            self.cls(("x", "y"), [[0, -1], [-1, 2]]),
        )


@requires_sparse
class TestVariableWithSparse:
    # TODO inherit VariableSubclassobjects to cover more tests

    def test_as_sparse(self):
        data = np.arange(12).reshape(3, 4)
        var = Variable(("x", "y"), data)._as_sparse(fill_value=-1)
        actual = var._to_dense()
        assert_identical(var, actual)


class TestIndexVariable(VariableSubclassobjects):
    cls = staticmethod(IndexVariable)

    def test_init(self):
        with raises_regex(ValueError, "must be 1-dimensional"):
            IndexVariable((), 0)

    def test_to_index(self):
        data = 0.5 * np.arange(10)
        v = IndexVariable(["time"], data, {"foo": "bar"})
        assert pd.Index(data, name="time").identical(v.to_index())

    def test_multiindex_default_level_names(self):
        midx = pd.MultiIndex.from_product([["a", "b"], [1, 2]])
        v = IndexVariable(["x"], midx, {"foo": "bar"})
        assert v.to_index().names == ("x_level_0", "x_level_1")

    def test_data(self):
        x = IndexVariable("x", np.arange(3.0))
        assert isinstance(x._data, PandasIndexAdapter)
        assert isinstance(x.data, np.ndarray)
        assert float == x.dtype
        assert_array_equal(np.arange(3), x)
        assert float == x.values.dtype
        with raises_regex(TypeError, "cannot be modified"):
            x[:] = 0

    def test_name(self):
        coord = IndexVariable("x", [10.0])
        assert coord.name == "x"

        with pytest.raises(AttributeError):
            coord.name = "y"

    def test_level_names(self):
        midx = pd.MultiIndex.from_product(
            [["a", "b"], [1, 2]], names=["level_1", "level_2"]
        )
        x = IndexVariable("x", midx)
        assert x.level_names == midx.names

        assert IndexVariable("y", [10.0]).level_names is None

    def test_get_level_variable(self):
        midx = pd.MultiIndex.from_product(
            [["a", "b"], [1, 2]], names=["level_1", "level_2"]
        )
        x = IndexVariable("x", midx)
        level_1 = IndexVariable("x", midx.get_level_values("level_1"))
        assert_identical(x.get_level_variable("level_1"), level_1)

        with raises_regex(ValueError, "has no MultiIndex"):
            IndexVariable("y", [10.0]).get_level_variable("level")

    def test_concat_periods(self):
        periods = pd.period_range("2000-01-01", periods=10)
        coords = [IndexVariable("t", periods[:5]), IndexVariable("t", periods[5:])]
        expected = IndexVariable("t", periods)
        actual = IndexVariable.concat(coords, dim="t")
        assert actual.identical(expected)
        assert isinstance(actual.to_index(), pd.PeriodIndex)

        positions = [list(range(5)), list(range(5, 10))]
        actual = IndexVariable.concat(coords, dim="t", positions=positions)
        assert actual.identical(expected)
        assert isinstance(actual.to_index(), pd.PeriodIndex)

    def test_concat_multiindex(self):
        idx = pd.MultiIndex.from_product([[0, 1, 2], ["a", "b"]])
        coords = [IndexVariable("x", idx[:2]), IndexVariable("x", idx[2:])]
        expected = IndexVariable("x", idx)
        actual = IndexVariable.concat(coords, dim="x")
        assert actual.identical(expected)
        assert isinstance(actual.to_index(), pd.MultiIndex)

    def test_coordinate_alias(self):
        with pytest.warns(Warning, match="deprecated"):
            x = Coordinate("x", [1, 2, 3])
        assert isinstance(x, IndexVariable)

    def test_datetime64(self):
        # GH:1932  Make sure indexing keeps precision
        t = np.array([1518418799999986560, 1518418799999996560], dtype="datetime64[ns]")
        v = IndexVariable("t", t)
        assert v[0].data == t[0]

    # These tests make use of multi-dimensional variables, which are not valid
    # IndexVariable objects:
    @pytest.mark.xfail
    def test_getitem_error(self):
        super().test_getitem_error()

    @pytest.mark.xfail
    def test_getitem_advanced(self):
        super().test_getitem_advanced()

    @pytest.mark.xfail
    def test_getitem_fancy(self):
        super().test_getitem_fancy()

    @pytest.mark.xfail
    def test_getitem_uint(self):
        super().test_getitem_fancy()

    @pytest.mark.xfail
    @pytest.mark.parametrize(
        "mode",
        [
            "mean",
            "median",
            "reflect",
            "edge",
            "linear_ramp",
            "maximum",
            "minimum",
            "symmetric",
            "wrap",
        ],
    )
    @pytest.mark.parametrize("xr_arg, np_arg", _PAD_XR_NP_ARGS)
    def test_pad(self, mode, xr_arg, np_arg):
        super().test_pad(mode, xr_arg, np_arg)

