1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
from __future__ import annotations
import importlib
import platform
import warnings
from contextlib import contextmanager, nullcontext
from unittest import mock # noqa: F401
import numpy as np
import pandas as pd
import pytest
from numpy.testing import assert_array_equal # noqa: F401
from packaging.version import Version
from pandas.testing import assert_frame_equal # noqa: F401
import xarray.testing
from xarray import Dataset
from xarray.core import utils
from xarray.core.duck_array_ops import allclose_or_equiv # noqa: F401
from xarray.core.indexing import ExplicitlyIndexed
from xarray.core.options import set_options
from xarray.testing import ( # noqa: F401
assert_chunks_equal,
assert_duckarray_allclose,
assert_duckarray_equal,
)
# import mpl and change the backend before other mpl imports
try:
import matplotlib as mpl
# Order of imports is important here.
# Using a different backend makes Travis CI work
mpl.use("Agg")
except ImportError:
pass
# https://github.com/pydata/xarray/issues/7322
warnings.filterwarnings("ignore", "'urllib3.contrib.pyopenssl' module is deprecated")
arm_xfail = pytest.mark.xfail(
platform.machine() == "aarch64" or "arm" in platform.machine(),
reason="expected failure on ARM",
)
import platform
arm_xfail = pytest.mark.xfail(platform.machine() == 'aarch64' or
'arm' in platform.machine(), reason='expected failure on ARM')
def _importorskip(
modname: str, minversion: str | None = None
) -> tuple[bool, pytest.MarkDecorator]:
try:
mod = importlib.import_module(modname)
has = True
if minversion is not None:
if Version(mod.__version__) < Version(minversion):
raise ImportError("Minimum version not satisfied")
except ImportError:
has = False
func = pytest.mark.skipif(not has, reason=f"requires {modname}")
return has, func
has_matplotlib, requires_matplotlib = _importorskip("matplotlib")
has_scipy, requires_scipy = _importorskip("scipy")
has_pydap, requires_pydap = _importorskip("pydap.client")
has_netCDF4, requires_netCDF4 = _importorskip("netCDF4")
has_h5netcdf, requires_h5netcdf = _importorskip("h5netcdf")
has_h5netcdf_0_12, requires_h5netcdf_0_12 = _importorskip("h5netcdf", minversion="0.12")
has_pynio, requires_pynio = _importorskip("Nio")
has_pseudonetcdf, requires_pseudonetcdf = _importorskip("PseudoNetCDF")
has_cftime, requires_cftime = _importorskip("cftime")
has_dask, requires_dask = _importorskip("dask")
has_bottleneck, requires_bottleneck = _importorskip("bottleneck")
has_rasterio, requires_rasterio = _importorskip("rasterio")
has_zarr, requires_zarr = _importorskip("zarr")
has_fsspec, requires_fsspec = _importorskip("fsspec")
has_iris, requires_iris = _importorskip("iris")
has_cfgrib, requires_cfgrib = _importorskip("cfgrib")
has_numbagg, requires_numbagg = _importorskip("numbagg")
has_seaborn, requires_seaborn = _importorskip("seaborn")
has_sparse, requires_sparse = _importorskip("sparse")
has_cupy, requires_cupy = _importorskip("cupy")
has_cartopy, requires_cartopy = _importorskip("cartopy")
has_pint, requires_pint = _importorskip("pint")
has_numexpr, requires_numexpr = _importorskip("numexpr")
has_flox, requires_flox = _importorskip("flox")
# some special cases
has_scipy_or_netCDF4 = has_scipy or has_netCDF4
requires_scipy_or_netCDF4 = pytest.mark.skipif(
not has_scipy_or_netCDF4, reason="requires scipy or netCDF4"
)
# _importorskip does not work for development versions
has_pandas_version_two = Version(pd.__version__).major >= 2
requires_pandas_version_two = pytest.mark.skipif(
not has_pandas_version_two, reason="requires pandas 2.0.0"
)
# change some global options for tests
set_options(warn_for_unclosed_files=True)
if has_dask:
import dask
dask.config.set(scheduler="single-threaded")
class CountingScheduler:
"""Simple dask scheduler counting the number of computes.
