1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
|
from __future__ import annotations
import collections.abc
import copy
from collections import defaultdict
from typing import (
TYPE_CHECKING,
Any,
Dict,
Generic,
Hashable,
Iterable,
Iterator,
Mapping,
Sequence,
TypeVar,
cast,
)
import numpy as np
import pandas as pd
from xarray.core import formatting, nputils, utils
from xarray.core.indexing import (
IndexSelResult,
PandasIndexingAdapter,
PandasMultiIndexingAdapter,
)
from xarray.core.utils import Frozen, get_valid_numpy_dtype, is_dict_like, is_scalar
if TYPE_CHECKING:
from xarray.core.types import ErrorOptions, T_Index
from xarray.core.variable import Variable
IndexVars = Dict[Any, "Variable"]
class Index:
"""Base class inherited by all xarray-compatible indexes.
Do not use this class directly for creating index objects.
"""
@classmethod
def from_variables(
cls,
variables: Mapping[Any, Variable],
*,
options: Mapping[str, Any],
) -> Index:
raise NotImplementedError()
@classmethod
def concat(
cls: type[T_Index],
indexes: Sequence[T_Index],
dim: Hashable,
positions: Iterable[Iterable[int]] | None = None,
) -> T_Index:
raise NotImplementedError()
@classmethod
def stack(cls, variables: Mapping[Any, Variable], dim: Hashable) -> Index:
raise NotImplementedError(
f"{cls!r} cannot be used for creating an index of stacked coordinates"
)
def unstack(self) -> tuple[dict[Hashable, Index], pd.MultiIndex]:
raise NotImplementedError()
def create_variables(
self, variables: Mapping[Any, Variable] | None = None
) -> IndexVars:
if variables is not None:
# pass through
return dict(**variables)
else:
return {}
def to_pandas_index(self) -> pd.Index:
"""Cast this xarray index to a pandas.Index object or raise a TypeError
if this is not supported.
This method is used by all xarray operations that expect/require a
pandas.Index object.
"""
raise TypeError(f"{self!r} cannot be cast to a pandas.Index object")
def isel(
self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]
) -> Index | None:
return None
def sel(self, labels: dict[Any, Any]) -> IndexSelResult:
raise NotImplementedError(f"{self!r} doesn't support label-based selection")
def join(self: T_Index, other: T_Index, how: str = "inner") -> T_Index:
raise NotImplementedError(
f"{self!r} doesn't support alignment with inner/outer join method"
)
def reindex_like(self: T_Index, other: T_Index) -> dict[Hashable, Any]:
raise NotImplementedError(f"{self!r} doesn't support re-indexing labels")
def equals(self, other): # pragma: no cover
raise NotImplementedError()
def roll(self, shifts: Mapping[Any, int]) -> Index | None:
return None
def rename(
self, name_dict: Mapping[Any, Hashable], dims_dict: Mapping[Any, Hashable]
) -> Index:
return self
def __copy__(self) -> Index:
return self._copy(deep=False)
def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Index:
return self._copy(deep=True, memo=memo)
def copy(self: T_Index, deep: bool = True) -> T_Index:
return self._copy(deep=deep)
def _copy(
self: T_Index, deep: bool = True, memo: dict[int, Any] | None = None
) -> T_Index:
cls = self.__class__
copied = cls.__new__(cls)
if deep:
for k, v in self.__dict__.items():
setattr(copied, k, copy.deepcopy(v, memo))
else:
copied.__dict__.update(self.__dict__)
return copied
def __getitem__(self, indexer: Any):
raise NotImplementedError()
def _repr_inline_(self, max_width):
return self.__class__.__name__
def _maybe_cast_to_cftimeindex(index: pd.Index) -> pd.Index:
from xarray.coding.cftimeindex import CFTimeIndex
if len(index) > 0 and index.dtype == "O":
try:
return CFTimeIndex(index)
except (ImportError, TypeError):
return index
else:
return index
def safe_cast_to_index(array: Any) -> pd.Index:
"""Given an array, safely cast it to a pandas.Index.
If it is already a pandas.Index, return it unchanged.
Unlike pandas.Index, if the array has dtype=object or dtype=timedelta64,
this function will not attempt to do automatic type conversion but will
always return an index with dtype=object.
"""
from xarray.core.dataarray import DataArray
from xarray.core.variable import Variable
if isinstance(array, pd.Index):
index = array
elif isinstance(array, (DataArray, Variable)):
# returns the original multi-index for pandas.MultiIndex level coordinates
index = array._to_index()
elif isinstance(array, Index):
index = array.to_pandas_index()
elif isinstance(array, PandasIndexingAdapter):
index = array.array
else:
kwargs = {}
if hasattr(array, "dtype") and array.dtype.kind == "O":
kwargs["dtype"] = object
index = pd.Index(np.asarray(array), **kwargs)
return _maybe_cast_to_cftimeindex(index)
def _sanitize_slice_element(x):
from xarray.core.dataarray import DataArray
from xarray.core.variable import Variable
if not isinstance(x, tuple) and len(np.shape(x)) != 0:
raise ValueError(
f"cannot use non-scalar arrays in a slice for xarray indexing: {x}"
)
if isinstance(x, (Variable, DataArray)):
x = x.values
if isinstance(x, np.ndarray):
x = x[()]
return x
def _query_slice(index, label, coord_name="", method=None, tolerance=None):
if method is not None or tolerance is not None:
raise NotImplementedError(
"cannot use ``method`` argument if any indexers are slice objects"
)
indexer = index.slice_indexer(
_sanitize_slice_element(label.start),
_sanitize_slice_element(label.stop),
_sanitize_slice_element(label.step),
)
if not isinstance(indexer, slice):
# unlike pandas, in xarray we never want to silently convert a
# slice indexer into an array indexer
raise KeyError(
"cannot represent labeled-based slice indexer for coordinate "
f"{coord_name!r} with a slice over integer positions; the index is "
"unsorted or non-unique"
)
return indexer
def _asarray_tuplesafe(values):
"""
Convert values into a numpy array of at most 1-dimension, while preserving
tuples.
