1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
|
from __future__ import annotations
import datetime
import warnings
from typing import (
TYPE_CHECKING,
Any,
Callable,
Generic,
Hashable,
Iterator,
Literal,
Mapping,
Sequence,
TypeVar,
Union,
cast,
)
import numpy as np
import pandas as pd
from xarray.core import dtypes, duck_array_ops, nputils, ops
from xarray.core._aggregations import (
DataArrayGroupByAggregations,
DatasetGroupByAggregations,
)
from xarray.core.alignment import align
from xarray.core.arithmetic import DataArrayGroupbyArithmetic, DatasetGroupbyArithmetic
from xarray.core.common import ImplementsArrayReduce, ImplementsDatasetReduce
from xarray.core.concat import concat
from xarray.core.formatting import format_array_flat
from xarray.core.indexes import (
create_default_index_implicit,
filter_indexes_from_coords,
safe_cast_to_index,
)
from xarray.core.options import _get_keep_attrs
from xarray.core.pycompat import integer_types
from xarray.core.types import Dims, QuantileMethods, T_Xarray
from xarray.core.utils import (
either_dict_or_kwargs,
hashable,
is_scalar,
maybe_wrap_array,
peek_at,
)
from xarray.core.variable import IndexVariable, Variable
if TYPE_CHECKING:
from numpy.typing import ArrayLike
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.utils import Frozen
GroupKey = Any
def check_reduce_dims(reduce_dims, dimensions):
if reduce_dims is not ...:
if is_scalar(reduce_dims):
reduce_dims = [reduce_dims]
if any(dim not in dimensions for dim in reduce_dims):
raise ValueError(
f"cannot reduce over dimensions {reduce_dims!r}. expected either '...' "
f"to reduce over all dimensions or one or more of {dimensions!r}."
)
def unique_value_groups(
ar, sort: bool = True
) -> tuple[np.ndarray | pd.Index, list[list[int]]]:
"""Group an array by its unique values.
Parameters
----------
ar : array-like
Input array. This will be flattened if it is not already 1-D.
sort : bool, default: True
Whether or not to sort unique values.
Returns
-------
values : np.ndarray
Sorted, unique values as returned by `np.unique`.
indices : list of lists of int
Each element provides the integer indices in `ar` with values given by
the corresponding value in `unique_values`.
"""
inverse, values = pd.factorize(ar, sort=sort)
if isinstance(values, pd.MultiIndex):
values.names = ar.names
groups: list[list[int]] = [[] for _ in range(len(values))]
for n, g in enumerate(inverse):
if g >= 0:
# pandas uses -1 to mark NaN, but doesn't include them in values
groups[g].append(n)
return values, groups
def _dummy_copy(xarray_obj):
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
if isinstance(xarray_obj, Dataset):
res = Dataset(
{
k: dtypes.get_fill_value(v.dtype)
for k, v in xarray_obj.data_vars.items()
},
{
k: dtypes.get_fill_value(v.dtype)
for k, v in xarray_obj.coords.items()
if k not in xarray_obj.dims
},
xarray_obj.attrs,
)
elif isinstance(xarray_obj, DataArray):
res = DataArray(
dtypes.get_fill_value(xarray_obj.dtype),
{
k: dtypes.get_fill_value(v.dtype)
for k, v in xarray_obj.coords.items()
if k not in xarray_obj.dims
},
dims=[],
name=xarray_obj.name,
attrs=xarray_obj.attrs,
)
else: # pragma: no cover
raise AssertionError
return res
def _is_one_or_none(obj):
return obj == 1 or obj is None
def _consolidate_slices(slices):
"""Consolidate adjacent slices in a list of slices."""
result = []
last_slice = slice(None)
for slice_ in slices:
if not isinstance(slice_, slice):
raise ValueError(f"list element is not a slice: {slice_!r}")
if (
result
and last_slice.stop == slice_.start
and _is_one_or_none(last_slice.step)
and _is_one_or_none(slice_.step)
):
last_slice = slice(last_slice.start, slice_.stop, slice_.step)
result[-1] = last_slice
else:
result.append(slice_)
last_slice = slice_
return result
def _inverse_permutation_indices(positions):
"""Like inverse_permutation, but also handles slices.
Parameters
----------
positions : list of ndarray or slice
If slice objects, all are assumed to be slices.
Returns
-------
np.ndarray of indices or None, if no permutation is necessary.
"""
if not positions:
return None
if isinstance(positions[0], slice):
positions = _consolidate_slices(positions)
if positions == slice(None):
return None
positions = [np.arange(sl.start, sl.stop, sl.step) for sl in positions]
return nputils.inverse_permutation(np.concatenate(positions))
class _DummyGroup:
"""Class for keeping track of grouped dimensions without coordinates.
Should not be user visible.
