File: cfgrib_.py

package info (click to toggle)
python-xarray 2023.01.0-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,980 kB
  • sloc: python: 86,209; makefile: 232; sh: 47
file content (149 lines) | stat: -rw-r--r-- 4,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from __future__ import annotations

import os
import warnings

import numpy as np

from xarray.backends.common import (
    BACKEND_ENTRYPOINTS,
    AbstractDataStore,
    BackendArray,
    BackendEntrypoint,
    _normalize_path,
)
from xarray.backends.locks import SerializableLock, ensure_lock
from xarray.backends.store import StoreBackendEntrypoint
from xarray.core import indexing
from xarray.core.utils import Frozen, FrozenDict, close_on_error, module_available
from xarray.core.variable import Variable

# FIXME: Add a dedicated lock, even if ecCodes is supposed to be thread-safe
#   in most circumstances. See:
#       https://confluence.ecmwf.int/display/ECC/Frequently+Asked+Questions
ECCODES_LOCK = SerializableLock()


class CfGribArrayWrapper(BackendArray):
    def __init__(self, datastore, array):
        self.datastore = datastore
        self.shape = array.shape
        self.dtype = array.dtype
        self.array = array

    def __getitem__(self, key):
        return indexing.explicit_indexing_adapter(
            key, self.shape, indexing.IndexingSupport.BASIC, self._getitem
        )

    def _getitem(self, key):
        with self.datastore.lock:
            return self.array[key]


class CfGribDataStore(AbstractDataStore):
    """
    Implements the ``xr.AbstractDataStore`` read-only API for a GRIB file.
    """

    def __init__(self, filename, lock=None, **backend_kwargs):
        try:
            import cfgrib
        # cfgrib throws a RuntimeError if eccodes is not installed
        except (ImportError, RuntimeError) as err:
            warnings.warn(
                "Failed to load cfgrib - most likely there is a problem accessing the ecCodes library. "
                "Try `import cfgrib` to get the full error message"
            )
            raise err

        if lock is None:
            lock = ECCODES_LOCK
        self.lock = ensure_lock(lock)
        self.ds = cfgrib.open_file(filename, **backend_kwargs)

    def open_store_variable(self, name, var):
        if isinstance(var.data, np.ndarray):
            data = var.data
        else:
            wrapped_array = CfGribArrayWrapper(self, var.data)
            data = indexing.LazilyIndexedArray(wrapped_array)

        encoding = self.ds.encoding.copy()
        encoding["original_shape"] = var.data.shape

        return Variable(var.dimensions, data, var.attributes, encoding)

    def get_variables(self):
        return FrozenDict(
            (k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
        )

    def get_attrs(self):
        return Frozen(self.ds.attributes)

    def get_dimensions(self):
        return Frozen(self.ds.dimensions)

    def get_encoding(self):
        dims = self.get_dimensions()
        return {"unlimited_dims": {k for k, v in dims.items() if v is None}}


class CfgribfBackendEntrypoint(BackendEntrypoint):
    available = module_available("cfgrib")

    def guess_can_open(self, filename_or_obj):
        try:
            _, ext = os.path.splitext(filename_or_obj)
        except TypeError:
            return False
        return ext in {".grib", ".grib2", ".grb", ".grb2"}

    def open_dataset(
        self,
        filename_or_obj,
        *,
        mask_and_scale=True,
        decode_times=True,
        concat_characters=True,
        decode_coords=True,
        drop_variables=None,
        use_cftime=None,
        decode_timedelta=None,
        lock=None,
        indexpath="{path}.{short_hash}.idx",
        filter_by_keys={},
        read_keys=[],
        encode_cf=("parameter", "time", "geography", "vertical"),
        squeeze=True,
        time_dims=("time", "step"),
    ):

        filename_or_obj = _normalize_path(filename_or_obj)
        store = CfGribDataStore(
            filename_or_obj,
            indexpath=indexpath,
            filter_by_keys=filter_by_keys,
            read_keys=read_keys,
            encode_cf=encode_cf,
            squeeze=squeeze,
            time_dims=time_dims,
            lock=lock,
        )
        store_entrypoint = StoreBackendEntrypoint()
        with close_on_error(store):
            ds = store_entrypoint.open_dataset(
                store,
                mask_and_scale=mask_and_scale,
                decode_times=decode_times,
                concat_characters=concat_characters,
                decode_coords=decode_coords,
                drop_variables=drop_variables,
                use_cftime=use_cftime,
                decode_timedelta=decode_timedelta,
            )
        return ds


BACKEND_ENTRYPOINTS["cfgrib"] = CfgribfBackendEntrypoint