Adapted from pandas.core.common._asarray_tuplesafe
"""
if isinstance(values, tuple):
result = utils.to_0d_object_array(values)
else:
result = np.asarray(values)
if result.ndim == 2:
result = np.empty(len(values), dtype=object)
result[:] = values
return result
def _is_nested_tuple(possible_tuple):
return isinstance(possible_tuple, tuple) and any(
isinstance(value, (tuple, list, slice)) for value in possible_tuple
)
def normalize_label(value, dtype=None) -> np.ndarray:
if getattr(value, "ndim", 1) <= 1:
value = _asarray_tuplesafe(value)
if dtype is not None and dtype.kind == "f" and value.dtype.kind != "b":
# pd.Index built from coordinate with float precision != 64
# see https://github.com/pydata/xarray/pull/3153 for details
# bypass coercing dtype for boolean indexers (ignore index)
# see https://github.com/pydata/xarray/issues/5727
value = np.asarray(value, dtype=dtype)
return value
def as_scalar(value: np.ndarray):
# see https://github.com/pydata/xarray/pull/4292 for details
return value[()] if value.dtype.kind in "mM" else value.item()
def get_indexer_nd(index, labels, method=None, tolerance=None):
"""Wrapper around :meth:`pandas.Index.get_indexer` supporting n-dimensional
labels
"""
flat_labels = np.ravel(labels)
flat_indexer = index.get_indexer(flat_labels, method=method, tolerance=tolerance)
indexer = flat_indexer.reshape(labels.shape)
return indexer
T_PandasIndex = TypeVar("T_PandasIndex", bound="PandasIndex")
class PandasIndex(Index):
"""Wrap a pandas.Index as an xarray compatible index."""
index: pd.Index
dim: Hashable
coord_dtype: Any
__slots__ = ("index", "dim", "coord_dtype")
def __init__(self, array: Any, dim: Hashable, coord_dtype: Any = None):
# make a shallow copy: cheap and because the index name may be updated
# here or in other constructors (cannot use pd.Index.rename as this
# constructor is also called from PandasMultiIndex)
index = safe_cast_to_index(array).copy()
if index.name is None:
index.name = dim
self.index = index
self.dim = dim
if coord_dtype is None:
coord_dtype = get_valid_numpy_dtype(index)
self.coord_dtype = coord_dtype
def _replace(self, index, dim=None, coord_dtype=None):
if dim is None:
dim = self.dim
if coord_dtype is None:
coord_dtype = self.coord_dtype
return type(self)(index, dim, coord_dtype)
@classmethod
def from_variables(
cls,
variables: Mapping[Any, Variable],
*,
options: Mapping[str, Any],
) -> PandasIndex:
if len(variables) != 1:
raise ValueError(
f"PandasIndex only accepts one variable, found {len(variables)} variables"
)
name, var = next(iter(variables.items()))
if var.ndim != 1:
raise ValueError(
"PandasIndex only accepts a 1-dimensional variable, "
f"variable {name!r} has {var.ndim} dimensions"
)
dim = var.dims[0]
# TODO: (benbovy - explicit indexes): add __index__ to ExplicitlyIndexesNDArrayMixin?
# this could be eventually used by Variable.to_index() and would remove the need to perform
# the checks below.
# preserve wrapped pd.Index (if any)
data = getattr(var._data, "array", var.data)
# multi-index level variable: get level index
if isinstance(var._data, PandasMultiIndexingAdapter):
level = var._data.level
if level is not None:
data = var._data.array.get_level_values(level)
obj = cls(data, dim, coord_dtype=var.dtype)
assert not isinstance(obj.index, pd.MultiIndex)
obj.index.name = name
return obj
@staticmethod
def _concat_indexes(indexes, dim, positions=None) -> pd.Index:
new_pd_index: pd.Index
if not indexes:
new_pd_index = pd.Index([])
else:
if not all(idx.dim == dim for idx in indexes):
dims = ",".join({f"{idx.dim!r}" for idx in indexes})
raise ValueError(
f"Cannot concatenate along dimension {dim!r} indexes with "
f"dimensions: {dims}"
)
pd_indexes = [idx.index for idx in indexes]
new_pd_index = pd_indexes[0].append(pd_indexes[1:])
if positions is not None:
indices = nputils.inverse_permutation(np.concatenate(positions))
new_pd_index = new_pd_index.take(indices)
return new_pd_index
@classmethod
def concat(
cls,
indexes: Sequence[PandasIndex],
dim: Hashable,
positions: Iterable[Iterable[int]] | None = None,
) -> PandasIndex:
new_pd_index = cls._concat_indexes(indexes, dim, positions)
if not indexes:
coord_dtype = None
else:
coord_dtype = np.result_type(*[idx.coord_dtype for idx in indexes])
return cls(new_pd_index, dim=dim, coord_dtype=coord_dtype)
def create_variables(
self, variables: Mapping[Any, Variable] | None = None
) -> IndexVars:
from xarray.core.variable import IndexVariable
name = self.index.name
attrs: Mapping[Hashable, Any] | None
encoding: Mapping[Hashable, Any] | None
if variables is not None and name in variables:
var = variables[name]
attrs = var.attrs
encoding = var.encoding
else:
attrs = None
encoding = None
data = PandasIndexingAdapter(self.index, dtype=self.coord_dtype)
var = IndexVariable(self.dim, data, attrs=attrs, encoding=encoding)
return {name: var}
def to_pandas_index(self) -> pd.Index:
return self.index
def isel(
self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]
) -> PandasIndex | None:
from xarray.core.variable import Variable
indxr = indexers[self.dim]
if isinstance(indxr, Variable):
if indxr.dims != (self.dim,):
# can't preserve a index if result has new dimensions
return None
else:
indxr = indxr.data
if not isinstance(indxr, slice) and is_scalar(indxr):
# scalar indexer: drop index
return None
return self._replace(self.index[indxr])
def sel(
self, labels: dict[Any, Any], method=None, tolerance=None
) -> IndexSelResult:
from xarray.core.dataarray import DataArray
from xarray.core.variable import Variable
if method is not None and not isinstance(method, str):
raise TypeError("``method`` must be a string")
assert len(labels) == 1
coord_name, label = next(iter(labels.items()))
if isinstance(label, slice):
indexer = _query_slice(self.index, label, coord_name, method, tolerance)
elif is_dict_like(label):
raise ValueError(
"cannot use a dict-like object for selection on "
"a dimension that does not have a MultiIndex"
)
else:
label_array = normalize_label(label, dtype=self.coord_dtype)
if label_array.ndim == 0:
label_value = as_scalar(label_array)
if isinstance(self.index, pd.CategoricalIndex):
if method is not None:
raise ValueError(
"'method' is not supported when indexing using a CategoricalIndex."
)
if tolerance is not None:
raise ValueError(
"'tolerance' is not supported when indexing using a CategoricalIndex."
)
indexer = self.index.get_loc(label_value)
else:
if method is not None:
indexer = get_indexer_nd(
self.index, label_array, method, tolerance
)
if np.any(indexer < 0):
raise KeyError(
f"not all values found in index {coord_name!r}"
)
else:
try:
indexer = self.index.get_loc(label_value)
except KeyError as e:
raise KeyError(
f"not all values found in index {coord_name!r}. "
"Try setting the `method` keyword argument (example: method='nearest')."
) from e
elif label_array.dtype.kind == "b":
indexer = label_array
else:
indexer = get_indexer_nd(self.index, label_array, method, tolerance)
if np.any(indexer < 0):
raise KeyError(f"not all values found in index {coord_name!r}")
# attach dimension names and/or coordinates to positional indexer
if isinstance(label, Variable):
indexer = Variable(label.dims, indexer)
elif isinstance(label, DataArray):
indexer = DataArray(indexer, coords=label._coords, dims=label.dims)
return IndexSelResult({self.dim: indexer})
def equals(self, other: Index):
if not isinstance(other, PandasIndex):
return False
return self.index.equals(other.index) and self.dim == other.dim
def join(self: PandasIndex, other: PandasIndex, how: str = "inner") -> PandasIndex:
if how == "outer":
index = self.index.union(other.index)
else:
# how = "inner"
index = self.index.intersection(other.index)
coord_dtype = np.result_type(self.coord_dtype, other.coord_dtype)
return type(self)(index, self.dim, coord_dtype=coord_dtype)
def reindex_like(
self, other: PandasIndex, method=None, tolerance=None
) -> dict[Hashable, Any]:
if not self.index.is_unique:
raise ValueError(
f"cannot reindex or align along dimension {self.dim!r} because the "
"(pandas) index has duplicate values"
)
return {self.dim: get_indexer_nd(self.index, other.index, method, tolerance)}
def roll(self, shifts: Mapping[Any, int]) -> PandasIndex:
shift = shifts[self.dim] % self.index.shape[0]
if shift != 0:
new_pd_idx = self.index[-shift:].append(self.index[:-shift])
else:
new_pd_idx = self.index[:]
return self._replace(new_pd_idx)
def rename(self, name_dict, dims_dict):
if self.index.name not in name_dict and self.dim not in dims_dict:
return self
new_name = name_dict.get(self.index.name, self.index.name)
index = self.index.rename(new_name)
new_dim = dims_dict.get(self.dim, self.dim)
return self._replace(index, dim=new_dim)
def _copy(
self: T_PandasIndex, deep: bool = True, memo: dict[int, Any] | None = None
) -> T_PandasIndex:
if deep:
# pandas is not using the memo
index = self.index.copy(deep=True)
else:
# index will be copied in constructor
index = self.index
return self._replace(index)
def __getitem__(self, indexer: Any):
return self._replace(self.index[indexer])
def __repr__(self):
return f"PandasIndex({repr(self.index)})"
def _check_dim_compat(variables: Mapping[Any, Variable], all_dims: str = "equal"):
"""Check that all multi-index variable candidates are 1-dimensional and
either share the same (single) dimension or each have a different dimension.