"""
__slots__ = ("name", "coords", "size")
def __init__(self, obj: T_Xarray, name: Hashable, coords) -> None:
self.name = name
self.coords = coords
self.size = obj.sizes[name]
@property
def dims(self) -> tuple[Hashable]:
return (self.name,)
@property
def ndim(self) -> Literal[1]:
return 1
@property
def values(self) -> range:
return range(self.size)
@property
def data(self) -> range:
return range(self.size)
@property
def shape(self) -> tuple[int]:
return (self.size,)
def __getitem__(self, key):
if isinstance(key, tuple):
key = key[0]
return self.values[key]
T_Group = TypeVar("T_Group", bound=Union["DataArray", "IndexVariable", _DummyGroup])
def _ensure_1d(
group: T_Group, obj: T_Xarray
) -> tuple[T_Group, T_Xarray, Hashable | None, list[Hashable]]:
# 1D cases: do nothing
from xarray.core.dataarray import DataArray
if isinstance(group, (IndexVariable, _DummyGroup)) or group.ndim == 1:
return group, obj, None, []
if isinstance(group, DataArray):
# try to stack the dims of the group into a single dim
orig_dims = group.dims
stacked_dim = "stacked_" + "_".join(map(str, orig_dims))
# these dimensions get created by the stack operation
inserted_dims = [dim for dim in group.dims if dim not in group.coords]
# the copy is necessary here, otherwise read only array raises error
# in pandas: https://github.com/pydata/pandas/issues/12813
newgroup = group.stack({stacked_dim: orig_dims}).copy()
newobj = obj.stack({stacked_dim: orig_dims})
return cast(T_Group, newgroup), newobj, stacked_dim, inserted_dims
raise TypeError(
f"group must be DataArray, IndexVariable or _DummyGroup, got {type(group)!r}."
)
def _unique_and_monotonic(group: T_Group) -> bool:
if isinstance(group, _DummyGroup):
return True
index = safe_cast_to_index(group)
return index.is_unique and index.is_monotonic_increasing
def _apply_loffset(grouper, result):
"""
(copied from pandas)
if loffset is set, offset the result index
This is NOT an idempotent routine, it will be applied
exactly once to the result.
Parameters
----------
result : Series or DataFrame
the result of resample
"""
needs_offset = (
isinstance(grouper.loffset, (pd.DateOffset, datetime.timedelta))
and isinstance(result.index, pd.DatetimeIndex)
and len(result.index) > 0
)
if needs_offset:
result.index = result.index + grouper.loffset
grouper.loffset = None
class GroupBy(Generic[T_Xarray]):
"""A object that implements the split-apply-combine pattern.
Modeled after `pandas.GroupBy`. The `GroupBy` object can be iterated over
(unique_value, grouped_array) pairs, but the main way to interact with a
groupby object are with the `apply` or `reduce` methods. You can also
directly call numpy methods like `mean` or `std`.
You should create a GroupBy object by using the `DataArray.groupby` or
`Dataset.groupby` methods.
See Also
--------
Dataset.groupby
DataArray.groupby
"""
__slots__ = (
"_full_index",
"_inserted_dims",
"_group",
"_group_dim",
"_group_indices",
"_groups",
"_obj",
"_restore_coord_dims",
"_stacked_dim",
"_unique_coord",
"_dims",
"_sizes",
"_squeeze",
# Save unstacked object for flox
"_original_obj",
"_original_group",
"_bins",
)
_obj: T_Xarray
def __init__(
self,
obj: T_Xarray,
group: Hashable | DataArray | IndexVariable,
squeeze: bool = False,
grouper: pd.Grouper | None = None,
bins: ArrayLike | None = None,
restore_coord_dims: bool = True,
cut_kwargs: Mapping[Any, Any] | None = None,
) -> None:
"""Create a GroupBy object
Parameters
----------
obj : Dataset or DataArray
Object to group.
group : Hashable, DataArray or Index
Array with the group values or name of the variable.
squeeze : bool, default: False
If "group" is a coordinate of object, `squeeze` controls whether
the subarrays have a dimension of length 1 along that coordinate or
if the dimension is squeezed out.
grouper : pandas.Grouper, optional
Used for grouping values along the `group` array.
bins : array-like, optional
If `bins` is specified, the groups will be discretized into the
specified bins by `pandas.cut`.
restore_coord_dims : bool, default: True
If True, also restore the dimension order of multi-dimensional
coordinates.
cut_kwargs : dict-like, optional
Extra keyword arguments to pass to `pandas.cut`
"""
if cut_kwargs is None:
cut_kwargs = {}
from xarray.core.dataarray import DataArray
if grouper is not None and bins is not None:
raise TypeError("can't specify both `grouper` and `bins`")
if not isinstance(group, (DataArray, IndexVariable)):
if not hashable(group):
raise TypeError(
"`group` must be an xarray.DataArray or the "
"name of an xarray variable or dimension. "
f"Received {group!r} instead."
