1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
from __future__ import annotations
import sys
from textwrap import dedent
import numpy as np
import pandas as pd
import pytest
from numpy.core import defchararray
import xarray as xr
from xarray.core import formatting
from xarray.tests import requires_dask, requires_netCDF4
class TestFormatting:
def test_get_indexer_at_least_n_items(self) -> None:
cases = [
((20,), (slice(10),), (slice(-10, None),)),
((3, 20), (0, slice(10)), (-1, slice(-10, None))),
((2, 10), (0, slice(10)), (-1, slice(-10, None))),
((2, 5), (slice(2), slice(None)), (slice(-2, None), slice(None))),
((1, 2, 5), (0, slice(2), slice(None)), (-1, slice(-2, None), slice(None))),
((2, 3, 5), (0, slice(2), slice(None)), (-1, slice(-2, None), slice(None))),
(
(1, 10, 1),
(0, slice(10), slice(None)),
(-1, slice(-10, None), slice(None)),
),
(
(2, 5, 1),
(slice(2), slice(None), slice(None)),
(slice(-2, None), slice(None), slice(None)),
),
((2, 5, 3), (0, slice(4), slice(None)), (-1, slice(-4, None), slice(None))),
(
(2, 3, 3),
(slice(2), slice(None), slice(None)),
(slice(-2, None), slice(None), slice(None)),
),
]
for shape, start_expected, end_expected in cases:
actual = formatting._get_indexer_at_least_n_items(shape, 10, from_end=False)
assert start_expected == actual
actual = formatting._get_indexer_at_least_n_items(shape, 10, from_end=True)
assert end_expected == actual
def test_first_n_items(self) -> None:
array = np.arange(100).reshape(10, 5, 2)
for n in [3, 10, 13, 100, 200]:
actual = formatting.first_n_items(array, n)
expected = array.flat[:n]
assert (expected == actual).all()
with pytest.raises(ValueError, match=r"at least one item"):
formatting.first_n_items(array, 0)
def test_last_n_items(self) -> None:
array = np.arange(100).reshape(10, 5, 2)
for n in [3, 10, 13, 100, 200]:
actual = formatting.last_n_items(array, n)
expected = array.flat[-n:]
assert (expected == actual).all()
with pytest.raises(ValueError, match=r"at least one item"):
formatting.first_n_items(array, 0)
def test_last_item(self) -> None:
array = np.arange(100)
reshape = ((10, 10), (1, 100), (2, 2, 5, 5))
expected = np.array([99])
for r in reshape:
result = formatting.last_item(array.reshape(r))
assert result == expected
def test_format_item(self) -> None:
cases = [
(pd.Timestamp("2000-01-01T12"), "2000-01-01T12:00:00"),
(pd.Timestamp("2000-01-01"), "2000-01-01"),
(pd.Timestamp("NaT"), "NaT"),
(pd.Timedelta("10 days 1 hour"), "10 days 01:00:00"),
(pd.Timedelta("-3 days"), "-3 days +00:00:00"),
(pd.Timedelta("3 hours"), "0 days 03:00:00"),
(pd.Timedelta("NaT"), "NaT"),
("foo", "'foo'"),
(b"foo", "b'foo'"),
(1, "1"),
(1.0, "1.0"),
(np.float16(1.1234), "1.123"),
(np.float32(1.0111111), "1.011"),
(np.float64(22.222222), "22.22"),
]
for item, expected in cases:
actual = formatting.format_item(item)
assert expected == actual
def test_format_items(self) -> None:
cases = [
(np.arange(4) * np.timedelta64(1, "D"), "0 days 1 days 2 days 3 days"),
(
np.arange(4) * np.timedelta64(3, "h"),
"00:00:00 03:00:00 06:00:00 09:00:00",
),
(
np.arange(4) * np.timedelta64(500, "ms"),
"00:00:00 00:00:00.500000 00:00:01 00:00:01.500000",
),
(pd.to_timedelta(["NaT", "0s", "1s", "NaT"]), "NaT 00:00:00 00:00:01 NaT"),
(
pd.to_timedelta(["1 day 1 hour", "1 day", "0 hours"]),
"1 days 01:00:00 1 days 00:00:00 0 days 00:00:00",
),
([1, 2, 3], "1 2 3"),
]
for item, expected in cases:
actual = " ".join(formatting.format_items(item))
assert expected == actual
def test_format_array_flat(self) -> None:
actual = formatting.format_array_flat(np.arange(100), 2)
expected = "..."