"""
if any([var.ndim != 1 for var in variables.values()]):
raise ValueError("PandasMultiIndex only accepts 1-dimensional variables")
dims = {var.dims for var in variables.values()}
if all_dims == "equal" and len(dims) > 1:
raise ValueError(
"unmatched dimensions for multi-index variables "
+ ", ".join([f"{k!r} {v.dims}" for k, v in variables.items()])
)
if all_dims == "different" and len(dims) < len(variables):
raise ValueError(
"conflicting dimensions for multi-index product variables "
+ ", ".join([f"{k!r} {v.dims}" for k, v in variables.items()])
)
def remove_unused_levels_categories(index: pd.Index) -> pd.Index:
"""
Remove unused levels from MultiIndex and unused categories from CategoricalIndex
"""
if isinstance(index, pd.MultiIndex):
index = index.remove_unused_levels()
# if it contains CategoricalIndex, we need to remove unused categories
# manually. See https://github.com/pandas-dev/pandas/issues/30846
if any(isinstance(lev, pd.CategoricalIndex) for lev in index.levels):
levels = []
for i, level in enumerate(index.levels):
if isinstance(level, pd.CategoricalIndex):
level = level[index.codes[i]].remove_unused_categories()
else:
level = level[index.codes[i]]
levels.append(level)
# TODO: calling from_array() reorders MultiIndex levels. It would
# be best to avoid this, if possible, e.g., by using
# MultiIndex.remove_unused_levels() (which does not reorder) on the
# part of the MultiIndex that is not categorical, or by fixing this
# upstream in pandas.
index = pd.MultiIndex.from_arrays(levels, names=index.names)
elif isinstance(index, pd.CategoricalIndex):
index = index.remove_unused_categories()
return index
class PandasMultiIndex(PandasIndex):
"""Wrap a pandas.MultiIndex as an xarray compatible index."""
level_coords_dtype: dict[str, Any]
__slots__ = ("index", "dim", "coord_dtype", "level_coords_dtype")
def __init__(self, array: Any, dim: Hashable, level_coords_dtype: Any = None):
super().__init__(array, dim)
# default index level names
names = []
for i, idx in enumerate(self.index.levels):
name = idx.name or f"{dim}_level_{i}"
if name == dim:
raise ValueError(
f"conflicting multi-index level name {name!r} with dimension {dim!r}"
)
names.append(name)
self.index.names = names
if level_coords_dtype is None:
level_coords_dtype = {
idx.name: get_valid_numpy_dtype(idx) for idx in self.index.levels
}
self.level_coords_dtype = level_coords_dtype
def _replace(self, index, dim=None, level_coords_dtype=None) -> PandasMultiIndex:
if dim is None:
dim = self.dim
index.name = dim
if level_coords_dtype is None:
level_coords_dtype = self.level_coords_dtype
return type(self)(index, dim, level_coords_dtype)
@classmethod
def from_variables(
cls,
variables: Mapping[Any, Variable],
*,
options: Mapping[str, Any],
) -> PandasMultiIndex:
_check_dim_compat(variables)
dim = next(iter(variables.values())).dims[0]
index = pd.MultiIndex.from_arrays(
[var.values for var in variables.values()], names=variables.keys()
)
index.name = dim
level_coords_dtype = {name: var.dtype for name, var in variables.items()}
obj = cls(index, dim, level_coords_dtype=level_coords_dtype)
return obj
@classmethod
def concat( # type: ignore[override]
cls,
indexes: Sequence[PandasMultiIndex],
dim: Hashable,
positions: Iterable[Iterable[int]] | None = None,
) -> PandasMultiIndex:
new_pd_index = cls._concat_indexes(indexes, dim, positions)
if not indexes:
level_coords_dtype = None
else:
level_coords_dtype = {}
for name in indexes[0].level_coords_dtype:
level_coords_dtype[name] = np.result_type(
*[idx.level_coords_dtype[name] for idx in indexes]
)
return cls(new_pd_index, dim=dim, level_coords_dtype=level_coords_dtype)
@classmethod
def stack(
cls, variables: Mapping[Any, Variable], dim: Hashable
) -> PandasMultiIndex:
"""Create a new Pandas MultiIndex from the product of 1-d variables (levels) along a
new dimension.
Level variables must have a dimension distinct from each other.
Keeps levels the same (doesn't refactorize them) so that it gives back the original
labels after a stack/unstack roundtrip.
"""
_check_dim_compat(variables, all_dims="different")
level_indexes = [safe_cast_to_index(var) for var in variables.values()]
for name, idx in zip(variables, level_indexes):
if isinstance(idx, pd.MultiIndex):
raise ValueError(
f"cannot create a multi-index along stacked dimension {dim!r} "
f"from variable {name!r} that wraps a multi-index"
)
split_labels, levels = zip(*[lev.factorize() for lev in level_indexes])
labels_mesh = np.meshgrid(*split_labels, indexing="ij")
labels = [x.ravel() for x in labels_mesh]
index = pd.MultiIndex(levels, labels, sortorder=0, names=variables.keys())
level_coords_dtype = {k: var.dtype for k, var in variables.items()}
return cls(index, dim, level_coords_dtype=level_coords_dtype)
def unstack(self) -> tuple[dict[Hashable, Index], pd.MultiIndex]:
clean_index = remove_unused_levels_categories(self.index)
new_indexes: dict[Hashable, Index] = {}
for name, lev in zip(clean_index.names, clean_index.levels):
idx = PandasIndex(
lev.copy(), name, coord_dtype=self.level_coords_dtype[name]
)
new_indexes[name] = idx
return new_indexes, clean_index
@classmethod
def from_variables_maybe_expand(
cls,
dim: Hashable,
current_variables: Mapping[Any, Variable],
variables: Mapping[Any, Variable],
) -> tuple[PandasMultiIndex, IndexVars]:
"""Create a new multi-index maybe by expanding an existing one with
new variables as index levels.
The index and its corresponding coordinates may be created along a new dimension.