)
group = obj[group]
if len(group) == 0:
raise ValueError(f"{group.name} must not be empty")
if group.name not in obj.coords and group.name in obj.dims:
# DummyGroups should not appear on groupby results
group = _DummyGroup(obj, group.name, group.coords)
if getattr(group, "name", None) is None:
group.name = "group"
self._original_obj: T_Xarray = obj
self._original_group = group
self._bins = bins
group, obj, stacked_dim, inserted_dims = _ensure_1d(group, obj)
(group_dim,) = group.dims
expected_size = obj.sizes[group_dim]
if group.size != expected_size:
raise ValueError(
"the group variable's length does not "
"match the length of this variable along its "
"dimension"
)
full_index = None
if bins is not None:
if duck_array_ops.isnull(bins).all():
raise ValueError("All bin edges are NaN.")
binned, bins = pd.cut(group.values, bins, **cut_kwargs, retbins=True)
new_dim_name = str(group.name) + "_bins"
group = DataArray(binned, getattr(group, "coords", None), name=new_dim_name)
full_index = binned.categories
group_indices: list[slice] | list[list[int]] | np.ndarray
unique_coord: DataArray | IndexVariable | _DummyGroup
if grouper is not None:
index = safe_cast_to_index(group)
if not index.is_monotonic_increasing:
# TODO: sort instead of raising an error
raise ValueError("index must be monotonic for resampling")
full_index, first_items = self._get_index_and_items(index, grouper)
sbins = first_items.values.astype(np.int64)
group_indices = [slice(i, j) for i, j in zip(sbins[:-1], sbins[1:])] + [
slice(sbins[-1], None)
]
unique_coord = IndexVariable(group.name, first_items.index)
elif group.dims == (group.name,) and _unique_and_monotonic(group):
# no need to factorize
if not squeeze:
# use slices to do views instead of fancy indexing
# equivalent to: group_indices = group_indices.reshape(-1, 1)
group_indices = [slice(i, i + 1) for i in range(group.size)]
else:
group_indices = np.arange(group.size)
unique_coord = group
else:
if isinstance(group, DataArray) and group.isnull().any():
# drop any NaN valued groups.
# also drop obj values where group was NaN
# Use where instead of reindex to account for duplicate coordinate labels.
obj = obj.where(group.notnull(), drop=True)
group = group.dropna(group_dim)
# look through group to find the unique values
group_as_index = safe_cast_to_index(group)
sort = bins is None and (not isinstance(group_as_index, pd.MultiIndex))
unique_values, group_indices = unique_value_groups(
group_as_index, sort=sort
)
unique_coord = IndexVariable(group.name, unique_values)
if len(group_indices) == 0:
if bins is not None:
raise ValueError(
f"None of the data falls within bins with edges {bins!r}"
)
else:
raise ValueError(
"Failed to group data. Are you grouping by a variable that is all NaN?"
)
# specification for the groupby operation
self._obj: T_Xarray = obj
self._group = group
self._group_dim = group_dim
self._group_indices = group_indices
self._unique_coord = unique_coord
self._stacked_dim = stacked_dim
self._inserted_dims = inserted_dims
self._full_index = full_index
self._restore_coord_dims = restore_coord_dims
self._bins = bins
self._squeeze = squeeze
# cached attributes
self._groups: dict[GroupKey, slice | int | list[int]] | None = None
self._dims: tuple[Hashable, ...] | Frozen[Hashable, int] | None = None
self._sizes: Frozen[Hashable, int] | None = None
@property
def sizes(self) -> Frozen[Hashable, int]:
"""Ordered mapping from dimension names to lengths.
Immutable.
See Also
--------
DataArray.sizes
Dataset.sizes
"""
if self._sizes is None:
self._sizes = self._obj.isel(
{self._group_dim: self._group_indices[0]}
).sizes
return self._sizes
def map(
self,
func: Callable,
args: tuple[Any, ...] = (),
shortcut: bool | None = None,
**kwargs: Any,
) -> T_Xarray:
raise NotImplementedError()
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
*,
axis: int | Sequence[int] | None = None,
keep_attrs: bool | None = None,
keepdims: bool = False,
shortcut: bool = True,
**kwargs: Any,
) -> T_Xarray:
raise NotImplementedError()
@property
def groups(self) -> dict[GroupKey, slice | int | list[int]]:
"""
Mapping from group labels to indices. The indices can be used to index the underlying object.
"""
# provided to mimic pandas.groupby
if self._groups is None:
self._groups = dict(zip(self._unique_coord.values, self._group_indices))
return self._groups
def __getitem__(self, key: GroupKey) -> T_Xarray:
"""
Get DataArray or Dataset corresponding to a particular group label.
