1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
|
from __future__ import annotations
import functools
import operator
from collections import defaultdict
from contextlib import suppress
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Generic,
Hashable,
Iterable,
Mapping,
Tuple,
Type,
TypeVar,
cast,
)
import numpy as np
import pandas as pd
from xarray.core import dtypes
from xarray.core.common import DataWithCoords
from xarray.core.indexes import (
Index,
Indexes,
PandasIndex,
PandasMultiIndex,
indexes_all_equal,
safe_cast_to_index,
)
from xarray.core.utils import is_dict_like, is_full_slice
from xarray.core.variable import Variable, as_compatible_data, calculate_dimensions
if TYPE_CHECKING:
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.types import JoinOptions, T_DataArray, T_Dataset, T_DataWithCoords
DataAlignable = TypeVar("DataAlignable", bound=DataWithCoords)
def reindex_variables(
variables: Mapping[Any, Variable],
dim_pos_indexers: Mapping[Any, Any],
copy: bool = True,
fill_value: Any = dtypes.NA,
sparse: bool = False,
) -> dict[Hashable, Variable]:
"""Conform a dictionary of variables onto a new set of variables reindexed
with dimension positional indexers and possibly filled with missing values.
Not public API.
"""
new_variables = {}
dim_sizes = calculate_dimensions(variables)
masked_dims = set()
unchanged_dims = set()
for dim, indxr in dim_pos_indexers.items():
# Negative values in dim_pos_indexers mean values missing in the new index
# See ``Index.reindex_like``.
if (indxr < 0).any():
masked_dims.add(dim)
elif np.array_equal(indxr, np.arange(dim_sizes.get(dim, 0))):
unchanged_dims.add(dim)
for name, var in variables.items():
if isinstance(fill_value, dict):
fill_value_ = fill_value.get(name, dtypes.NA)
else:
fill_value_ = fill_value
if sparse:
var = var._as_sparse(fill_value=fill_value_)
indxr = tuple(
slice(None) if d in unchanged_dims else dim_pos_indexers.get(d, slice(None))
for d in var.dims
)
needs_masking = any(d in masked_dims for d in var.dims)
if needs_masking:
new_var = var._getitem_with_mask(indxr, fill_value=fill_value_)
elif all(is_full_slice(k) for k in indxr):
# no reindexing necessary
# here we need to manually deal with copying data, since
# we neither created a new ndarray nor used fancy indexing
new_var = var.copy(deep=copy)
else:
new_var = var[indxr]
new_variables[name] = new_var
return new_variables
CoordNamesAndDims = Tuple[Tuple[Hashable, Tuple[Hashable, ...]], ...]
MatchingIndexKey = Tuple[CoordNamesAndDims, Type[Index]]
NormalizedIndexes = Dict[MatchingIndexKey, Index]
NormalizedIndexVars = Dict[MatchingIndexKey, Dict[Hashable, Variable]]
class Aligner(Generic[DataAlignable]):
"""Implements all the complex logic for the re-indexing and alignment of Xarray
objects.
For internal use only, not public API.
Usage:
aligner = Aligner(*objects, **kwargs)
aligner.align()
aligned_objects = aligner.results
"""
objects: tuple[DataAlignable, ...]
results: tuple[DataAlignable, ...]
objects_matching_indexes: tuple[dict[MatchingIndexKey, Index], ...]
