1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
import numpy as np
import pytest
import xarray as xr
from xarray import DataArray
from xarray.tests import assert_allclose, assert_equal, raises_regex
from . import raise_if_dask_computes, requires_dask
@pytest.mark.parametrize("as_dataset", (True, False))
def test_weighted_non_DataArray_weights(as_dataset):
data = DataArray([1, 2])
if as_dataset:
data = data.to_dataset(name="data")
with raises_regex(ValueError, "`weights` must be a DataArray"):
data.weighted([1, 2])
@pytest.mark.parametrize("as_dataset", (True, False))
@pytest.mark.parametrize("weights", ([np.nan, 2], [np.nan, np.nan]))
def test_weighted_weights_nan_raises(as_dataset, weights):
data = DataArray([1, 2])
if as_dataset:
data = data.to_dataset(name="data")
with pytest.raises(ValueError, match="`weights` cannot contain missing values."):
data.weighted(DataArray(weights))
@requires_dask
@pytest.mark.parametrize("as_dataset", (True, False))
@pytest.mark.parametrize("weights", ([np.nan, 2], [np.nan, np.nan]))
def test_weighted_weights_nan_raises_dask(as_dataset, weights):
data = DataArray([1, 2]).chunk({"dim_0": -1})
if as_dataset:
data = data.to_dataset(name="data")
weights = DataArray(weights).chunk({"dim_0": -1})
with raise_if_dask_computes():
weighted = data.weighted(weights)
with pytest.raises(ValueError, match="`weights` cannot contain missing values."):
weighted.sum().load()
@pytest.mark.parametrize(
("weights", "expected"),
(([1, 2], 3), ([2, 0], 2), ([0, 0], np.nan), ([-1, 1], np.nan)),
)
def test_weighted_sum_of_weights_no_nan(weights, expected):
da = DataArray([1, 2])
weights = DataArray(weights)
result = da.weighted(weights).sum_of_weights()
expected = DataArray(expected)
assert_equal(expected, result)
@pytest.mark.parametrize(
("weights", "expected"),
(([1, 2], 2), ([2, 0], np.nan), ([0, 0], np.nan), ([-1, 1], 1)),
)
def test_weighted_sum_of_weights_nan(weights, expected):
da = DataArray([np.nan, 2])
weights = DataArray(weights)
result = da.weighted(weights).sum_of_weights()
expected = DataArray(expected)
assert_equal(expected, result)
def test_weighted_sum_of_weights_bool():
# https://github.com/pydata/xarray/issues/4074
da = DataArray([1, 2])
weights = DataArray([True, True])
result = da.weighted(weights).sum_of_weights()
expected = DataArray(2)
assert_equal(expected, result)
@pytest.mark.parametrize("da", ([1.0, 2], [1, np.nan], [np.nan, np.nan]))
@pytest.mark.parametrize("factor", [0, 1, 3.14])
@pytest.mark.parametrize("skipna", (True, False))
def test_weighted_sum_equal_weights(da, factor, skipna):
# if all weights are 'f'; weighted sum is f times the ordinary sum
da = DataArray(da)
weights = xr.full_like(da, factor)
expected = da.sum(skipna=skipna) * factor
result = da.weighted(weights).sum(skipna=skipna)
assert_equal(expected, result)
@pytest.mark.parametrize(
("weights", "expected"), (([1, 2], 5), ([0, 2], 4), ([0, 0], 0))
)
def test_weighted_sum_no_nan(weights, expected):
da = DataArray([1, 2])
weights = DataArray(weights)
result = da.weighted(weights).sum()
expected = DataArray(expected)
assert_equal(expected, result)
@pytest.mark.parametrize(
("weights", "expected"), (([1, 2], 4), ([0, 2], 4), ([1, 0], 0), ([0, 0], 0))
)
@pytest.mark.parametrize("skipna", (True, False))
def test_weighted_sum_nan(weights, expected, skipna):
da = DataArray([np.nan, 2])
weights = DataArray(weights)
result = da.weighted(weights).sum(skipna=skipna)
if skipna:
expected = DataArray(expected)
else:
expected = DataArray(np.nan)
assert_equal(expected, result)
@pytest.mark.filterwarnings("error")
@pytest.mark.parametrize("da", ([1.0, 2], [1, np.nan], [np.nan, np.nan]))
@pytest.mark.parametrize("skipna", (True, False))
@pytest.mark.parametrize("factor", [1, 2, 3.14])
def test_weighted_mean_equal_weights(da, skipna, factor):
# if all weights are equal (!= 0), should yield the same result as mean
da = DataArray(da)