"""
return self._obj.isel({self._group_dim: self.groups[key]})
def __len__(self) -> int:
return self._unique_coord.size
def __iter__(self) -> Iterator[tuple[GroupKey, T_Xarray]]:
return zip(self._unique_coord.values, self._iter_grouped())
def __repr__(self) -> str:
return "{}, grouped over {!r}\n{!r} groups with labels {}.".format(
self.__class__.__name__,
self._unique_coord.name,
self._unique_coord.size,
", ".join(format_array_flat(self._unique_coord, 30).split()),
)
def _get_index_and_items(self, index, grouper):
from xarray.core.resample_cftime import CFTimeGrouper
s = pd.Series(np.arange(index.size), index)
if isinstance(grouper, CFTimeGrouper):
first_items = grouper.first_items(index)
else:
first_items = s.groupby(grouper).first()
_apply_loffset(grouper, first_items)
full_index = first_items.index
if first_items.isnull().any():
first_items = first_items.dropna()
return full_index, first_items
def _iter_grouped(self) -> Iterator[T_Xarray]:
"""Iterate over each element in this group"""
for indices in self._group_indices:
yield self._obj.isel({self._group_dim: indices})
def _infer_concat_args(self, applied_example):
if self._group_dim in applied_example.dims:
coord = self._group
positions = self._group_indices
else:
coord = self._unique_coord
positions = None
(dim,) = coord.dims
if isinstance(coord, _DummyGroup):
coord = None
coord = getattr(coord, "variable", coord)
return coord, dim, positions
def _binary_op(self, other, f, reflexive=False):
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
g = f if not reflexive else lambda x, y: f(y, x)
if self._bins is None:
obj = self._original_obj
group = self._original_group
dims = group.dims
else:
obj = self._maybe_unstack(self._obj)
group = self._maybe_unstack(self._group)
dims = (self._group_dim,)
if isinstance(group, _DummyGroup):
group = obj[group.name]
coord = group
else:
coord = self._unique_coord
if not isinstance(coord, DataArray):
coord = DataArray(self._unique_coord)
name = group.name
if not isinstance(other, (Dataset, DataArray)):
raise TypeError(
"GroupBy objects only support binary ops "
"when the other argument is a Dataset or "
"DataArray"
)
if name not in other.dims:
raise ValueError(
"incompatible dimensions for a grouped "
f"binary operation: the group variable {name!r} "
"is not a dimension on the other argument"
)
# Broadcast out scalars for backwards compatibility
# TODO: get rid of this when fixing GH2145
for var in other.coords:
if other[var].ndim == 0:
other[var] = (
other[var].drop_vars(var).expand_dims({name: other.sizes[name]})
)
other, _ = align(other, coord, join="outer")
expanded = other.sel({name: group})
result = g(obj, expanded)
if group.ndim > 1:
# backcompat:
# TODO: get rid of this when fixing GH2145
for var in set(obj.coords) - set(obj.xindexes):
if set(obj[var].dims) < set(group.dims):
result[var] = obj[var].reset_coords(drop=True).broadcast_like(group)
if isinstance(result, Dataset) and isinstance(obj, Dataset):
for var in set(result):
for d in dims:
if d not in obj[var].dims:
result[var] = result[var].transpose(d, ...)
return result
def _maybe_restore_empty_groups(self, combined):
"""Our index contained empty groups (e.g., from a resampling). If we
reduced on that dimension, we want to restore the full index.
"""
if self._full_index is not None and self._group.name in combined.dims:
indexers = {self._group.name: self._full_index}
combined = combined.reindex(**indexers)
return combined
def _maybe_unstack(self, obj):
"""This gets called if we are applying on an array with a
multidimensional group."""
if self._stacked_dim is not None and self._stacked_dim in obj.dims:
obj = obj.unstack(self._stacked_dim)
for dim in self._inserted_dims:
if dim in obj.coords:
del obj.coords[dim]
obj._indexes = filter_indexes_from_coords(obj._indexes, set(obj.coords))
return obj
def _flox_reduce(
self,
dim: Dims,
keep_attrs: bool | None = None,
**kwargs: Any,
):
"""Adaptor function that translates our groupby API to that of flox."""
from flox.xarray import xarray_reduce
from xarray.core.dataset import Dataset
obj = self._original_obj
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
# preserve current strategy (approximately) for dask groupby.
# We want to control the default anyway to prevent surprises
# if flox decides to change its default
kwargs.setdefault("method", "split-reduce")
numeric_only = kwargs.pop("numeric_only", None)
if numeric_only:
non_numeric = {
name: var
for name, var in obj.data_vars.items()
if not (np.issubdtype(var.dtype, np.number) or (var.dtype == np.bool_))
}
else:
non_numeric = {}
# weird backcompat
# reducing along a unique indexed dimension with squeeze=True
# should raise an error
if (
dim is None or dim == self._group.name
) and self._group.name in obj.xindexes:
index = obj.indexes[self._group.name]
if index.is_unique and self._squeeze:
raise ValueError(f"cannot reduce over dimensions {self._group.name!r}")
# group is only passed by resample
group = kwargs.pop("group", None)
if group is None:
if isinstance(self._original_group, _DummyGroup):
group = self._original_group.name
else:
group = self._original_group
unindexed_dims: tuple[str, ...] = tuple()
if isinstance(group, str):
if group in obj.dims and group not in obj._indexes and self._bins is None:
unindexed_dims = (group,)
group = self._original_obj[group]
parsed_dim: tuple[Hashable, ...]