join: str
exclude_dims: frozenset[Hashable]
exclude_vars: frozenset[Hashable]
copy: bool
fill_value: Any
sparse: bool
indexes: dict[MatchingIndexKey, Index]
index_vars: dict[MatchingIndexKey, dict[Hashable, Variable]]
all_indexes: dict[MatchingIndexKey, list[Index]]
all_index_vars: dict[MatchingIndexKey, list[dict[Hashable, Variable]]]
aligned_indexes: dict[MatchingIndexKey, Index]
aligned_index_vars: dict[MatchingIndexKey, dict[Hashable, Variable]]
reindex: dict[MatchingIndexKey, bool]
reindex_kwargs: dict[str, Any]
unindexed_dim_sizes: dict[Hashable, set]
new_indexes: Indexes[Index]
def __init__(
self,
objects: Iterable[DataAlignable],
join: str = "inner",
indexes: Mapping[Any, Any] | None = None,
exclude_dims: Iterable = frozenset(),
exclude_vars: Iterable[Hashable] = frozenset(),
method: str | None = None,
tolerance: int | float | Iterable[int | float] | None = None,
copy: bool = True,
fill_value: Any = dtypes.NA,
sparse: bool = False,
):
self.objects = tuple(objects)
self.objects_matching_indexes = ()
if join not in ["inner", "outer", "override", "exact", "left", "right"]:
raise ValueError(f"invalid value for join: {join}")
self.join = join
self.copy = copy
self.fill_value = fill_value
self.sparse = sparse
if method is None and tolerance is None:
self.reindex_kwargs = {}
else:
self.reindex_kwargs = {"method": method, "tolerance": tolerance}
if isinstance(exclude_dims, str):
exclude_dims = [exclude_dims]
self.exclude_dims = frozenset(exclude_dims)
self.exclude_vars = frozenset(exclude_vars)
if indexes is None:
indexes = {}
self.indexes, self.index_vars = self._normalize_indexes(indexes)
self.all_indexes = {}
self.all_index_vars = {}
self.unindexed_dim_sizes = {}
self.aligned_indexes = {}
self.aligned_index_vars = {}
self.reindex = {}
self.results = tuple()
def _normalize_indexes(
self,
indexes: Mapping[Any, Any],
) -> tuple[NormalizedIndexes, NormalizedIndexVars]:
"""Normalize the indexes/indexers used for re-indexing or alignment.
Return dictionaries of xarray Index objects and coordinate variables
such that we can group matching indexes based on the dictionary keys.
"""
if isinstance(indexes, Indexes):
xr_variables = dict(indexes.variables)
else:
xr_variables = {}
xr_indexes: dict[Hashable, Index] = {}
for k, idx in indexes.items():
if not isinstance(idx, Index):
if getattr(idx, "dims", (k,)) != (k,):
raise ValueError(
f"Indexer has dimensions {idx.dims} that are different "
f"from that to be indexed along '{k}'"
)
data = as_compatible_data(idx)
pd_idx = safe_cast_to_index(data)
pd_idx.name = k
if isinstance(pd_idx, pd.MultiIndex):
idx = PandasMultiIndex(pd_idx, k)
else:
idx = PandasIndex(pd_idx, k, coord_dtype=data.dtype)
xr_variables.update(idx.create_variables())
xr_indexes[k] = idx
normalized_indexes = {}
normalized_index_vars = {}
for idx, index_vars in Indexes(xr_indexes, xr_variables).group_by_index():
coord_names_and_dims = []
all_dims: set[Hashable] = set()
for name, var in index_vars.items():
dims = var.dims
coord_names_and_dims.append((name, dims))
all_dims.update(dims)
exclude_dims = all_dims & self.exclude_dims
if exclude_dims == all_dims:
continue
elif exclude_dims:
excl_dims_str = ", ".join(str(d) for d in exclude_dims)
incl_dims_str = ", ".join(str(d) for d in all_dims - exclude_dims)
raise ValueError(
f"cannot exclude dimension(s) {excl_dims_str} from alignment because "
"these are used by an index together with non-excluded dimensions "
f"{incl_dims_str}"
)
key = (tuple(coord_names_and_dims), type(idx))
normalized_indexes[key] = idx
normalized_index_vars[key] = index_vars
return normalized_indexes, normalized_index_vars
def find_matching_indexes(self) -> None:
all_indexes: dict[MatchingIndexKey, list[Index]]
all_index_vars: dict[MatchingIndexKey, list[dict[Hashable, Variable]]]
all_indexes_dim_sizes: dict[MatchingIndexKey, dict[Hashable, set]]
objects_matching_indexes: list[dict[MatchingIndexKey, Index]]
all_indexes = defaultdict(list)
all_index_vars = defaultdict(list)
all_indexes_dim_sizes = defaultdict(lambda: defaultdict(set))
objects_matching_indexes = []
for obj in self.objects:
obj_indexes, obj_index_vars = self._normalize_indexes(obj.xindexes)
objects_matching_indexes.append(obj_indexes)
