1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
from __future__ import annotations
from numbers import Number
import numpy as np
import pytest
import xarray as xr
from xarray.backends.api import _get_default_engine
from xarray.tests import (
assert_identical,
assert_no_warnings,
requires_dask,
requires_netCDF4,
requires_scipy,
)
@requires_netCDF4
@requires_scipy
def test__get_default_engine() -> None:
engine_remote = _get_default_engine("http://example.org/test.nc", allow_remote=True)
assert engine_remote == "netcdf4"
engine_gz = _get_default_engine("/example.gz")
assert engine_gz == "scipy"
engine_default = _get_default_engine("/example")
assert engine_default == "netcdf4"
def test_custom_engine() -> None:
expected = xr.Dataset(
dict(a=2 * np.arange(5)), coords=dict(x=("x", np.arange(5), dict(units="s")))
)
class CustomBackend(xr.backends.BackendEntrypoint):
def open_dataset(
self,
filename_or_obj,
drop_variables=None,
**kwargs,
) -> xr.Dataset:
return expected.copy(deep=True)
actual = xr.open_dataset("fake_filename", engine=CustomBackend)
assert_identical(expected, actual)
def test_multiindex() -> None:
# GH7139
# Check that we properly handle backends that change index variables
dataset = xr.Dataset(coords={"coord1": ["A", "B"], "coord2": [1, 2]})
dataset = dataset.stack(z=["coord1", "coord2"])
class MultiindexBackend(xr.backends.BackendEntrypoint):
def open_dataset(
self,
filename_or_obj,
drop_variables=None,
**kwargs,
) -> xr.Dataset:
return dataset.copy(deep=True)
loaded = xr.open_dataset("fake_filename", engine=MultiindexBackend)
assert_identical(dataset, loaded)
class PassThroughBackendEntrypoint(xr.backends.BackendEntrypoint):
"""Access an object passed to the `open_dataset` method."""
def open_dataset(self, dataset, *, drop_variables=None):
"""Return the first argument."""
return dataset
def explicit_chunks(chunks, shape):
"""Return explicit chunks, expanding any integer member to a tuple of integers."""
# Emulate `dask.array.core.normalize_chunks` but for simpler inputs.
return tuple(
(
(size // chunk) * (chunk,)
+ ((size % chunk,) if size % chunk or size == 0 else ())
)
if isinstance(chunk, Number)
else chunk
for chunk, size in zip(chunks, shape)
)
@requires_dask
class TestPreferredChunks:
"""Test behaviors related to the backend's preferred chunks."""
var_name = "data"
def create_dataset(self, shape, pref_chunks):
"""Return a dataset with a variable with the given shape and preferred chunks."""
dims = tuple(f"dim_{idx}" for idx in range(len(shape)))
return xr.Dataset(
{
self.var_name: xr.Variable(
dims,
np.empty(shape, dtype=np.dtype("V1")),
encoding={"preferred_chunks": dict(zip(dims, pref_chunks))},
)
}
)
def check_dataset(self, initial, final, expected_chunks):
assert_identical(initial, final)
assert final[self.var_name].chunks == expected_chunks
@pytest.mark.parametrize(
"shape,pref_chunks",
[
# Represent preferred chunking with int.
((5,), (2,)),
# Represent preferred chunking with tuple.
((5,), ((2, 2, 1),)),
# Represent preferred chunking with int in two dims.
((5, 6), (4, 2)),
# Represent preferred chunking with tuple in second dim.
((5, 6), (4, (2, 2, 2))),
],
)
@pytest.mark.parametrize("request_with_empty_map", [False, True])
def test_honor_chunks(self, shape, pref_chunks, request_with_empty_map):
"""Honor the backend's preferred chunks when opening a dataset."""
initial = self.create_dataset(shape, pref_chunks)
# To keep the backend's preferred chunks, the `chunks` argument must be an
# empty mapping or map dimensions to `None`.
chunks = (
{}
if request_with_empty_map
else dict.fromkeys(initial[self.var_name].dims, None)
)
final = xr.open_dataset(
initial, engine=PassThroughBackendEntrypoint, chunks=chunks
)
self.check_dataset(initial, final, explicit_chunks(pref_chunks, shape))
@pytest.mark.parametrize(
"shape,pref_chunks,req_chunks",
[
# Preferred chunking is int; requested chunking is int.
((5,), (2,), (3,)),
# Preferred chunking is int; requested chunking is tuple.
((5,), (2,), ((2, 1, 1, 1),)),
# Preferred chunking is tuple; requested chunking is int.
((5,), ((2, 2, 1),), (3,)),
# Preferred chunking is tuple; requested chunking is tuple.
((5,), ((2, 2, 1),), ((2, 1, 1, 1),)),
# Split chunks along a dimension other than the first.
((1, 5), (1, 2), (1, 3)),
],
)
def test_split_chunks(self, shape, pref_chunks, req_chunks):
"""Warn when the requested chunks separate the backend's preferred chunks."""
initial = self.create_dataset(shape, pref_chunks)
with pytest.warns(UserWarning):
final = xr.open_dataset(
initial,
engine=PassThroughBackendEntrypoint,
chunks=dict(zip(initial[self.var_name].dims, req_chunks)),
)
self.check_dataset(initial, final, explicit_chunks(req_chunks, shape))
@pytest.mark.parametrize(
"shape,pref_chunks,req_chunks",
[
# Keep preferred chunks using int representation.
((5,), (2,), (2,)),
# Keep preferred chunks using tuple representation.
((5,), (2,), ((2, 2, 1),)),
# Join chunks, leaving a final short chunk.
((5,), (2,), (4,)),
# Join all chunks with an int larger than the dimension size.
((5,), (2,), (6,)),
# Join one chunk using tuple representation.
((5,), (1,), ((1, 1, 2, 1),)),
# Join one chunk using int representation.
((5,), ((1, 1, 2, 1),), (2,)),
# Join multiple chunks using tuple representation.
((5,), ((1, 1, 2, 1),), ((2, 3),)),
# Join chunks in multiple dimensions.
((5, 5), (2, (1, 1, 2, 1)), (4, (2, 3))),
],
)
def test_join_chunks(self, shape, pref_chunks, req_chunks):
"""Don't warn when the requested chunks join or keep the preferred chunks."""
initial = self.create_dataset(shape, pref_chunks)
with assert_no_warnings():
final = xr.open_dataset(
initial,
engine=PassThroughBackendEntrypoint,
chunks=dict(zip(initial[self.var_name].dims, req_chunks)),
)
self.check_dataset(initial, final, explicit_chunks(req_chunks, shape))
|