if isinstance(dim, str):
parsed_dim = (dim,)
elif dim is None:
parsed_dim = group.dims
elif dim is ...:
parsed_dim = tuple(self._original_obj.dims)
else:
parsed_dim = tuple(dim)
# Do this so we raise the same error message whether flox is present or not.
# Better to control it here than in flox.
if any(
d not in group.dims and d not in self._original_obj.dims for d in parsed_dim
):
raise ValueError(f"cannot reduce over dimensions {dim}.")
expected_groups: tuple[np.ndarray | Any, ...]
isbin: bool | Sequence[bool]
if self._bins is not None:
# TODO: fix this; When binning by time, self._bins is a DatetimeIndex
expected_groups = (np.array(self._bins),)
isbin = (True,)
# This is an annoying hack. Xarray returns np.nan
# when there are no observations in a bin, instead of 0.
# We can fake that here by forcing min_count=1.
if kwargs["func"] == "count":
if "fill_value" not in kwargs or kwargs["fill_value"] is None:
kwargs["fill_value"] = np.nan
# note min_count makes no sense in the xarray world
# as a kwarg for count, so this should be OK
kwargs["min_count"] = 1
# empty bins have np.nan regardless of dtype
# flox's default would not set np.nan for integer dtypes
kwargs.setdefault("fill_value", np.nan)
else:
expected_groups = (self._unique_coord.values,)
isbin = False
result = xarray_reduce(
self._original_obj.drop_vars(non_numeric),
group,
dim=parsed_dim,
expected_groups=expected_groups,
isbin=isbin,
keep_attrs=keep_attrs,
**kwargs,
)
# Ignore error when the groupby reduction is effectively
# a reduction of the underlying dataset
result = result.drop_vars(unindexed_dims, errors="ignore")
# broadcast and restore non-numeric data variables (backcompat)
for name, var in non_numeric.items():
if all(d not in var.dims for d in parsed_dim):
result[name] = var.variable.set_dims(
(group.name,) + var.dims, (result.sizes[group.name],) + var.shape
)
if self._bins is not None:
# bins provided to flox are at full precision
# the bin edge labels have a default precision of 3
# reassign to fix that.
assert self._full_index is not None
result[self._group.name] = self._full_index
# Fix dimension order when binning a dimension coordinate
# Needed as long as we do a separate code path for pint;
# For some reason Datasets and DataArrays behave differently!
if isinstance(self._obj, Dataset) and self._group_dim in self._obj.dims:
result = result.transpose(self._group.name, ...)
return result
def fillna(self, value: Any) -> T_Xarray:
"""Fill missing values in this object by group.
This operation follows the normal broadcasting and alignment rules that
xarray uses for binary arithmetic, except the result is aligned to this
object (``join='left'``) instead of aligned to the intersection of
index coordinates (``join='inner'``).
Parameters
----------
value
Used to fill all matching missing values by group. Needs
to be of a valid type for the wrapped object's fillna
method.
Returns
-------
same type as the grouped object
See Also
--------
Dataset.fillna
DataArray.fillna
"""
return ops.fillna(self, value)
def quantile(
self,
q: ArrayLike,
dim: Dims = None,
method: QuantileMethods = "linear",
keep_attrs: bool | None = None,
skipna: bool | None = None,
interpolation: QuantileMethods | None = None,
) -> T_Xarray:
"""Compute the qth quantile over each array in the groups and
concatenate them together into a new array.
Parameters
----------
q : float or sequence of float
Quantile to compute, which must be between 0 and 1
inclusive.
dim : str or Iterable of Hashable, optional
Dimension(s) over which to apply quantile.
Defaults to the grouped dimension.
method : str, default: "linear"
This optional parameter specifies the interpolation method to use when the
desired quantile lies between two data points. The options sorted by their R
type as summarized in the H&F paper [1]_ are:
1. "inverted_cdf" (*)
2. "averaged_inverted_cdf" (*)
3. "closest_observation" (*)
4. "interpolated_inverted_cdf" (*)
5. "hazen" (*)
6. "weibull" (*)
7. "linear" (default)
8. "median_unbiased" (*)
9. "normal_unbiased" (*)
The first three methods are discontiuous. The following discontinuous
variations of the default "linear" (7.) option are also available:
* "lower"
* "higher"
* "midpoint"
* "nearest"
See :py:func:`numpy.quantile` or [1]_ for details. Methods marked with
an asterix require numpy version 1.22 or newer. The "method" argument was
previously called "interpolation", renamed in accordance with numpy
version 1.22.0.
keep_attrs : bool or None, default: None
If True, the dataarray's attributes (`attrs`) will be copied from
the original object to the new one. If False, the new
object will be returned without attributes.
skipna : bool or None, default: None
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
Returns
-------
quantiles : Variable
If `q` is a single quantile, then the result is a
scalar. If multiple percentiles are given, first axis of
the result corresponds to the quantile. In either case a
quantile dimension is added to the return array. The other
dimensions are the dimensions that remain after the
reduction of the array.