# all weights as 1.
weights = xr.full_like(da, factor)
expected = da.mean(skipna=skipna)
result = da.weighted(weights).mean(skipna=skipna)
assert_equal(expected, result)
@pytest.mark.parametrize(
("weights", "expected"), (([4, 6], 1.6), ([1, 0], 1.0), ([0, 0], np.nan))
)
def test_weighted_mean_no_nan(weights, expected):
da = DataArray([1, 2])
weights = DataArray(weights)
expected = DataArray(expected)
result = da.weighted(weights).mean()
assert_equal(expected, result)
@pytest.mark.parametrize(
("weights", "expected"), (([4, 6], 2.0), ([1, 0], np.nan), ([0, 0], np.nan))
)
@pytest.mark.parametrize("skipna", (True, False))
def test_weighted_mean_nan(weights, expected, skipna):
da = DataArray([np.nan, 2])
weights = DataArray(weights)
if skipna:
expected = DataArray(expected)
else:
expected = DataArray(np.nan)
result = da.weighted(weights).mean(skipna=skipna)
assert_equal(expected, result)
def test_weighted_mean_bool():
# https://github.com/pydata/xarray/issues/4074
da = DataArray([1, 1])
weights = DataArray([True, True])
expected = DataArray(1)
result = da.weighted(weights).mean()
assert_equal(expected, result)
def expected_weighted(da, weights, dim, skipna, operation):
"""
Generate expected result using ``*`` and ``sum``. This is checked against
the result of da.weighted which uses ``dot``
"""
weighted_sum = (da * weights).sum(dim=dim, skipna=skipna)
if operation == "sum":
return weighted_sum
masked_weights = weights.where(da.notnull())
sum_of_weights = masked_weights.sum(dim=dim, skipna=True)
valid_weights = sum_of_weights != 0
sum_of_weights = sum_of_weights.where(valid_weights)
if operation == "sum_of_weights":
return sum_of_weights
weighted_mean = weighted_sum / sum_of_weights
if operation == "mean":
return weighted_mean
@pytest.mark.parametrize("dim", ("a", "b", "c", ("a", "b"), ("a", "b", "c"), None))
@pytest.mark.parametrize("operation", ("sum_of_weights", "sum", "mean"))
@pytest.mark.parametrize("add_nans", (True, False))
@pytest.mark.parametrize("skipna", (None, True, False))
@pytest.mark.parametrize("as_dataset", (True, False))
def test_weighted_operations_3D(dim, operation, add_nans, skipna, as_dataset):
dims = ("a", "b", "c")
coords = dict(a=[0, 1, 2, 3], b=[0, 1, 2, 3], c=[0, 1, 2, 3])
weights = DataArray(np.random.randn(4, 4, 4), dims=dims, coords=coords)
data = np.random.randn(4, 4, 4)
# add approximately 25 % NaNs (https://stackoverflow.com/a/32182680/3010700)
if add_nans:
c = int(data.size * 0.25)
data.ravel()[np.random.choice(data.size, c, replace=False)] = np.NaN
data = DataArray(data, dims=dims, coords=coords)
if as_dataset:
data = data.to_dataset(name="data")
if operation == "sum_of_weights":
result = data.weighted(weights).sum_of_weights(dim)
else:
result = getattr(data.weighted(weights), operation)(dim, skipna=skipna)
expected = expected_weighted(data, weights, dim, skipna, operation)
assert_allclose(expected, result)
@pytest.mark.parametrize("operation", ("sum_of_weights", "sum", "mean"))
@pytest.mark.parametrize("as_dataset", (True, False))
def test_weighted_operations_nonequal_coords(operation, as_dataset):
weights = DataArray(np.random.randn(4), dims=("a",), coords=dict(a=[0, 1, 2, 3]))
data = DataArray(np.random.randn(4), dims=("a",), coords=dict(a=[1, 2, 3, 4]))
if as_dataset:
data = data.to_dataset(name="data")
expected = expected_weighted(
data, weights, dim="a", skipna=None, operation=operation
)
result = getattr(data.weighted(weights), operation)(dim="a")
assert_allclose(expected, result)
@pytest.mark.parametrize("dim", ("dim_0", None))
@pytest.mark.parametrize("shape_data", ((4,), (4, 4), (4, 4, 4)))
@pytest.mark.parametrize("shape_weights", ((4,), (4, 4), (4, 4, 4)))
@pytest.mark.parametrize("operation", ("sum_of_weights", "sum", "mean"))
@pytest.mark.parametrize("add_nans", (True, False))
@pytest.mark.parametrize("skipna", (None, True, False))
@pytest.mark.parametrize("as_dataset", (True, False))
def test_weighted_operations_different_shapes(
dim, shape_data, shape_weights, operation, add_nans, skipna, as_dataset
):
weights = DataArray(np.random.randn(*shape_weights))
data = np.random.randn(*shape_data)
# add approximately 25 % NaNs
if add_nans:
c = int(data.size * 0.25)
data.ravel()[np.random.choice(data.size, c, replace=False)] = np.NaN
data = DataArray(data)
if as_dataset:
data = data.to_dataset(name="data")
if operation == "sum_of_weights":
result = getattr(data.weighted(weights), operation)(dim)
else:
result = getattr(data.weighted(weights), operation)(dim, skipna=skipna)
expected = expected_weighted(data, weights, dim, skipna, operation)
assert_allclose(expected, result)
@pytest.mark.parametrize("operation", ("sum_of_weights", "sum", "mean"))
@pytest.mark.parametrize("as_dataset", (True, False))
@pytest.mark.parametrize("keep_attrs", (True, False, None))
def test_weighted_operations_keep_attr(operation, as_dataset, keep_attrs):
weights = DataArray(np.random.randn(2, 2), attrs=dict(attr="weights"))
data = DataArray(np.random.randn(2, 2))
if as_dataset:
data = data.to_dataset(name="data")
data.attrs = dict(attr="weights")
result = getattr(data.weighted(weights), operation)(keep_attrs=True)
if operation == "sum_of_weights":
assert weights.attrs == result.attrs
else:
assert data.attrs == result.attrs
result = getattr(data.weighted(weights), operation)(keep_attrs=None)
assert not result.attrs
result = getattr(data.weighted(weights), operation)(keep_attrs=False)
assert not result.attrs
@pytest.mark.parametrize("operation", ("sum", "mean"))
def test_weighted_operations_keep_attr_da_in_ds(operation):
# GH #3595
weights = DataArray(np.random.randn(2, 2))
data = DataArray(np.random.randn(2, 2), attrs=dict(attr="data"))
data = data.to_dataset(name="a")
result = getattr(data.weighted(weights), operation)(keep_attrs=True)
assert data.a.attrs == result.a.attrs
|