for key, idx in obj_indexes.items():
all_indexes[key].append(idx)
for key, index_vars in obj_index_vars.items():
all_index_vars[key].append(index_vars)
for dim, size in calculate_dimensions(index_vars).items():
all_indexes_dim_sizes[key][dim].add(size)
self.objects_matching_indexes = tuple(objects_matching_indexes)
self.all_indexes = all_indexes
self.all_index_vars = all_index_vars
if self.join == "override":
for dim_sizes in all_indexes_dim_sizes.values():
for dim, sizes in dim_sizes.items():
if len(sizes) > 1:
raise ValueError(
"cannot align objects with join='override' with matching indexes "
f"along dimension {dim!r} that don't have the same size"
)
def find_matching_unindexed_dims(self) -> None:
unindexed_dim_sizes = defaultdict(set)
for obj in self.objects:
for dim in obj.dims:
if dim not in self.exclude_dims and dim not in obj.xindexes.dims:
unindexed_dim_sizes[dim].add(obj.sizes[dim])
self.unindexed_dim_sizes = unindexed_dim_sizes
def assert_no_index_conflict(self) -> None:
"""Check for uniqueness of both coordinate and dimension names across all sets
of matching indexes.
We need to make sure that all indexes used for re-indexing or alignment
are fully compatible and do not conflict each other.
Note: perhaps we could choose less restrictive constraints and instead
check for conflicts among the dimension (position) indexers returned by
`Index.reindex_like()` for each matching pair of object index / aligned
index?
(ref: https://github.com/pydata/xarray/issues/1603#issuecomment-442965602)
"""
matching_keys = set(self.all_indexes) | set(self.indexes)
coord_count: dict[Hashable, int] = defaultdict(int)
dim_count: dict[Hashable, int] = defaultdict(int)
for coord_names_dims, _ in matching_keys:
dims_set: set[Hashable] = set()
for name, dims in coord_names_dims:
coord_count[name] += 1
dims_set.update(dims)
for dim in dims_set:
dim_count[dim] += 1
for count, msg in [(coord_count, "coordinates"), (dim_count, "dimensions")]:
dup = {k: v for k, v in count.items() if v > 1}
if dup:
items_msg = ", ".join(
f"{k!r} ({v} conflicting indexes)" for k, v in dup.items()
)
raise ValueError(
"cannot re-index or align objects with conflicting indexes found for "
f"the following {msg}: {items_msg}\n"
"Conflicting indexes may occur when\n"
"- they relate to different sets of coordinate and/or dimension names\n"
"- they don't have the same type\n"
"- they may be used to reindex data along common dimensions"
)
def _need_reindex(self, dims, cmp_indexes) -> bool:
"""Whether or not we need to reindex variables for a set of
matching indexes.
We don't reindex when all matching indexes are equal for two reasons:
- It's faster for the usual case (already aligned objects).
- It ensures it's possible to do operations that don't require alignment
on indexes with duplicate values (which cannot be reindexed with
pandas). This is useful, e.g., for overwriting such duplicate indexes.
"""
if not indexes_all_equal(cmp_indexes):
# always reindex when matching indexes are not equal
return True
unindexed_dims_sizes = {}
for dim in dims:
if dim in self.unindexed_dim_sizes:
sizes = self.unindexed_dim_sizes[dim]
if len(sizes) > 1:
# reindex if different sizes are found for unindexed dims
return True
else:
unindexed_dims_sizes[dim] = next(iter(sizes))
if unindexed_dims_sizes:
indexed_dims_sizes = {}
for cmp in cmp_indexes:
index_vars = cmp[1]
for var in index_vars.values():
indexed_dims_sizes.update(var.sizes)
for dim, size in unindexed_dims_sizes.items():
if indexed_dims_sizes.get(dim, -1) != size:
# reindex if unindexed dimension size doesn't match
return True
return False
def _get_index_joiner(self, index_cls) -> Callable:
if self.join in ["outer", "inner"]:
return functools.partial(
functools.reduce,
functools.partial(index_cls.join, how=self.join),
)
elif self.join == "left":
return operator.itemgetter(0)
elif self.join == "right":
return operator.itemgetter(-1)
elif self.join == "override":
# We rewrite all indexes and then use join='left'
return operator.itemgetter(0)
else:
# join='exact' return dummy lambda (error is raised)
return lambda _: None
def align_indexes(self) -> None:
"""Compute all aligned indexes and their corresponding coordinate variables."""