"""
names: list[Hashable] = []
codes: list[list[int]] = []
levels: list[list[int]] = []
level_variables: dict[Any, Variable] = {}
_check_dim_compat({**current_variables, **variables})
if len(current_variables) > 1:
# expand from an existing multi-index
data = cast(
PandasMultiIndexingAdapter, next(iter(current_variables.values()))._data
)
current_index = data.array
names.extend(current_index.names)
codes.extend(current_index.codes)
levels.extend(current_index.levels)
for name in current_index.names:
level_variables[name] = current_variables[name]
elif len(current_variables) == 1:
# expand from one 1D variable (no multi-index): convert it to an index level
var = next(iter(current_variables.values()))
new_var_name = f"{dim}_level_0"
names.append(new_var_name)
cat = pd.Categorical(var.values, ordered=True)
codes.append(cat.codes)
levels.append(cat.categories)
level_variables[new_var_name] = var
for name, var in variables.items():
names.append(name)
cat = pd.Categorical(var.values, ordered=True)
codes.append(cat.codes)
levels.append(cat.categories)
level_variables[name] = var
index = pd.MultiIndex(levels, codes, names=names)
level_coords_dtype = {k: var.dtype for k, var in level_variables.items()}
obj = cls(index, dim, level_coords_dtype=level_coords_dtype)
index_vars = obj.create_variables(level_variables)
return obj, index_vars
def keep_levels(
self, level_variables: Mapping[Any, Variable]
) -> PandasMultiIndex | PandasIndex:
"""Keep only the provided levels and return a new multi-index with its
corresponding coordinates.
"""
index = self.index.droplevel(
[k for k in self.index.names if k not in level_variables]
)
if isinstance(index, pd.MultiIndex):
level_coords_dtype = {k: self.level_coords_dtype[k] for k in index.names}
return self._replace(index, level_coords_dtype=level_coords_dtype)
else:
# backward compatibility: rename the level coordinate to the dimension name
return PandasIndex(
index.rename(self.dim),
self.dim,
coord_dtype=self.level_coords_dtype[index.name],
)
def reorder_levels(
self, level_variables: Mapping[Any, Variable]
) -> PandasMultiIndex:
"""Re-arrange index levels using input order and return a new multi-index with
its corresponding coordinates.
"""
index = self.index.reorder_levels(level_variables.keys())
level_coords_dtype = {k: self.level_coords_dtype[k] for k in index.names}
return self._replace(index, level_coords_dtype=level_coords_dtype)
def create_variables(
self, variables: Mapping[Any, Variable] | None = None
) -> IndexVars:
from xarray.core.variable import IndexVariable
if variables is None:
variables = {}
index_vars: IndexVars = {}
for name in (self.dim,) + self.index.names:
if name == self.dim:
level = None
dtype = None
else:
level = name
dtype = self.level_coords_dtype[name]
var = variables.get(name, None)
if var is not None:
attrs = var.attrs
encoding = var.encoding
else:
attrs = {}
encoding = {}
data = PandasMultiIndexingAdapter(self.index, dtype=dtype, level=level)
index_vars[name] = IndexVariable(
self.dim,
data,
attrs=attrs,
encoding=encoding,
fastpath=True,
)
return index_vars
def sel(self, labels, method=None, tolerance=None) -> IndexSelResult:
from xarray.core.dataarray import DataArray
from xarray.core.variable import Variable
if method is not None or tolerance is not None:
raise ValueError(
"multi-index does not support ``method`` and ``tolerance``"
)
new_index = None
scalar_coord_values = {}
# label(s) given for multi-index level(s)
if all([lbl in self.index.names for lbl in labels]):
label_values = {}
for k, v in labels.items():
label_array = normalize_label(v, dtype=self.level_coords_dtype[k])
try:
label_values[k] = as_scalar(label_array)
except ValueError:
# label should be an item not an array-like
raise ValueError(
"Vectorized selection is not "
f"available along coordinate {k!r} (multi-index level)"
)
has_slice = any([isinstance(v, slice) for v in label_values.values()])
if len(label_values) == self.index.nlevels and not has_slice:
indexer = self.index.get_loc(
tuple(label_values[k] for k in self.index.names)
)
else:
indexer, new_index = self.index.get_loc_level(
tuple(label_values.values()), level=tuple(label_values.keys())
)
scalar_coord_values.update(label_values)
# GH2619. Raise a KeyError if nothing is chosen
if indexer.dtype.kind == "b" and indexer.sum() == 0:
raise KeyError(f"{labels} not found")
# assume one label value given for the multi-index "array" (dimension)
else:
if len(labels) > 1:
coord_name = next(iter(set(labels) - set(self.index.names)))
raise ValueError(
f"cannot provide labels for both coordinate {coord_name!r} (multi-index array) "
f"and one or more coordinates among {self.index.names!r} (multi-index levels)"
)
coord_name, label = next(iter(labels.items()))
if is_dict_like(label):
invalid_levels = [
name for name in label if name not in self.index.names
]
if invalid_levels:
raise ValueError(
f"invalid multi-index level names {invalid_levels}"
)
return self.sel(label)
elif isinstance(label, slice):
indexer = _query_slice(self.index, label, coord_name)
elif isinstance(label, tuple):
if _is_nested_tuple(label):
indexer = self.index.get_locs(label)
elif len(label) == self.index.nlevels:
indexer = self.index.get_loc(label)
else:
levels = [self.index.names[i] for i in range(len(label))]
indexer, new_index = self.index.get_loc_level(label, level=levels)
scalar_coord_values.update({k: v for k, v in zip(levels, label)})
else:
label_array = normalize_label(label)