See Also
--------
numpy.nanquantile, numpy.quantile, pandas.Series.quantile, Dataset.quantile
DataArray.quantile
Examples
--------
>>> da = xr.DataArray(
... [[1.3, 8.4, 0.7, 6.9], [0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]],
... coords={"x": [0, 0, 1], "y": [1, 1, 2, 2]},
... dims=("x", "y"),
... )
>>> ds = xr.Dataset({"a": da})
>>> da.groupby("x").quantile(0)
<xarray.DataArray (x: 2, y: 4)>
array([[0.7, 4.2, 0.7, 1.5],
[6.5, 7.3, 2.6, 1.9]])
Coordinates:
* y (y) int64 1 1 2 2
quantile float64 0.0
* x (x) int64 0 1
>>> ds.groupby("y").quantile(0, dim=...)
<xarray.Dataset>
Dimensions: (y: 2)
Coordinates:
quantile float64 0.0
* y (y) int64 1 2
Data variables:
a (y) float64 0.7 0.7
>>> da.groupby("x").quantile([0, 0.5, 1])
<xarray.DataArray (x: 2, y: 4, quantile: 3)>
array([[[0.7 , 1. , 1.3 ],
[4.2 , 6.3 , 8.4 ],
[0.7 , 5.05, 9.4 ],
[1.5 , 4.2 , 6.9 ]],
<BLANKLINE>
[[6.5 , 6.5 , 6.5 ],
[7.3 , 7.3 , 7.3 ],
[2.6 , 2.6 , 2.6 ],
[1.9 , 1.9 , 1.9 ]]])
Coordinates:
* y (y) int64 1 1 2 2
* quantile (quantile) float64 0.0 0.5 1.0
* x (x) int64 0 1
>>> ds.groupby("y").quantile([0, 0.5, 1], dim=...)
<xarray.Dataset>
Dimensions: (y: 2, quantile: 3)
Coordinates:
* quantile (quantile) float64 0.0 0.5 1.0
* y (y) int64 1 2
Data variables:
a (y, quantile) float64 0.7 5.35 8.4 0.7 2.25 9.4
References
----------
.. [1] R. J. Hyndman and Y. Fan,
"Sample quantiles in statistical packages,"
The American Statistician, 50(4), pp. 361-365, 1996
"""
if dim is None:
dim = (self._group_dim,)
return self.map(
self._obj.__class__.quantile,
shortcut=False,
q=q,
dim=dim,
method=method,
keep_attrs=keep_attrs,
skipna=skipna,
interpolation=interpolation,
)
def where(self, cond, other=dtypes.NA) -> T_Xarray:
"""Return elements from `self` or `other` depending on `cond`.
Parameters
----------
cond : DataArray or Dataset
Locations at which to preserve this objects values. dtypes have to be `bool`
other : scalar, DataArray or Dataset, optional
Value to use for locations in this object where ``cond`` is False.
By default, inserts missing values.
Returns
-------
same type as the grouped object
See Also
--------
Dataset.where
"""
return ops.where_method(self, cond, other)
def _first_or_last(self, op, skipna, keep_attrs):
if isinstance(self._group_indices[0], integer_types):
# NB. this is currently only used for reductions along an existing
# dimension
return self._obj
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
return self.reduce(
op, dim=[self._group_dim], skipna=skipna, keep_attrs=keep_attrs
)
def first(self, skipna: bool | None = None, keep_attrs: bool | None = None):
"""Return the first element of each group along the group dimension"""
return self._first_or_last(duck_array_ops.first, skipna, keep_attrs)
def last(self, skipna: bool | None = None, keep_attrs: bool | None = None):
"""Return the last element of each group along the group dimension"""
return self._first_or_last(duck_array_ops.last, skipna, keep_attrs)
def assign_coords(self, coords=None, **coords_kwargs):
"""Assign coordinates by group.