aligned_indexes = {}
aligned_index_vars = {}
reindex = {}
new_indexes = {}
new_index_vars = {}
for key, matching_indexes in self.all_indexes.items():
matching_index_vars = self.all_index_vars[key]
dims = {d for coord in matching_index_vars[0].values() for d in coord.dims}
index_cls = key[1]
if self.join == "override":
joined_index = matching_indexes[0]
joined_index_vars = matching_index_vars[0]
need_reindex = False
elif key in self.indexes:
joined_index = self.indexes[key]
joined_index_vars = self.index_vars[key]
cmp_indexes = list(
zip(
[joined_index] + matching_indexes,
[joined_index_vars] + matching_index_vars,
)
)
need_reindex = self._need_reindex(dims, cmp_indexes)
else:
if len(matching_indexes) > 1:
need_reindex = self._need_reindex(
dims,
list(zip(matching_indexes, matching_index_vars)),
)
else:
need_reindex = False
if need_reindex:
if self.join == "exact":
raise ValueError(
"cannot align objects with join='exact' where "
"index/labels/sizes are not equal along "
"these coordinates (dimensions): "
+ ", ".join(f"{name!r} {dims!r}" for name, dims in key[0])
)
joiner = self._get_index_joiner(index_cls)
joined_index = joiner(matching_indexes)
if self.join == "left":
joined_index_vars = matching_index_vars[0]
elif self.join == "right":
joined_index_vars = matching_index_vars[-1]
else:
joined_index_vars = joined_index.create_variables()
else:
joined_index = matching_indexes[0]
joined_index_vars = matching_index_vars[0]
reindex[key] = need_reindex
aligned_indexes[key] = joined_index
aligned_index_vars[key] = joined_index_vars
for name, var in joined_index_vars.items():
new_indexes[name] = joined_index
new_index_vars[name] = var
# Explicitly provided indexes that are not found in objects to align
# may relate to unindexed dimensions so we add them too
for key, idx in self.indexes.items():
if key not in aligned_indexes:
index_vars = self.index_vars[key]
reindex[key] = False
aligned_indexes[key] = idx
aligned_index_vars[key] = index_vars
for name, var in index_vars.items():
new_indexes[name] = idx
new_index_vars[name] = var
self.aligned_indexes = aligned_indexes
self.aligned_index_vars = aligned_index_vars
self.reindex = reindex
self.new_indexes = Indexes(new_indexes, new_index_vars)
def assert_unindexed_dim_sizes_equal(self) -> None:
for dim, sizes in self.unindexed_dim_sizes.items():
index_size = self.new_indexes.dims.get(dim)
if index_size is not None:
sizes.add(index_size)
add_err_msg = (
f" (note: an index is found along that dimension "
f"with size={index_size!r})"
)
else:
add_err_msg = ""
if len(sizes) > 1:
raise ValueError(
f"cannot reindex or align along dimension {dim!r} "
f"because of conflicting dimension sizes: {sizes!r}" + add_err_msg
)
def override_indexes(self) -> None:
objects = list(self.objects)
for i, obj in enumerate(objects[1:]):
new_indexes = {}
new_variables = {}
matching_indexes = self.objects_matching_indexes[i + 1]
for key, aligned_idx in self.aligned_indexes.items():
obj_idx = matching_indexes.get(key)
if obj_idx is not None:
for name, var in self.aligned_index_vars[key].items():
new_indexes[name] = aligned_idx
new_variables[name] = var.copy(deep=self.copy)
objects[i + 1] = obj._overwrite_indexes(new_indexes, new_variables)
self.results = tuple(objects)
def _get_dim_pos_indexers(
self,
matching_indexes: dict[MatchingIndexKey, Index],
) -> dict[Hashable, Any]:
dim_pos_indexers = {}
for key, aligned_idx in self.aligned_indexes.items():
obj_idx = matching_indexes.get(key)
if obj_idx is not None:
if self.reindex[key]:
indexers = obj_idx.reindex_like(aligned_idx, **self.reindex_kwargs)