    @pytest.mark.xfail
    @pytest.mark.parametrize("xr_arg, np_arg", _PAD_XR_NP_ARGS)
    def test_pad_constant_values(self, xr_arg, np_arg):
        super().test_pad_constant_values(xr_arg, np_arg)

    @pytest.mark.xfail
    def test_rolling_window(self):
        super().test_rolling_window()

    @pytest.mark.xfail
    def test_coarsen_2d(self):
        super().test_coarsen_2d()


class TestAsCompatibleData:
    def test_unchanged_types(self):
        types = (np.asarray, PandasIndexAdapter, LazilyOuterIndexedArray)
        for t in types:
            for data in [
                np.arange(3),
                pd.date_range("2000-01-01", periods=3),
                pd.date_range("2000-01-01", periods=3).values,
            ]:
                x = t(data)
                assert source_ndarray(x) is source_ndarray(as_compatible_data(x))

    def test_converted_types(self):
        for input_array in [[[0, 1, 2]], pd.DataFrame([[0, 1, 2]])]:
            actual = as_compatible_data(input_array)
            assert_array_equal(np.asarray(input_array), actual)
            assert np.ndarray == type(actual)
            assert np.asarray(input_array).dtype == actual.dtype

    def test_masked_array(self):
        original = np.ma.MaskedArray(np.arange(5))
        expected = np.arange(5)
        actual = as_compatible_data(original)
        assert_array_equal(expected, actual)
        assert np.dtype(int) == actual.dtype

        original = np.ma.MaskedArray(np.arange(5), mask=4 * [False] + [True])
        expected = np.arange(5.0)
        expected[-1] = np.nan
        actual = as_compatible_data(original)
        assert_array_equal(expected, actual)
        assert np.dtype(float) == actual.dtype

    def test_datetime(self):
        expected = np.datetime64("2000-01-01")
        actual = as_compatible_data(expected)
        assert expected == actual
        assert np.ndarray == type(actual)
        assert np.dtype("datetime64[ns]") == actual.dtype

        expected = np.array([np.datetime64("2000-01-01")])
        actual = as_compatible_data(expected)
        assert np.asarray(expected) == actual
        assert np.ndarray == type(actual)
        assert np.dtype("datetime64[ns]") == actual.dtype

        expected = np.array([np.datetime64("2000-01-01", "ns")])
        actual = as_compatible_data(expected)
        assert np.asarray(expected) == actual
        assert np.ndarray == type(actual)
        assert np.dtype("datetime64[ns]") == actual.dtype
        assert expected is source_ndarray(np.asarray(actual))

        expected = np.datetime64("2000-01-01", "ns")
        actual = as_compatible_data(datetime(2000, 1, 1))
        assert np.asarray(expected) == actual
        assert np.ndarray == type(actual)
        assert np.dtype("datetime64[ns]") == actual.dtype

    def test_full_like(self):
        # For more thorough tests, see test_variable.py
        orig = Variable(
            dims=("x", "y"), data=[[1.5, 2.0], [3.1, 4.3]], attrs={"foo": "bar"}
        )

        expect = orig.copy(deep=True)
        expect.values = [[2.0, 2.0], [2.0, 2.0]]
        assert_identical(expect, full_like(orig, 2))

        # override dtype
        expect.values = [[True, True], [True, True]]
        assert expect.dtype == bool
        assert_identical(expect, full_like(orig, True, dtype=bool))

        # raise error on non-scalar fill_value
        with raises_regex(ValueError, "must be scalar"):
            full_like(orig, [1.0, 2.0])

    @requires_dask
    def test_full_like_dask(self):
        orig = Variable(
            dims=("x", "y"), data=[[1.5, 2.0], [3.1, 4.3]], attrs={"foo": "bar"}
        ).chunk(((1, 1), (2,)))

        def check(actual, expect_dtype, expect_values):
            assert actual.dtype == expect_dtype
            assert actual.shape == orig.shape
            assert actual.dims == orig.dims
            assert actual.attrs == orig.attrs
            assert actual.chunks == orig.chunks
            assert_array_equal(actual.values, expect_values)

        check(full_like(orig, 2), orig.dtype, np.full_like(orig.values, 2))
        # override dtype
        check(
            full_like(orig, True, dtype=bool),
            bool,
            np.full_like(orig.values, True, dtype=bool),
        )