See Also
--------
Dataset.assign_coords
Dataset.swap_dims
"""
coords_kwargs = either_dict_or_kwargs(coords, coords_kwargs, "assign_coords")
return self.map(lambda ds: ds.assign_coords(**coords_kwargs))
def _maybe_reorder(xarray_obj, dim, positions):
order = _inverse_permutation_indices(positions)
if order is None or len(order) != xarray_obj.sizes[dim]:
return xarray_obj
else:
return xarray_obj[{dim: order}]
class DataArrayGroupByBase(GroupBy["DataArray"], DataArrayGroupbyArithmetic):
"""GroupBy object specialized to grouping DataArray objects"""
__slots__ = ()
_dims: tuple[Hashable, ...] | None
@property
def dims(self) -> tuple[Hashable, ...]:
if self._dims is None:
self._dims = self._obj.isel({self._group_dim: self._group_indices[0]}).dims
return self._dims
def _iter_grouped_shortcut(self):
"""Fast version of `_iter_grouped` that yields Variables without
metadata
"""
var = self._obj.variable
for indices in self._group_indices:
yield var[{self._group_dim: indices}]
def _concat_shortcut(self, applied, dim, positions=None):
# nb. don't worry too much about maintaining this method -- it does
# speed things up, but it's not very interpretable and there are much
# faster alternatives (e.g., doing the grouped aggregation in a
# compiled language)
# TODO: benbovy - explicit indexes: this fast implementation doesn't
# create an explicit index for the stacked dim coordinate
stacked = Variable.concat(applied, dim, shortcut=True)
reordered = _maybe_reorder(stacked, dim, positions)
return self._obj._replace_maybe_drop_dims(reordered)
def _restore_dim_order(self, stacked: DataArray) -> DataArray:
def lookup_order(dimension):
if dimension == self._group.name:
(dimension,) = self._group.dims
if dimension in self._obj.dims:
axis = self._obj.get_axis_num(dimension)
else:
axis = 1e6 # some arbitrarily high value
return axis
new_order = sorted(stacked.dims, key=lookup_order)
return stacked.transpose(*new_order, transpose_coords=self._restore_coord_dims)
def map(
self,
func: Callable[..., DataArray],
args: tuple[Any, ...] = (),
shortcut: bool | None = None,
**kwargs: Any,
) -> DataArray:
"""Apply a function to each array in the group and concatenate them
together into a new array.
`func` is called like `func(ar, *args, **kwargs)` for each array `ar`
in this group.
Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how
to stack together the array. The rule is:
1. If the dimension along which the group coordinate is defined is
still in the first grouped array after applying `func`, then stack
over this dimension.
2. Otherwise, stack over the new dimension given by name of this
grouping (the argument to the `groupby` function).
Parameters
----------
func : callable
Callable to apply to each array.
shortcut : bool, optional
Whether or not to shortcut evaluation under the assumptions that:
(1) The action of `func` does not depend on any of the array
metadata (attributes or coordinates) but only on the data and
dimensions.
(2) The action of `func` creates arrays with homogeneous metadata,
that is, with the same dimensions and attributes.
If these conditions are satisfied `shortcut` provides significant
speedup. This should be the case for many common groupby operations
(e.g., applying numpy ufuncs).
*args : tuple, optional
Positional arguments passed to `func`.
**kwargs
Used to call `func(ar, **kwargs)` for each array `ar`.
Returns
-------
applied : DataArray
The result of splitting, applying and combining this array.
"""
grouped = self._iter_grouped_shortcut() if shortcut else self._iter_grouped()
applied = (maybe_wrap_array(arr, func(arr, *args, **kwargs)) for arr in grouped)
return self._combine(applied, shortcut=shortcut)
def apply(self, func, shortcut=False, args=(), **kwargs):
"""
Backward compatible implementation of ``map``
See Also
--------
DataArrayGroupBy.map
"""
warnings.warn(
"GroupBy.apply may be deprecated in the future. Using GroupBy.map is encouraged",
PendingDeprecationWarning,
stacklevel=2,
)
return self.map(func, shortcut=shortcut, args=args, **kwargs)
def _combine(self, applied, shortcut=False):
"""Recombine the applied objects like the original."""
applied_example, applied = peek_at(applied)
coord, dim, positions = self._infer_concat_args(applied_example)
if shortcut:
combined = self._concat_shortcut(applied, dim, positions)
else:
combined = concat(applied, dim)
combined = _maybe_reorder(combined, dim, positions)
if isinstance(combined, type(self._obj)):
# only restore dimension order for arrays
combined = self._restore_dim_order(combined)
# assign coord and index when the applied function does not return that coord
if coord is not None and dim not in applied_example.dims:
index, index_vars = create_default_index_implicit(coord)
indexes = {k: index for k in index_vars}
combined = combined._overwrite_indexes(indexes, index_vars)
combined = self._maybe_restore_empty_groups(combined)
combined = self._maybe_unstack(combined)
return combined
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
*,
axis: int | Sequence[int] | None = None,
keep_attrs: bool | None = None,
keepdims: bool = False,
shortcut: bool = True,
**kwargs: Any,
) -> DataArray:
"""Reduce the items in this group by applying `func` along some
dimension(s).
Parameters
----------
func : callable
Function which can be called in the form
`func(x, axis=axis, **kwargs)` to return the result of collapsing
an np.ndarray over an integer valued axis.
dim : "...", str, Iterable of Hashable or None, optional
Dimension(s) over which to apply `func`. If None, apply over the
groupby dimension, if "..." apply over all dimensions.
axis : int or sequence of int, optional
Axis(es) over which to apply `func`. Only one of the 'dimension'
and 'axis' arguments can be supplied. If neither are supplied, then
`func` is calculated over all dimension for each group item.
keep_attrs : bool, optional
If True, the datasets's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to `func`.
