1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
from __future__ import annotations
import warnings
import pytest
import xarray as xr
from xarray.testing import assert_equal
np = pytest.importorskip("numpy", minversion="1.22")
with warnings.catch_warnings():
warnings.simplefilter("ignore")
import numpy.array_api as xp # isort:skip
from numpy.array_api._array_object import Array # isort:skip
@pytest.fixture
def arrays() -> tuple[xr.DataArray, xr.DataArray]:
np_arr = xr.DataArray(
np.array([[1.0, 2.0, 3.0], [4.0, 5.0, np.nan]]),
dims=("x", "y"),
coords={"x": [10, 20]},
)
xp_arr = xr.DataArray(
xp.asarray([[1.0, 2.0, 3.0], [4.0, 5.0, np.nan]]),
dims=("x", "y"),
coords={"x": [10, 20]},
)
assert isinstance(xp_arr.data, Array)
return np_arr, xp_arr
def test_arithmetic(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr + 7
actual = xp_arr + 7
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_aggregation(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr.sum()
actual = xp_arr.sum()
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_aggregation_skipna(arrays) -> None:
np_arr, xp_arr = arrays
expected = np_arr.sum(skipna=False)
actual = xp_arr.sum(skipna=False)
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_astype(arrays) -> None:
np_arr, xp_arr = arrays
expected = np_arr.astype(np.int64)
actual = xp_arr.astype(np.int64)
assert actual.dtype == np.int64
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_broadcast(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
np_arr2 = xr.DataArray(np.array([1.0, 2.0]), dims="x")
xp_arr2 = xr.DataArray(xp.asarray([1.0, 2.0]), dims="x")
expected = xr.broadcast(np_arr, np_arr2)
actual = xr.broadcast(xp_arr, xp_arr2)
assert len(actual) == len(expected)
for a, e in zip(actual, expected):
assert isinstance(a.data, Array)
assert_equal(a, e)
def test_concat(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = xr.concat((np_arr, np_arr), dim="x")
actual = xr.concat((xp_arr, xp_arr), dim="x")
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_indexing(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr[:, 0]
actual = xp_arr[:, 0]
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_properties(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
assert np_arr.nbytes == np_arr.data.nbytes
assert xp_arr.nbytes == np_arr.data.nbytes
def test_reorganizing_operation(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr.transpose()
actual = xp_arr.transpose()
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_stack(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr.stack(z=("x", "y"))
actual = xp_arr.stack(z=("x", "y"))
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_where() -> None:
np_arr = xr.DataArray(np.array([1, 0]), dims="x")
xp_arr = xr.DataArray(xp.asarray([1, 0]), dims="x")
expected = xr.where(np_arr, 1, 0)
actual = xr.where(xp_arr, 1, 0)
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
|