assert expected == actual
actual = formatting.format_array_flat(np.arange(100), 9)
expected = "0 ... 99"
assert expected == actual
actual = formatting.format_array_flat(np.arange(100), 10)
expected = "0 1 ... 99"
assert expected == actual
actual = formatting.format_array_flat(np.arange(100), 13)
expected = "0 1 ... 98 99"
assert expected == actual
actual = formatting.format_array_flat(np.arange(100), 15)
expected = "0 1 2 ... 98 99"
assert expected == actual
# NB: Probably not ideal; an alternative would be cutting after the
# first ellipsis
actual = formatting.format_array_flat(np.arange(100.0), 11)
expected = "0.0 ... ..."
assert expected == actual
actual = formatting.format_array_flat(np.arange(100.0), 12)
expected = "0.0 ... 99.0"
assert expected == actual
actual = formatting.format_array_flat(np.arange(3), 5)
expected = "0 1 2"
assert expected == actual
actual = formatting.format_array_flat(np.arange(4.0), 11)
expected = "0.0 ... 3.0"
assert expected == actual
actual = formatting.format_array_flat(np.arange(0), 0)
expected = ""
assert expected == actual
actual = formatting.format_array_flat(np.arange(1), 1)
expected = "0"
assert expected == actual
actual = formatting.format_array_flat(np.arange(2), 3)
expected = "0 1"
assert expected == actual
actual = formatting.format_array_flat(np.arange(4), 7)
expected = "0 1 2 3"
assert expected == actual
actual = formatting.format_array_flat(np.arange(5), 7)
expected = "0 ... 4"
assert expected == actual
long_str = [" ".join(["hello world" for _ in range(100)])]
actual = formatting.format_array_flat(np.asarray([long_str]), 21)
expected = "'hello world hello..."
assert expected == actual
def test_pretty_print(self) -> None:
assert formatting.pretty_print("abcdefghij", 8) == "abcde..."
assert formatting.pretty_print("ß", 1) == "ß"
def test_maybe_truncate(self) -> None:
assert formatting.maybe_truncate("ß", 10) == "ß"
def test_format_timestamp_invalid_pandas_format(self) -> None:
expected = "2021-12-06 17:00:00 00"
with pytest.raises(ValueError):
formatting.format_timestamp(expected)
def test_format_timestamp_out_of_bounds(self) -> None:
from datetime import datetime
date = datetime(1300, 12, 1)
expected = "1300-12-01"
result = formatting.format_timestamp(date)
assert result == expected
date = datetime(2300, 12, 1)
expected = "2300-12-01"
result = formatting.format_timestamp(date)
assert result == expected
def test_attribute_repr(self) -> None:
short = formatting.summarize_attr("key", "Short string")
long = formatting.summarize_attr("key", 100 * "Very long string ")
newlines = formatting.summarize_attr("key", "\n\n\n")
tabs = formatting.summarize_attr("key", "\t\t\t")
assert short == " key: Short string"
assert len(long) <= 80
assert long.endswith("...")
