File: __init__.py

package info (click to toggle)
python-xarray 2023.01.0-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,980 kB
  • sloc: python: 86,209; makefile: 232; sh: 47
file content (251 lines) | stat: -rw-r--r-- 7,973 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from __future__ import annotations

import importlib
import platform
import warnings
from contextlib import contextmanager, nullcontext
from unittest import mock  # noqa: F401

import numpy as np
import pandas as pd
import pytest
from numpy.testing import assert_array_equal  # noqa: F401
from packaging.version import Version
from pandas.testing import assert_frame_equal  # noqa: F401

import xarray.testing
from xarray import Dataset
from xarray.core import utils
from xarray.core.duck_array_ops import allclose_or_equiv  # noqa: F401
from xarray.core.indexing import ExplicitlyIndexed
from xarray.core.options import set_options
from xarray.testing import (  # noqa: F401
    assert_chunks_equal,
    assert_duckarray_allclose,
    assert_duckarray_equal,
)

# import mpl and change the backend before other mpl imports
try:
    import matplotlib as mpl

    # Order of imports is important here.
    # Using a different backend makes Travis CI work
    mpl.use("Agg")
except ImportError:
    pass

# https://github.com/pydata/xarray/issues/7322
warnings.filterwarnings("ignore", "'urllib3.contrib.pyopenssl' module is deprecated")

arm_xfail = pytest.mark.xfail(
    platform.machine() == "aarch64" or "arm" in platform.machine(),
    reason="expected failure on ARM",
)

import platform
arm_xfail = pytest.mark.xfail(platform.machine() == 'aarch64' or
    'arm' in platform.machine(), reason='expected failure on ARM')

def _importorskip(
    modname: str, minversion: str | None = None
) -> tuple[bool, pytest.MarkDecorator]:
    try:
        mod = importlib.import_module(modname)
        has = True
        if minversion is not None:
            if Version(mod.__version__) < Version(minversion):
                raise ImportError("Minimum version not satisfied")
    except ImportError:
        has = False
    func = pytest.mark.skipif(not has, reason=f"requires {modname}")
    return has, func


has_matplotlib, requires_matplotlib = _importorskip("matplotlib")
has_scipy, requires_scipy = _importorskip("scipy")
has_pydap, requires_pydap = _importorskip("pydap.client")
has_netCDF4, requires_netCDF4 = _importorskip("netCDF4")
has_h5netcdf, requires_h5netcdf = _importorskip("h5netcdf")
has_h5netcdf_0_12, requires_h5netcdf_0_12 = _importorskip("h5netcdf", minversion="0.12")
has_pynio, requires_pynio = _importorskip("Nio")
has_pseudonetcdf, requires_pseudonetcdf = _importorskip("PseudoNetCDF")
has_cftime, requires_cftime = _importorskip("cftime")
has_dask, requires_dask = _importorskip("dask")
has_bottleneck, requires_bottleneck = _importorskip("bottleneck")
has_rasterio, requires_rasterio = _importorskip("rasterio")
has_zarr, requires_zarr = _importorskip("zarr")
has_fsspec, requires_fsspec = _importorskip("fsspec")
has_iris, requires_iris = _importorskip("iris")
has_cfgrib, requires_cfgrib = _importorskip("cfgrib")
has_numbagg, requires_numbagg = _importorskip("numbagg")
has_seaborn, requires_seaborn = _importorskip("seaborn")
has_sparse, requires_sparse = _importorskip("sparse")
has_cupy, requires_cupy = _importorskip("cupy")
has_cartopy, requires_cartopy = _importorskip("cartopy")
has_pint, requires_pint = _importorskip("pint")
has_numexpr, requires_numexpr = _importorskip("numexpr")
has_flox, requires_flox = _importorskip("flox")


# some special cases
has_scipy_or_netCDF4 = has_scipy or has_netCDF4
requires_scipy_or_netCDF4 = pytest.mark.skipif(
    not has_scipy_or_netCDF4, reason="requires scipy or netCDF4"
)
# _importorskip does not work for development versions
has_pandas_version_two = Version(pd.__version__).major >= 2
requires_pandas_version_two = pytest.mark.skipif(
    not has_pandas_version_two, reason="requires pandas 2.0.0"
)

# change some global options for tests
set_options(warn_for_unclosed_files=True)

if has_dask:
    import dask

    dask.config.set(scheduler="single-threaded")


class CountingScheduler:
    """Simple dask scheduler counting the number of computes.