dim_pos_indexers.update(indexers)
return dim_pos_indexers
def _get_indexes_and_vars(
self,
obj: DataAlignable,
matching_indexes: dict[MatchingIndexKey, Index],
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
new_indexes = {}
new_variables = {}
for key, aligned_idx in self.aligned_indexes.items():
index_vars = self.aligned_index_vars[key]
obj_idx = matching_indexes.get(key)
if obj_idx is None:
# add the index if it relates to unindexed dimensions in obj
index_vars_dims = {d for var in index_vars.values() for d in var.dims}
if index_vars_dims <= set(obj.dims):
obj_idx = aligned_idx
if obj_idx is not None:
for name, var in index_vars.items():
new_indexes[name] = aligned_idx
new_variables[name] = var.copy(deep=self.copy)
return new_indexes, new_variables
def _reindex_one(
self,
obj: DataAlignable,
matching_indexes: dict[MatchingIndexKey, Index],
) -> DataAlignable:
new_indexes, new_variables = self._get_indexes_and_vars(obj, matching_indexes)
dim_pos_indexers = self._get_dim_pos_indexers(matching_indexes)
new_obj = obj._reindex_callback(
self,
dim_pos_indexers,
new_variables,
new_indexes,
self.fill_value,
self.exclude_dims,
self.exclude_vars,
)
new_obj.encoding = obj.encoding
return new_obj
def reindex_all(self) -> None:
self.results = tuple(
self._reindex_one(obj, matching_indexes)
for obj, matching_indexes in zip(
self.objects, self.objects_matching_indexes
)
)
def align(self) -> None:
if not self.indexes and len(self.objects) == 1:
# fast path for the trivial case
(obj,) = self.objects
self.results = (obj.copy(deep=self.copy),)
return
self.find_matching_indexes()
self.find_matching_unindexed_dims()
self.assert_no_index_conflict()
self.align_indexes()
self.assert_unindexed_dim_sizes_equal()
if self.join == "override":
self.override_indexes()
else:
self.reindex_all()
def align(
*objects: DataAlignable,
join: JoinOptions = "inner",
copy: bool = True,
indexes=None,
exclude=frozenset(),
fill_value=dtypes.NA,
) -> tuple[DataAlignable, ...]:
"""
Given any number of Dataset and/or DataArray objects, returns new
objects with aligned indexes and dimension sizes.
Array from the aligned objects are suitable as input to mathematical
operators, because along each dimension they have the same index and size.
Missing values (if ``join != 'inner'``) are filled with ``fill_value``.
The default fill value is NaN.
Parameters
----------
*objects : Dataset or DataArray
Objects to align.
join : {"outer", "inner", "left", "right", "exact", "override"}, optional
Method for joining the indexes of the passed objects along each
dimension:
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
copy : bool, default: True
If ``copy=True``, data in the return values is always copied. If
``copy=False`` and reindexing is unnecessary, or can be performed with
only slice operations, then the output may share memory with the input.
In either case, new xarray objects are always returned.
indexes : dict-like, optional
Any indexes explicitly provided with the `indexes` argument should be
used in preference to the aligned indexes.
exclude : sequence of str, optional
Dimensions that must be excluded from alignment
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names to fill values. Use a data array's name to
refer to its values.
Returns
-------
aligned : tuple of DataArray or Dataset
Tuple of objects with the same type as `*objects` with aligned
coordinates.
Raises
------
ValueError
If any dimensions without labels on the arguments have different sizes,
or a different size than the size of the aligned dimension labels.