Returns
-------
reduced : Array
Array with summarized data and the indicated dimension(s)
removed.
"""
if dim is None:
dim = [self._group_dim]
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
def reduce_array(ar: DataArray) -> DataArray:
return ar.reduce(
func=func,
dim=dim,
axis=axis,
keep_attrs=keep_attrs,
keepdims=keepdims,
**kwargs,
)
check_reduce_dims(dim, self.dims)
return self.map(reduce_array, shortcut=shortcut)
# https://github.com/python/mypy/issues/9031
class DataArrayGroupBy( # type: ignore[misc]
DataArrayGroupByBase,
DataArrayGroupByAggregations,
ImplementsArrayReduce,
):
__slots__ = ()
class DatasetGroupByBase(GroupBy["Dataset"], DatasetGroupbyArithmetic):
__slots__ = ()
_dims: Frozen[Hashable, int] | None
@property
def dims(self) -> Frozen[Hashable, int]:
if self._dims is None:
self._dims = self._obj.isel({self._group_dim: self._group_indices[0]}).dims
return self._dims
def map(
self,
func: Callable[..., Dataset],
args: tuple[Any, ...] = (),
shortcut: bool | None = None,
**kwargs: Any,
) -> Dataset:
"""Apply a function to each Dataset in the group and concatenate them
together into a new Dataset.
`func` is called like `func(ds, *args, **kwargs)` for each dataset `ds`
in this group.
Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how
to stack together the datasets. The rule is:
1. If the dimension along which the group coordinate is defined is
still in the first grouped item after applying `func`, then stack
over this dimension.
2. Otherwise, stack over the new dimension given by name of this
grouping (the argument to the `groupby` function).
Parameters
----------
func : callable
Callable to apply to each sub-dataset.
args : tuple, optional
Positional arguments to pass to `func`.
**kwargs
Used to call `func(ds, **kwargs)` for each sub-dataset `ar`.
Returns
-------
applied : Dataset
The result of splitting, applying and combining this dataset.
"""
# ignore shortcut if set (for now)
applied = (func(ds, *args, **kwargs) for ds in self._iter_grouped())
return self._combine(applied)
def apply(self, func, args=(), shortcut=None, **kwargs):
"""
Backward compatible implementation of ``map``
See Also
--------
DatasetGroupBy.map
"""
warnings.warn(
"GroupBy.apply may be deprecated in the future. Using GroupBy.map is encouraged",
PendingDeprecationWarning,
stacklevel=2,
)
return self.map(func, shortcut=shortcut, args=args, **kwargs)
def _combine(self, applied):
"""Recombine the applied objects like the original."""
applied_example, applied = peek_at(applied)
coord, dim, positions = self._infer_concat_args(applied_example)
combined = concat(applied, dim)
combined = _maybe_reorder(combined, dim, positions)
# assign coord when the applied function does not return that coord
if coord is not None and dim not in applied_example.dims:
index, index_vars = create_default_index_implicit(coord)
indexes = {k: index for k in index_vars}
combined = combined._overwrite_indexes(indexes, index_vars)
combined = self._maybe_restore_empty_groups(combined)
combined = self._maybe_unstack(combined)
return combined
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
*,
axis: int | Sequence[int] | None = None,
keep_attrs: bool | None = None,
keepdims: bool = False,
shortcut: bool = True,
**kwargs: Any,
) -> Dataset:
"""Reduce the items in this group by applying `func` along some
dimension(s).
Parameters
----------
func : callable
Function which can be called in the form
`func(x, axis=axis, **kwargs)` to return the result of collapsing
an np.ndarray over an integer valued axis.
dim : ..., str, Iterable of Hashable or None, optional
Dimension(s) over which to apply `func`. By default apply over the
groupby dimension, with "..." apply over all dimensions.
axis : int or sequence of int, optional
Axis(es) over which to apply `func`. Only one of the 'dimension'
and 'axis' arguments can be supplied. If neither are supplied, then
`func` is calculated over all dimension for each group item.
keep_attrs : bool, optional
If True, the datasets's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to `func`.
Returns
-------
reduced : Dataset
Array with summarized data and the indicated dimension(s)
removed.
"""
if dim is None:
dim = [self._group_dim]
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
def reduce_dataset(ds: Dataset) -> Dataset:
return ds.reduce(
func=func,
dim=dim,
axis=axis,
keep_attrs=keep_attrs,
keepdims=keepdims,
**kwargs,
)
check_reduce_dims(dim, self.dims)
return self.map(reduce_dataset)
def assign(self, **kwargs: Any) -> Dataset:
"""Assign data variables by group.
See Also
--------
Dataset.assign
"""
return self.map(lambda ds: ds.assign(**kwargs))
# https://github.com/python/mypy/issues/9031
class DatasetGroupBy( # type: ignore[misc]
DatasetGroupByBase,
DatasetGroupByAggregations,
ImplementsDatasetReduce,
):
__slots__ = ()
|