    Reference: https://stackoverflow.com/questions/53289286/"""

    def __init__(self, max_computes=0):
        self.total_computes = 0
        self.max_computes = max_computes

    def __call__(self, dsk, keys, **kwargs):
        self.total_computes += 1
        if self.total_computes > self.max_computes:
            raise RuntimeError(
                "Too many computes. Total: %d > max: %d."
                % (self.total_computes, self.max_computes)
            )
        return dask.get(dsk, keys, **kwargs)


def raise_if_dask_computes(max_computes=0):
    # return a dummy context manager so that this can be used for non-dask objects
    if not has_dask:
        return nullcontext()
    scheduler = CountingScheduler(max_computes)
    return dask.config.set(scheduler=scheduler)


flaky = pytest.mark.flaky
network = pytest.mark.network


class UnexpectedDataAccess(Exception):
    pass


class InaccessibleArray(utils.NDArrayMixin, ExplicitlyIndexed):
    def __init__(self, array):
        self.array = array

    def __getitem__(self, key):
        raise UnexpectedDataAccess("Tried accessing data")


class ReturnItem:
    def __getitem__(self, key):
        return key


class IndexerMaker:
    def __init__(self, indexer_cls):
        self._indexer_cls = indexer_cls

    def __getitem__(self, key):
        if not isinstance(key, tuple):
            key = (key,)
        return self._indexer_cls(key)


def source_ndarray(array):
    """Given an ndarray, return the base object which holds its memory, or the
    object itself.
    """
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "DatetimeIndex.base")
        warnings.filterwarnings("ignore", "TimedeltaIndex.base")
        base = getattr(array, "base", np.asarray(array).base)
    if base is None:
        base = array
    return base


@contextmanager
def assert_no_warnings():

    with warnings.catch_warnings(record=True) as record:
        yield record
        assert len(record) == 0, "got unexpected warning(s)"


# Internal versions of xarray's test functions that validate additional
# invariants


def assert_equal(a, b, check_default_indexes=True):
    __tracebackhide__ = True
    xarray.testing.assert_equal(a, b)
    xarray.testing._assert_internal_invariants(a, check_default_indexes)
    xarray.testing._assert_internal_invariants(b, check_default_indexes)


def assert_identical(a, b, check_default_indexes=True):
    __tracebackhide__ = True
    xarray.testing.assert_identical(a, b)
    xarray.testing._assert_internal_invariants(a, check_default_indexes)
    xarray.testing._assert_internal_invariants(b, check_default_indexes)


def assert_allclose(a, b, check_default_indexes=True, **kwargs):
    __tracebackhide__ = True
    xarray.testing.assert_allclose(a, b, **kwargs)
    xarray.testing._assert_internal_invariants(a, check_default_indexes)
    xarray.testing._assert_internal_invariants(b, check_default_indexes)


def create_test_data(seed: int | None = None, add_attrs: bool = True) -> Dataset:
    rs = np.random.RandomState(seed)
    _vars = {
        "var1": ["dim1", "dim2"],
        "var2": ["dim1", "dim2"],
        "var3": ["dim3", "dim1"],
    }
    _dims = {"dim1": 8, "dim2": 9, "dim3": 10}

    obj = Dataset()
    obj["dim2"] = ("dim2", 0.5 * np.arange(_dims["dim2"]))
    obj["dim3"] = ("dim3", list("abcdefghij"))
    obj["time"] = ("time", pd.date_range("2000-01-01", periods=20))
    for v, dims in sorted(_vars.items()):
        data = rs.normal(size=tuple(_dims[d] for d in dims))
        obj[v] = (dims, data)
        if add_attrs:
            obj[v].attrs = {"foo": "variable"}
    obj.coords["numbers"] = (
        "dim3",
        np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 3], dtype="int64"),
    )
    obj.encoding = {"foo": "bar"}
    assert all(obj.data.flags.writeable for obj in obj.variables.values())
    return obj


_CFTIME_CALENDARS = [
    "365_day",
    "360_day",
    "julian",
    "all_leap",
    "366_day",
    "gregorian",
    "proleptic_gregorian",
    "standard",
]