assert "\n" not in newlines
assert "\t" not in tabs
def test_index_repr(self):
from xarray.core.indexes import Index
class CustomIndex(Index):
def __init__(self, names):
self.names = names
def __repr__(self):
return f"CustomIndex(coords={self.names})"
coord_names = ["x", "y"]
index = CustomIndex(coord_names)
name = "x"
normal = formatting.summarize_index(name, index, col_width=20)
assert name in normal
assert "CustomIndex" in normal
CustomIndex._repr_inline_ = (
lambda self, max_width: f"CustomIndex[{', '.join(self.names)}]"
)
inline = formatting.summarize_index(name, index, col_width=20)
assert name in inline
assert index._repr_inline_(max_width=40) in inline
def test_diff_array_repr(self) -> None:
da_a = xr.DataArray(
np.array([[1, 2, 3], [4, 5, 6]], dtype="int64"),
dims=("x", "y"),
coords={
"x": np.array(["a", "b"], dtype="U1"),
"y": np.array([1, 2, 3], dtype="int64"),
},
attrs={"units": "m", "description": "desc"},
)
da_b = xr.DataArray(
np.array([1, 2], dtype="int64"),
dims="x",
coords={
"x": np.array(["a", "c"], dtype="U1"),
"label": ("x", np.array([1, 2], dtype="int64")),
},
attrs={"units": "kg"},
)
byteorder = "<" if sys.byteorder == "little" else ">"
expected = dedent(
"""\
Left and right DataArray objects are not identical
Differing dimensions:
(x: 2, y: 3) != (x: 2)
Differing values:
L
array([[1, 2, 3],
[4, 5, 6]], dtype=int64)
R
array([1, 2], dtype=int64)
Differing coordinates:
L * x (x) %cU1 'a' 'b'
R * x (x) %cU1 'a' 'c'
Coordinates only on the left object:
* y (y) int64 1 2 3
Coordinates only on the right object:
label (x) int64 1 2
Differing attributes:
L units: m
R units: kg
Attributes only on the left object:
description: desc"""
% (byteorder, byteorder)
)
actual = formatting.diff_array_repr(da_a, da_b, "identical")
try:
assert actual == expected
except AssertionError:
# depending on platform, dtype may not be shown in numpy array repr
assert actual == expected.replace(", dtype=int64", "")
va = xr.Variable(
"x", np.array([1, 2, 3], dtype="int64"), {"title": "test Variable"}
)
vb = xr.Variable(("x", "y"), np.array([[1, 2, 3], [4, 5, 6]], dtype="int64"))
expected = dedent(
"""\
Left and right Variable objects are not equal
Differing dimensions:
(x: 3) != (x: 2, y: 3)
Differing values:
L
array([1, 2, 3], dtype=int64)
R
array([[1, 2, 3],
[4, 5, 6]], dtype=int64)"""
)
actual = formatting.diff_array_repr(va, vb, "equals")
try:
assert actual == expected
except AssertionError:
assert actual == expected.replace(", dtype=int64", "")
@pytest.mark.filterwarnings("error")
def test_diff_attrs_repr_with_array(self) -> None:
attrs_a = {"attr": np.array([0, 1])}
attrs_b = {"attr": 1}
expected = dedent(
"""\
Differing attributes:
L attr: [0 1]
R attr: 1
"""
).strip()
actual = formatting.diff_attrs_repr(attrs_a, attrs_b, "equals")
assert expected == actual
attrs_c = {"attr": np.array([-3, 5])}
expected = dedent(
"""\
Differing attributes:
L attr: [0 1]
R attr: [-3 5]
"""
).strip()
actual = formatting.diff_attrs_repr(attrs_a, attrs_c, "equals")
assert expected == actual
# should not raise a warning
attrs_c = {"attr": np.array([0, 1, 2])}
expected = dedent(
"""\
Differing attributes:
L attr: [0 1]
R attr: [0 1 2]
"""
).strip()
actual = formatting.diff_attrs_repr(attrs_a, attrs_c, "equals")
assert expected == actual
def test_diff_dataset_repr(self) -> None:
ds_a = xr.Dataset(
data_vars={
"var1": (("x", "y"), np.array([[1, 2, 3], [4, 5, 6]], dtype="int64")),