if label_array.ndim == 0:
label_value = as_scalar(label_array)
indexer, new_index = self.index.get_loc_level(label_value, level=0)
scalar_coord_values[self.index.names[0]] = label_value
elif label_array.dtype.kind == "b":
indexer = label_array
else:
if label_array.ndim > 1:
raise ValueError(
"Vectorized selection is not available along "
f"coordinate {coord_name!r} with a multi-index"
)
indexer = get_indexer_nd(self.index, label_array)
if np.any(indexer < 0):
raise KeyError(f"not all values found in index {coord_name!r}")
# attach dimension names and/or coordinates to positional indexer
if isinstance(label, Variable):
indexer = Variable(label.dims, indexer)
elif isinstance(label, DataArray):
# do not include label-indexer DataArray coordinates that conflict
# with the level names of this index
coords = {
k: v
for k, v in label._coords.items()
if k not in self.index.names
}
indexer = DataArray(indexer, coords=coords, dims=label.dims)
if new_index is not None:
if isinstance(new_index, pd.MultiIndex):
level_coords_dtype = {
k: self.level_coords_dtype[k] for k in new_index.names
}
new_index = self._replace(
new_index, level_coords_dtype=level_coords_dtype
)
dims_dict = {}
drop_coords = []
else:
new_index = PandasIndex(
new_index,
new_index.name,
coord_dtype=self.level_coords_dtype[new_index.name],
)
dims_dict = {self.dim: new_index.index.name}
drop_coords = [self.dim]
# variable(s) attrs and encoding metadata are propagated
# when replacing the indexes in the resulting xarray object
new_vars = new_index.create_variables()
indexes = cast(Dict[Any, Index], {k: new_index for k in new_vars})
# add scalar variable for each dropped level
variables = new_vars
for name, val in scalar_coord_values.items():
variables[name] = Variable([], val)
return IndexSelResult(
{self.dim: indexer},
indexes=indexes,
variables=variables,
drop_indexes=list(scalar_coord_values),
drop_coords=drop_coords,
rename_dims=dims_dict,
)
else:
return IndexSelResult({self.dim: indexer})
def join(self, other, how: str = "inner"):
if how == "outer":
# bug in pandas? need to reset index.name
other_index = other.index.copy()
other_index.name = None
index = self.index.union(other_index)
index.name = self.dim
else:
# how = "inner"
index = self.index.intersection(other.index)
level_coords_dtype = {
k: np.result_type(lvl_dtype, other.level_coords_dtype[k])
for k, lvl_dtype in self.level_coords_dtype.items()
}
return type(self)(index, self.dim, level_coords_dtype=level_coords_dtype)
def rename(self, name_dict, dims_dict):
if not set(self.index.names) & set(name_dict) and self.dim not in dims_dict:
return self
# pandas 1.3.0: could simply do `self.index.rename(names_dict)`
new_names = [name_dict.get(k, k) for k in self.index.names]
index = self.index.rename(new_names)
new_dim = dims_dict.get(self.dim, self.dim)
new_level_coords_dtype = {
k: v for k, v in zip(new_names, self.level_coords_dtype.values())
}
return self._replace(
index, dim=new_dim, level_coords_dtype=new_level_coords_dtype
)
def create_default_index_implicit(
dim_variable: Variable,
all_variables: Mapping | Iterable[Hashable] | None = None,
) -> tuple[PandasIndex, IndexVars]:
"""Create a default index from a dimension variable.
Create a PandasMultiIndex if the given variable wraps a pandas.MultiIndex,
otherwise create a PandasIndex (note that this will become obsolete once we
depreciate implicitly passing a pandas.MultiIndex as a coordinate).
"""
if all_variables is None:
all_variables = {}
if not isinstance(all_variables, Mapping):
all_variables = {k: None for k in all_variables}
name = dim_variable.dims[0]
array = getattr(dim_variable._data, "array", None)
index: PandasIndex
if isinstance(array, pd.MultiIndex):
index = PandasMultiIndex(array, name)
index_vars = index.create_variables()
# check for conflict between level names and variable names
duplicate_names = [k for k in index_vars if k in all_variables and k != name]
if duplicate_names:
# dirty workaround for an edge case where both the dimension
# coordinate and the level coordinates are given for the same
# multi-index object => do not raise an error
# TODO: remove this check when removing the multi-index dimension coordinate
if len(duplicate_names) < len(index.index.names):
conflict = True
else:
duplicate_vars = [all_variables[k] for k in duplicate_names]
conflict = any(
v is None or not dim_variable.equals(v) for v in duplicate_vars
)
if conflict:
conflict_str = "\n".join(duplicate_names)
raise ValueError(
f"conflicting MultiIndex level / variable name(s):\n{conflict_str}"
)
else:
dim_var = {name: dim_variable}
index = PandasIndex.from_variables(dim_var, options={})
index_vars = index.create_variables(dim_var)
return index, index_vars
# generic type that represents either a pandas or an xarray index
T_PandasOrXarrayIndex = TypeVar("T_PandasOrXarrayIndex", Index, pd.Index)
class Indexes(collections.abc.Mapping, Generic[T_PandasOrXarrayIndex]):
"""Immutable proxy for Dataset or DataArrary indexes.
Keys are coordinate names and values may correspond to either pandas or
xarray indexes.
Also provides some utility methods.
"""
_indexes: dict[Any, T_PandasOrXarrayIndex]
_variables: dict[Any, Variable]
__slots__ = (
"_indexes",
"_variables",
"_dims",
"__coord_name_id",
"__id_index",
"__id_coord_names",
)
def __init__(
self,
indexes: dict[Any, T_PandasOrXarrayIndex],
variables: dict[Any, Variable],
):
"""Constructor not for public consumption.