Examples
--------
>>> x = xr.DataArray(
... [[25, 35], [10, 24]],
... dims=("lat", "lon"),
... coords={"lat": [35.0, 40.0], "lon": [100.0, 120.0]},
... )
>>> y = xr.DataArray(
... [[20, 5], [7, 13]],
... dims=("lat", "lon"),
... coords={"lat": [35.0, 42.0], "lon": [100.0, 120.0]},
... )
>>> x
<xarray.DataArray (lat: 2, lon: 2)>
array([[25, 35],
[10, 24]])
Coordinates:
* lat (lat) float64 35.0 40.0
* lon (lon) float64 100.0 120.0
>>> y
<xarray.DataArray (lat: 2, lon: 2)>
array([[20, 5],
[ 7, 13]])
Coordinates:
* lat (lat) float64 35.0 42.0
* lon (lon) float64 100.0 120.0
>>> a, b = xr.align(x, y)
>>> a
<xarray.DataArray (lat: 1, lon: 2)>
array([[25, 35]])
Coordinates:
* lat (lat) float64 35.0
* lon (lon) float64 100.0 120.0
>>> b
<xarray.DataArray (lat: 1, lon: 2)>
array([[20, 5]])
Coordinates:
* lat (lat) float64 35.0
* lon (lon) float64 100.0 120.0
>>> a, b = xr.align(x, y, join="outer")
>>> a
<xarray.DataArray (lat: 3, lon: 2)>
array([[25., 35.],
[10., 24.],
[nan, nan]])
Coordinates:
* lat (lat) float64 35.0 40.0 42.0
* lon (lon) float64 100.0 120.0
>>> b
<xarray.DataArray (lat: 3, lon: 2)>
array([[20., 5.],
[nan, nan],
[ 7., 13.]])
Coordinates:
* lat (lat) float64 35.0 40.0 42.0
* lon (lon) float64 100.0 120.0
>>> a, b = xr.align(x, y, join="outer", fill_value=-999)
>>> a
<xarray.DataArray (lat: 3, lon: 2)>
array([[ 25, 35],
[ 10, 24],
[-999, -999]])
Coordinates:
* lat (lat) float64 35.0 40.0 42.0
* lon (lon) float64 100.0 120.0
>>> b
<xarray.DataArray (lat: 3, lon: 2)>
array([[ 20, 5],
[-999, -999],
[ 7, 13]])
Coordinates:
* lat (lat) float64 35.0 40.0 42.0
* lon (lon) float64 100.0 120.0
>>> a, b = xr.align(x, y, join="left")
>>> a
<xarray.DataArray (lat: 2, lon: 2)>
array([[25, 35],
[10, 24]])
Coordinates:
* lat (lat) float64 35.0 40.0
* lon (lon) float64 100.0 120.0
>>> b
<xarray.DataArray (lat: 2, lon: 2)>
array([[20., 5.],
[nan, nan]])
Coordinates:
* lat (lat) float64 35.0 40.0
* lon (lon) float64 100.0 120.0
>>> a, b = xr.align(x, y, join="right")
>>> a
<xarray.DataArray (lat: 2, lon: 2)>
array([[25., 35.],
[nan, nan]])
Coordinates:
* lat (lat) float64 35.0 42.0
* lon (lon) float64 100.0 120.0
>>> b
<xarray.DataArray (lat: 2, lon: 2)>
array([[20, 5],
[ 7, 13]])
Coordinates:
* lat (lat) float64 35.0 42.0
* lon (lon) float64 100.0 120.0
>>> a, b = xr.align(x, y, join="exact")
Traceback (most recent call last):
...
ValueError: cannot align objects with join='exact' ...