"var2": ("x", np.array([3, 4], dtype="int64")),
},
coords={
"x": np.array(["a", "b"], dtype="U1"),
"y": np.array([1, 2, 3], dtype="int64"),
},
attrs={"units": "m", "description": "desc"},
)
ds_b = xr.Dataset(
data_vars={"var1": ("x", np.array([1, 2], dtype="int64"))},
coords={
"x": ("x", np.array(["a", "c"], dtype="U1"), {"source": 0}),
"label": ("x", np.array([1, 2], dtype="int64")),
},
attrs={"units": "kg"},
)
byteorder = "<" if sys.byteorder == "little" else ">"
expected = dedent(
"""\
Left and right Dataset objects are not identical
Differing dimensions:
(x: 2, y: 3) != (x: 2)
Differing coordinates:
L * x (x) %cU1 'a' 'b'
R * x (x) %cU1 'a' 'c'
source: 0
Coordinates only on the left object:
* y (y) int64 1 2 3
Coordinates only on the right object:
label (x) int64 1 2
Differing data variables:
L var1 (x, y) int64 1 2 3 4 5 6
R var1 (x) int64 1 2
Data variables only on the left object:
var2 (x) int64 3 4
Differing attributes:
L units: m
R units: kg
Attributes only on the left object:
description: desc"""
% (byteorder, byteorder)
)
actual = formatting.diff_dataset_repr(ds_a, ds_b, "identical")
assert actual == expected
def test_array_repr(self) -> None:
ds = xr.Dataset(coords={"foo": [1, 2, 3], "bar": [1, 2, 3]})
ds[(1, 2)] = xr.DataArray([0], dims="test")
ds_12 = ds[(1, 2)]
# Test repr function behaves correctly:
actual = formatting.array_repr(ds_12)
expected = dedent(
"""\
<xarray.DataArray (1, 2) (test: 1)>
array([0])
Dimensions without coordinates: test"""
)
assert actual == expected
# Test repr, str prints returns correctly as well:
assert repr(ds_12) == expected
assert str(ds_12) == expected
# f-strings (aka format(...)) by default should use the repr:
actual = f"{ds_12}"
assert actual == expected
with xr.set_options(display_expand_data=False):
actual = formatting.array_repr(ds[(1, 2)])
expected = dedent(
"""\
<xarray.DataArray (1, 2) (test: 1)>
0
Dimensions without coordinates: test"""
)
assert actual == expected
def test_array_repr_variable(self) -> None:
var = xr.Variable("x", [0, 1])
formatting.array_repr(var)
with xr.set_options(display_expand_data=False):
formatting.array_repr(var)
def test_array_repr_recursive(self) -> None:
# GH:issue:7111
# direct recurion
var = xr.Variable("x", [0, 1])
var.attrs["x"] = var
formatting.array_repr(var)
da = xr.DataArray([0, 1], dims=["x"])
da.attrs["x"] = da
formatting.array_repr(da)
# indirect recursion
var.attrs["x"] = da
da.attrs["x"] = var
formatting.array_repr(var)
formatting.array_repr(da)
@requires_dask
def test_array_scalar_format(self) -> None:
# Test numpy scalars:
var = xr.DataArray(np.array(0))
assert format(var, "") == repr(var)
assert format(var, "d") == "0"
assert format(var, ".2f") == "0.00"
# Test dask scalars, not supported however:
import dask.array as da
var = xr.DataArray(da.array(0))
assert format(var, "") == repr(var)
with pytest.raises(TypeError) as excinfo:
format(var, ".2f")
assert "unsupported format string passed to" in str(excinfo.value)
# Test numpy arrays raises:
var = xr.DataArray([0.1, 0.2])
with pytest.raises(NotImplementedError) as excinfo: # type: ignore
format(var, ".2f")
assert "Using format_spec is only supported" in str(excinfo.value)
def test_inline_variable_array_repr_custom_repr() -> None:
class CustomArray:
def __init__(self, value, attr):
self.value = value
self.attr = attr
def _repr_inline_(self, width):
formatted = f"({self.attr}) {self.value}"
if len(formatted) > width:
formatted = f"({self.attr}) ..."