Reference: https://stackoverflow.com/questions/53289286/"""
def __init__(self, max_computes=0):
self.total_computes = 0
self.max_computes = max_computes
def __call__(self, dsk, keys, **kwargs):
self.total_computes += 1
if self.total_computes > self.max_computes:
raise RuntimeError(
"Too many computes. Total: %d > max: %d."
% (self.total_computes, self.max_computes)
)
return dask.get(dsk, keys, **kwargs)
def raise_if_dask_computes(max_computes=0):
# return a dummy context manager so that this can be used for non-dask objects
if not has_dask:
return nullcontext()
scheduler = CountingScheduler(max_computes)
return dask.config.set(scheduler=scheduler)
flaky = pytest.mark.flaky
network = pytest.mark.network
class UnexpectedDataAccess(Exception):
pass
class InaccessibleArray(utils.NDArrayMixin, ExplicitlyIndexed):
def __init__(self, array):
self.array = array
def __getitem__(self, key):
raise UnexpectedDataAccess("Tried accessing data")
class ReturnItem:
def __getitem__(self, key):
return key
class IndexerMaker:
def __init__(self, indexer_cls):
self._indexer_cls = indexer_cls
def __getitem__(self, key):
if not isinstance(key, tuple):
key = (key,)
return self._indexer_cls(key)
def source_ndarray(array):
"""Given an ndarray, return the base object which holds its memory, or the
object itself.
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "DatetimeIndex.base")
warnings.filterwarnings("ignore", "TimedeltaIndex.base")
base = getattr(array, "base", np.asarray(array).base)
if base is None:
base = array
return base
@contextmanager
def assert_no_warnings():
with warnings.catch_warnings(record=True) as record:
yield record
assert len(record) == 0, "got unexpected warning(s)"
# Internal versions of xarray's test functions that validate additional
# invariants
def assert_equal(a, b, check_default_indexes=True):
__tracebackhide__ = True
xarray.testing.assert_equal(a, b)
xarray.testing._assert_internal_invariants(a, check_default_indexes)
xarray.testing._assert_internal_invariants(b, check_default_indexes)
def assert_identical(a, b, check_default_indexes=True):
__tracebackhide__ = True
xarray.testing.assert_identical(a, b)
xarray.testing._assert_internal_invariants(a, check_default_indexes)
xarray.testing._assert_internal_invariants(b, check_default_indexes)
def assert_allclose(a, b, check_default_indexes=True, **kwargs):
__tracebackhide__ = True
xarray.testing.assert_allclose(a, b, **kwargs)
xarray.testing._assert_internal_invariants(a, check_default_indexes)
xarray.testing._assert_internal_invariants(b, check_default_indexes)
def create_test_data(seed: int | None = None, add_attrs: bool = True) -> Dataset:
rs = np.random.RandomState(seed)
_vars = {
"var1": ["dim1", "dim2"],
"var2": ["dim1", "dim2"],
"var3": ["dim3", "dim1"],
}
_dims = {"dim1": 8, "dim2": 9, "dim3": 10}
obj = Dataset()
obj["dim2"] = ("dim2", 0.5 * np.arange(_dims["dim2"]))
obj["dim3"] = ("dim3", list("abcdefghij"))
obj["time"] = ("time", pd.date_range("2000-01-01", periods=20))
for v, dims in sorted(_vars.items()):
data = rs.normal(size=tuple(_dims[d] for d in dims))
obj[v] = (dims, data)
if add_attrs:
obj[v].attrs = {"foo": "variable"}
obj.coords["numbers"] = (
"dim3",
np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 3], dtype="int64"),
)
obj.encoding = {"foo": "bar"}
assert all(obj.data.flags.writeable for obj in obj.variables.values())
return obj
_CFTIME_CALENDARS = [
"365_day",
"360_day",
"julian",
"all_leap",
"366_day",
"gregorian",
"proleptic_gregorian",
"standard",
]
|