        # Check that there's no array stored inside dask
        # (e.g. we didn't create a numpy array and then we chunked it!)
        dsk = full_like(orig, 1).data.dask
        for v in dsk.values():
            if isinstance(v, tuple):
                for vi in v:
                    assert not isinstance(vi, np.ndarray)
            else:
                assert not isinstance(v, np.ndarray)

    def test_zeros_like(self):
        orig = Variable(
            dims=("x", "y"), data=[[1.5, 2.0], [3.1, 4.3]], attrs={"foo": "bar"}
        )
        assert_identical(zeros_like(orig), full_like(orig, 0))
        assert_identical(zeros_like(orig, dtype=int), full_like(orig, 0, dtype=int))

    def test_ones_like(self):
        orig = Variable(
            dims=("x", "y"), data=[[1.5, 2.0], [3.1, 4.3]], attrs={"foo": "bar"}
        )
        assert_identical(ones_like(orig), full_like(orig, 1))
        assert_identical(ones_like(orig, dtype=int), full_like(orig, 1, dtype=int))

    def test_unsupported_type(self):
        # Non indexable type
        class CustomArray(NDArrayMixin):
            def __init__(self, array):
                self.array = array

        class CustomIndexable(CustomArray, indexing.ExplicitlyIndexed):
            pass

        array = CustomArray(np.arange(3))
        orig = Variable(dims=("x"), data=array, attrs={"foo": "bar"})
        assert isinstance(orig._data, np.ndarray)  # should not be CustomArray

        array = CustomIndexable(np.arange(3))
        orig = Variable(dims=("x"), data=array, attrs={"foo": "bar"})
        assert isinstance(orig._data, CustomIndexable)


def test_raise_no_warning_for_nan_in_binary_ops():
    with pytest.warns(None) as record:
        Variable("x", [1, 2, np.NaN]) > 0
    assert len(record) == 0


class TestBackendIndexing:
    """    Make sure all the array wrappers can be indexed. """

    @pytest.fixture(autouse=True)
    def setUp(self):
        self.d = np.random.random((10, 3)).astype(np.float64)

    def check_orthogonal_indexing(self, v):
        assert np.allclose(v.isel(x=[8, 3], y=[2, 1]), self.d[[8, 3]][:, [2, 1]])

    def check_vectorized_indexing(self, v):
        ind_x = Variable("z", [0, 2])
        ind_y = Variable("z", [2, 1])
        assert np.allclose(v.isel(x=ind_x, y=ind_y), self.d[ind_x, ind_y])

    def test_NumpyIndexingAdapter(self):
        v = Variable(dims=("x", "y"), data=NumpyIndexingAdapter(self.d))
        self.check_orthogonal_indexing(v)
        self.check_vectorized_indexing(v)
        # could not doubly wrapping
        with raises_regex(TypeError, "NumpyIndexingAdapter only wraps "):
            v = Variable(
                dims=("x", "y"), data=NumpyIndexingAdapter(NumpyIndexingAdapter(self.d))
            )

    def test_LazilyOuterIndexedArray(self):
        v = Variable(dims=("x", "y"), data=LazilyOuterIndexedArray(self.d))
        self.check_orthogonal_indexing(v)
        self.check_vectorized_indexing(v)
        # doubly wrapping
        v = Variable(
            dims=("x", "y"),
            data=LazilyOuterIndexedArray(LazilyOuterIndexedArray(self.d)),
        )
        self.check_orthogonal_indexing(v)
        # hierarchical wrapping
        v = Variable(
            dims=("x", "y"), data=LazilyOuterIndexedArray(NumpyIndexingAdapter(self.d))
        )
        self.check_orthogonal_indexing(v)

    def test_CopyOnWriteArray(self):
        v = Variable(dims=("x", "y"), data=CopyOnWriteArray(self.d))
        self.check_orthogonal_indexing(v)
        self.check_vectorized_indexing(v)
        # doubly wrapping
        v = Variable(
            dims=("x", "y"), data=CopyOnWriteArray(LazilyOuterIndexedArray(self.d))
        )
        self.check_orthogonal_indexing(v)
        self.check_vectorized_indexing(v)

    def test_MemoryCachedArray(self):
        v = Variable(dims=("x", "y"), data=MemoryCachedArray(self.d))
        self.check_orthogonal_indexing(v)
        self.check_vectorized_indexing(v)
        # doubly wrapping
        v = Variable(dims=("x", "y"), data=CopyOnWriteArray(MemoryCachedArray(self.d)))
        self.check_orthogonal_indexing(v)
        self.check_vectorized_indexing(v)

    @requires_dask
    def test_DaskIndexingAdapter(self):
        import dask.array as da

        da = da.asarray(self.d)
        v = Variable(dims=("x", "y"), data=DaskIndexingAdapter(da))
        self.check_orthogonal_indexing(v)
        self.check_vectorized_indexing(v)
        # doubly wrapping
        v = Variable(dims=("x", "y"), data=CopyOnWriteArray(DaskIndexingAdapter(da)))
        self.check_orthogonal_indexing(v)
        self.check_vectorized_indexing(v)