>>> a, b = xr.align(x, y, join="override")
>>> a
<xarray.DataArray (lat: 2, lon: 2)>
array([[25, 35],
[10, 24]])
Coordinates:
* lat (lat) float64 35.0 40.0
* lon (lon) float64 100.0 120.0
>>> b
<xarray.DataArray (lat: 2, lon: 2)>
array([[20, 5],
[ 7, 13]])
Coordinates:
* lat (lat) float64 35.0 40.0
* lon (lon) float64 100.0 120.0
"""
aligner = Aligner(
objects,
join=join,
copy=copy,
indexes=indexes,
exclude_dims=exclude,
fill_value=fill_value,
)
aligner.align()
return aligner.results
def deep_align(
objects: Iterable[Any],
join: JoinOptions = "inner",
copy=True,
indexes=None,
exclude=frozenset(),
raise_on_invalid=True,
fill_value=dtypes.NA,
):
"""Align objects for merging, recursing into dictionary values.
This function is not public API.
"""
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
if indexes is None:
indexes = {}
def is_alignable(obj):
return isinstance(obj, (DataArray, Dataset))
positions = []
keys = []
out = []
targets = []
no_key = object()
not_replaced = object()
for position, variables in enumerate(objects):
if is_alignable(variables):
positions.append(position)
keys.append(no_key)
targets.append(variables)
out.append(not_replaced)
elif is_dict_like(variables):
current_out = {}
for k, v in variables.items():
if is_alignable(v) and k not in indexes:
# Skip variables in indexes for alignment, because these
# should to be overwritten instead:
# https://github.com/pydata/xarray/issues/725
# https://github.com/pydata/xarray/issues/3377
# TODO(shoyer): doing this here feels super-hacky -- can we
# move it explicitly into merge instead?
positions.append(position)
keys.append(k)
targets.append(v)
current_out[k] = not_replaced
else:
current_out[k] = v
out.append(current_out)
elif raise_on_invalid:
raise ValueError(
"object to align is neither an xarray.Dataset, "
"an xarray.DataArray nor a dictionary: {!r}".format(variables)
)
else:
out.append(variables)
aligned = align(
*targets,
join=join,
copy=copy,
indexes=indexes,
exclude=exclude,
fill_value=fill_value,
)
for position, key, aligned_obj in zip(positions, keys, aligned):
if key is no_key:
out[position] = aligned_obj
else:
out[position][key] = aligned_obj # type: ignore[index] # maybe someone can fix this?
return out
def reindex(
obj: DataAlignable,
indexers: Mapping[Any, Any],
method: str | None = None,
tolerance: int | float | Iterable[int | float] | None = None,
copy: bool = True,
fill_value: Any = dtypes.NA,
sparse: bool = False,
exclude_vars: Iterable[Hashable] = frozenset(),
) -> DataAlignable:
"""Re-index either a Dataset or a DataArray.
Not public API.
"""
# TODO: (benbovy - explicit indexes): uncomment?
# --> from reindex docstrings: "any mis-matched dimension is simply ignored"
# bad_keys = [k for k in indexers if k not in obj._indexes and k not in obj.dims]
# if bad_keys:
# raise ValueError(
# f"indexer keys {bad_keys} do not correspond to any indexed coordinate "
# "or unindexed dimension in the object to reindex"
# )
aligner = Aligner(
(obj,),
indexes=indexers,
method=method,
tolerance=tolerance,
copy=copy,
fill_value=fill_value,
sparse=sparse,
exclude_vars=exclude_vars,
)
aligner.align()
return aligner.results[0]
def reindex_like(
obj: DataAlignable,
other: Dataset | DataArray,
method: str | None = None,
tolerance: int | float | Iterable[int | float] | None = None,
copy: bool = True,
fill_value: Any = dtypes.NA,
) -> DataAlignable:
"""Re-index either a Dataset or a DataArray like another Dataset/DataArray.
Not public API.