Parameters
----------
indexes : dict
Indexes held by this object.
variables : dict
Indexed coordinate variables in this object.
"""
self._indexes = indexes
self._variables = variables
self._dims: Mapping[Hashable, int] | None = None
self.__coord_name_id: dict[Any, int] | None = None
self.__id_index: dict[int, T_PandasOrXarrayIndex] | None = None
self.__id_coord_names: dict[int, tuple[Hashable, ...]] | None = None
@property
def _coord_name_id(self) -> dict[Any, int]:
if self.__coord_name_id is None:
self.__coord_name_id = {k: id(idx) for k, idx in self._indexes.items()}
return self.__coord_name_id
@property
def _id_index(self) -> dict[int, T_PandasOrXarrayIndex]:
if self.__id_index is None:
self.__id_index = {id(idx): idx for idx in self.get_unique()}
return self.__id_index
@property
def _id_coord_names(self) -> dict[int, tuple[Hashable, ...]]:
if self.__id_coord_names is None:
id_coord_names: Mapping[int, list[Hashable]] = defaultdict(list)
for k, v in self._coord_name_id.items():
id_coord_names[v].append(k)
self.__id_coord_names = {k: tuple(v) for k, v in id_coord_names.items()}
return self.__id_coord_names
@property
def variables(self) -> Mapping[Hashable, Variable]:
return Frozen(self._variables)
@property
def dims(self) -> Mapping[Hashable, int]:
from xarray.core.variable import calculate_dimensions
if self._dims is None:
self._dims = calculate_dimensions(self._variables)
return Frozen(self._dims)
def copy(self) -> Indexes:
return type(self)(dict(self._indexes), dict(self._variables))
def get_unique(self) -> list[T_PandasOrXarrayIndex]:
"""Return a list of unique indexes, preserving order."""
unique_indexes: list[T_PandasOrXarrayIndex] = []
seen: set[int] = set()
for index in self._indexes.values():
index_id = id(index)
if index_id not in seen:
unique_indexes.append(index)
seen.add(index_id)
return unique_indexes
def is_multi(self, key: Hashable) -> bool:
"""Return True if ``key`` maps to a multi-coordinate index,
False otherwise.
"""
return len(self._id_coord_names[self._coord_name_id[key]]) > 1
def get_all_coords(
self, key: Hashable, errors: ErrorOptions = "raise"
) -> dict[Hashable, Variable]:
"""Return all coordinates having the same index.
Parameters
----------
key : hashable
Index key.
errors : {"raise", "ignore"}, default: "raise"
If "raise", raises a ValueError if `key` is not in indexes.
If "ignore", an empty tuple is returned instead.
Returns
-------
coords : dict
A dictionary of all coordinate variables having the same index.
"""
if errors not in ["raise", "ignore"]:
raise ValueError('errors must be either "raise" or "ignore"')
if key not in self._indexes:
if errors == "raise":
raise ValueError(f"no index found for {key!r} coordinate")
else:
return {}
all_coord_names = self._id_coord_names[self._coord_name_id[key]]
return {k: self._variables[k] for k in all_coord_names}
def get_all_dims(
self, key: Hashable, errors: ErrorOptions = "raise"
) -> Mapping[Hashable, int]:
"""Return all dimensions shared by an index.
Parameters
----------
key : hashable
Index key.
errors : {"raise", "ignore"}, default: "raise"
If "raise", raises a ValueError if `key` is not in indexes.
If "ignore", an empty tuple is returned instead.
Returns
-------
dims : dict
A dictionary of all dimensions shared by an index.
"""
from xarray.core.variable import calculate_dimensions
return calculate_dimensions(self.get_all_coords(key, errors=errors))
def group_by_index(
self,
) -> list[tuple[T_PandasOrXarrayIndex, dict[Hashable, Variable]]]:
"""Returns a list of unique indexes and their corresponding coordinates."""
index_coords = []
for i in self._id_index:
index = self._id_index[i]
coords = {k: self._variables[k] for k in self._id_coord_names[i]}
index_coords.append((index, coords))
return index_coords
def to_pandas_indexes(self) -> Indexes[pd.Index]:
"""Returns an immutable proxy for Dataset or DataArrary pandas indexes.
Raises an error if this proxy contains indexes that cannot be coerced to
pandas.Index objects.
"""
indexes: dict[Hashable, pd.Index] = {}
for k, idx in self._indexes.items():
if isinstance(idx, pd.Index):
indexes[k] = idx
elif isinstance(idx, Index):
indexes[k] = idx.to_pandas_index()
return Indexes(indexes, self._variables)
def copy_indexes(
self, deep: bool = True, memo: dict[int, Any] | None = None
) -> tuple[dict[Hashable, T_PandasOrXarrayIndex], dict[Hashable, Variable]]:
"""Return a new dictionary with copies of indexes, preserving
unique indexes.
Parameters
----------
deep : bool, default: True
Whether the indexes are deep or shallow copied onto the new object.
memo : dict if object id to copied objects or None, optional
To prevent infinite recursion deepcopy stores all copied elements
in this dict.
"""
new_indexes = {}
new_index_vars = {}
for idx, coords in self.group_by_index():
if isinstance(idx, pd.Index):
convert_new_idx = True
dim = next(iter(coords.values())).dims[0]
if isinstance(idx, pd.MultiIndex):
idx = PandasMultiIndex(idx, dim)
else:
idx = PandasIndex(idx, dim)
else:
convert_new_idx = False
new_idx = idx._copy(deep=deep, memo=memo)
idx_vars = idx.create_variables(coords)
if convert_new_idx:
new_idx = cast(PandasIndex, new_idx).index
new_indexes.update({k: new_idx for k in coords})
new_index_vars.update(idx_vars)
return new_indexes, new_index_vars
def __iter__(self) -> Iterator[T_PandasOrXarrayIndex]:
return iter(self._indexes)
def __len__(self) -> int:
return len(self._indexes)
def __contains__(self, key) -> bool:
return key in self._indexes
def __getitem__(self, key) -> T_PandasOrXarrayIndex:
return self._indexes[key]
def __repr__(self):
return formatting.indexes_repr(self)
def default_indexes(
coords: Mapping[Any, Variable], dims: Iterable
) -> dict[Hashable, Index]:
"""Default indexes for a Dataset/DataArray.
Parameters
----------
coords : Mapping[Any, xarray.Variable]
Coordinate variables from which to draw default indexes.
dims : iterable
Iterable of dimension names.
Returns
-------
Mapping from indexing keys (levels/dimension names) to indexes used for
indexing along that dimension.
"""
indexes: dict[Hashable, Index] = {}
coord_names = set(coords)
for name, var in coords.items():
if name in dims:
index, index_vars = create_default_index_implicit(var, coords)
if set(index_vars) <= coord_names:
indexes.update({k: index for k in index_vars})
return indexes
def indexes_equal(
index: Index,
other_index: Index,
variable: Variable,
other_variable: Variable,
cache: dict[tuple[int, int], bool | None] | None = None,
) -> bool:
"""Check if two indexes are equal, possibly with cached results.
If the two indexes are not of the same type or they do not implement
equality, fallback to coordinate labels equality check.
"""
if cache is None:
# dummy cache
cache = {}
key = (id(index), id(other_index))
equal: bool | None = None
if key not in cache:
if type(index) is type(other_index):
try:
equal = index.equals(other_index)
except NotImplementedError:
equal = None
else:
cache[key] = equal
else:
equal = None
else:
equal = cache[key]
if equal is None:
equal = variable.equals(other_variable)
return cast(bool, equal)
def indexes_all_equal(
elements: Sequence[tuple[Index, dict[Hashable, Variable]]]
) -> bool:
"""Check if indexes are all equal.
If they are not of the same type or they do not implement this check, check
if their coordinate variables are all equal instead.
"""
def check_variables():
variables = [e[1] for e in elements]
return any(
not variables[0][k].equals(other_vars[k])
for other_vars in variables[1:]
for k in variables[0]
)
indexes = [e[0] for e in elements]
same_objects = all(indexes[0] is other_idx for other_idx in indexes[1:])
if same_objects:
return True
same_type = all(type(indexes[0]) is type(other_idx) for other_idx in indexes[1:])
if same_type:
try:
not_equal = any(
not indexes[0].equals(other_idx) for other_idx in indexes[1:]
)
except NotImplementedError:
not_equal = check_variables()
else:
not_equal = check_variables()
return not not_equal
def _apply_indexes(
indexes: Indexes[Index],
args: Mapping[Any, Any],
func: str,
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
new_indexes: dict[Hashable, Index] = {k: v for k, v in indexes.items()}
new_index_variables: dict[Hashable, Variable] = {}
for index, index_vars in indexes.group_by_index():
index_dims = {d for var in index_vars.values() for d in var.dims}
index_args = {k: v for k, v in args.items() if k in index_dims}
if index_args:
new_index = getattr(index, func)(index_args)
if new_index is not None:
new_indexes.update({k: new_index for k in index_vars})
new_index_vars = new_index.create_variables(index_vars)
new_index_variables.update(new_index_vars)
else:
for k in index_vars:
new_indexes.pop(k, None)
return new_indexes, new_index_variables
def isel_indexes(
indexes: Indexes[Index],
indexers: Mapping[Any, Any],
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
return _apply_indexes(indexes, indexers, "isel")
def roll_indexes(
indexes: Indexes[Index],
shifts: Mapping[Any, int],
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
return _apply_indexes(indexes, shifts, "roll")
def filter_indexes_from_coords(
indexes: Mapping[Any, Index],
filtered_coord_names: set,
) -> dict[Hashable, Index]:
"""Filter index items given a (sub)set of coordinate names.
Drop all multi-coordinate related index items for any key missing in the set
of coordinate names.
"""
filtered_indexes: dict[Any, Index] = dict(**indexes)
index_coord_names: dict[Hashable, set[Hashable]] = defaultdict(set)
for name, idx in indexes.items():
index_coord_names[id(idx)].add(name)
for idx_coord_names in index_coord_names.values():
if not idx_coord_names <= filtered_coord_names:
for k in idx_coord_names:
del filtered_indexes[k]
return filtered_indexes
def assert_no_index_corrupted(
indexes: Indexes[Index],
coord_names: set[Hashable],
action: str = "remove coordinate(s)",
) -> None:
"""Assert removing coordinates or indexes will not corrupt indexes."""
# An index may be corrupted when the set of its corresponding coordinate name(s)
# partially overlaps the set of coordinate names to remove
for index, index_coords in indexes.group_by_index():
common_names = set(index_coords) & coord_names
if common_names and len(common_names) != len(index_coords):
common_names_str = ", ".join(f"{k!r}" for k in common_names)
index_names_str = ", ".join(f"{k!r}" for k in index_coords)
raise ValueError(
f"cannot {action} {common_names_str}, which would corrupt "
f"the following index built from coordinates {index_names_str}:\n"
f"{index}"
)
|