"""
if not other._indexes:
# This check is not performed in Aligner.
for dim in other.dims:
if dim in obj.dims:
other_size = other.sizes[dim]
obj_size = obj.sizes[dim]
if other_size != obj_size:
raise ValueError(
"different size for unlabeled "
f"dimension on argument {dim!r}: {other_size!r} vs {obj_size!r}"
)
return reindex(
obj,
indexers=other.xindexes,
method=method,
tolerance=tolerance,
copy=copy,
fill_value=fill_value,
)
def _get_broadcast_dims_map_common_coords(args, exclude):
common_coords = {}
dims_map = {}
for arg in args:
for dim in arg.dims:
if dim not in common_coords and dim not in exclude:
dims_map[dim] = arg.sizes[dim]
if dim in arg._indexes:
common_coords.update(arg.xindexes.get_all_coords(dim))
return dims_map, common_coords
def _broadcast_helper(
arg: T_DataWithCoords, exclude, dims_map, common_coords
) -> T_DataWithCoords:
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
def _set_dims(var):
# Add excluded dims to a copy of dims_map
var_dims_map = dims_map.copy()
for dim in exclude:
with suppress(ValueError):
# ignore dim not in var.dims
var_dims_map[dim] = var.shape[var.dims.index(dim)]
return var.set_dims(var_dims_map)
def _broadcast_array(array: T_DataArray) -> T_DataArray:
data = _set_dims(array.variable)
coords = dict(array.coords)
coords.update(common_coords)
return array.__class__(
data, coords, data.dims, name=array.name, attrs=array.attrs
)
def _broadcast_dataset(ds: T_Dataset) -> T_Dataset:
data_vars = {k: _set_dims(ds.variables[k]) for k in ds.data_vars}
coords = dict(ds.coords)
coords.update(common_coords)
return ds.__class__(data_vars, coords, ds.attrs)
# remove casts once https://github.com/python/mypy/issues/12800 is resolved
if isinstance(arg, DataArray):
return cast("T_DataWithCoords", _broadcast_array(arg))
elif isinstance(arg, Dataset):
return cast("T_DataWithCoords", _broadcast_dataset(arg))
else:
raise ValueError("all input must be Dataset or DataArray objects")
# TODO: this typing is too restrictive since it cannot deal with mixed
# DataArray and Dataset types...? Is this a problem?
def broadcast(*args: T_DataWithCoords, exclude=None) -> tuple[T_DataWithCoords, ...]:
"""Explicitly broadcast any number of DataArray or Dataset objects against
one another.
xarray objects automatically broadcast against each other in arithmetic
operations, so this function should not be necessary for normal use.
If no change is needed, the input data is returned to the output without
being copied.
Parameters
----------
*args : DataArray or Dataset
Arrays to broadcast against each other.
exclude : sequence of str, optional
Dimensions that must not be broadcasted
Returns
-------
broadcast : tuple of DataArray or tuple of Dataset
The same data as the input arrays, but with additional dimensions
inserted so that all data arrays have the same dimensions and shape.
Examples
--------
Broadcast two data arrays against one another to fill out their dimensions:
>>> a = xr.DataArray([1, 2, 3], dims="x")
>>> b = xr.DataArray([5, 6], dims="y")
>>> a
<xarray.DataArray (x: 3)>
array([1, 2, 3])
Dimensions without coordinates: x
>>> b
<xarray.DataArray (y: 2)>
array([5, 6])
Dimensions without coordinates: y
>>> a2, b2 = xr.broadcast(a, b)
>>> a2
<xarray.DataArray (x: 3, y: 2)>
array([[1, 1],
[2, 2],
[3, 3]])
Dimensions without coordinates: x, y
>>> b2
<xarray.DataArray (x: 3, y: 2)>
array([[5, 6],
[5, 6],
[5, 6]])
Dimensions without coordinates: x, y
Fill out the dimensions of all data variables in a dataset:
>>> ds = xr.Dataset({"a": a, "b": b})
>>> (ds2,) = xr.broadcast(ds) # use tuple unpacking to extract one dataset
>>> ds2
<xarray.Dataset>
Dimensions: (x: 3, y: 2)
Dimensions without coordinates: x, y
Data variables:
a (x, y) int64 1 1 2 2 3 3
b (x, y) int64 5 6 5 6 5 6
"""
if exclude is None:
exclude = set()
args = align(*args, join="outer", copy=False, exclude=exclude)
dims_map, common_coords = _get_broadcast_dims_map_common_coords(args, exclude)
result = [_broadcast_helper(arg, exclude, dims_map, common_coords) for arg in args]
return tuple(result)
|