return formatted
def __array_function__(self, *args, **kwargs):
return NotImplemented
@property
def shape(self) -> tuple[int, ...]:
return self.value.shape
@property
def dtype(self):
return self.value.dtype
@property
def ndim(self):
return self.value.ndim
value = CustomArray(np.array([20, 40]), "m")
variable = xr.Variable("x", value)
max_width = 10
actual = formatting.inline_variable_array_repr(variable, max_width=10)
assert actual == value._repr_inline_(max_width)
def test_set_numpy_options() -> None:
original_options = np.get_printoptions()
with formatting.set_numpy_options(threshold=10):
assert len(repr(np.arange(500))) < 200
# original options are restored
assert np.get_printoptions() == original_options
def test_short_numpy_repr() -> None:
cases = [
np.random.randn(500),
np.random.randn(20, 20),
np.random.randn(5, 10, 15),
np.random.randn(5, 10, 15, 3),
np.random.randn(100, 5, 1),
]
# number of lines:
# for default numpy repr: 167, 140, 254, 248, 599
# for short_numpy_repr: 1, 7, 24, 19, 25
for array in cases:
num_lines = formatting.short_numpy_repr(array).count("\n") + 1
assert num_lines < 30
# threshold option (default: 200)
array2 = np.arange(100)
assert "..." not in formatting.short_numpy_repr(array2)
with xr.set_options(display_values_threshold=10):
assert "..." in formatting.short_numpy_repr(array2)
def test_large_array_repr_length() -> None:
da = xr.DataArray(np.random.randn(100, 5, 1))
result = repr(da).splitlines()
assert len(result) < 50
@requires_netCDF4
def test_repr_file_collapsed(tmp_path) -> None:
arr_to_store = xr.DataArray(np.arange(300, dtype=np.int64), dims="test")
arr_to_store.to_netcdf(tmp_path / "test.nc", engine="netcdf4")
with xr.open_dataarray(tmp_path / "test.nc") as arr, xr.set_options(
display_expand_data=False
):
actual = repr(arr)
expected = dedent(
"""\
<xarray.DataArray (test: 300)>
[300 values with dtype=int64]
Dimensions without coordinates: test"""
)
assert actual == expected
arr_loaded = arr.compute()
actual = arr_loaded.__repr__()
expected = dedent(
"""\
<xarray.DataArray (test: 300)>
0 1 2 3 4 5 6 7 8 9 10 11 12 ... 288 289 290 291 292 293 294 295 296 297 298 299
Dimensions without coordinates: test"""
)
assert actual == expected
@pytest.mark.parametrize(
"display_max_rows, n_vars, n_attr",
[(50, 40, 30), (35, 40, 30), (11, 40, 30), (1, 40, 30)],
)
def test__mapping_repr(display_max_rows, n_vars, n_attr) -> None:
long_name = "long_name"
a = defchararray.add(long_name, np.arange(0, n_vars).astype(str))
b = defchararray.add("attr_", np.arange(0, n_attr).astype(str))
c = defchararray.add("coord", np.arange(0, n_vars).astype(str))
attrs = {k: 2 for k in b}
coords = {_c: np.array([0, 1]) for _c in c}
data_vars = dict()
for (v, _c) in zip(a, coords.items()):
data_vars[v] = xr.DataArray(
name=v,
data=np.array([3, 4]),
dims=[_c[0]],
coords=dict([_c]),
)
ds = xr.Dataset(data_vars)
ds.attrs = attrs
with xr.set_options(display_max_rows=display_max_rows):
# Parse the data_vars print and show only data_vars rows:
summary = formatting.dataset_repr(ds).split("\n")
summary = [v for v in summary if long_name in v]
# The length should be less than or equal to display_max_rows:
len_summary = len(summary)
data_vars_print_size = min(display_max_rows, len_summary)
assert len_summary == data_vars_print_size
summary = formatting.data_vars_repr(ds.data_vars).split("\n")
summary = [v for v in summary if long_name in v]
# The length should be equal to the number of data variables
len_summary = len(summary)
assert len_summary == n_vars
summary = formatting.coords_repr(ds.coords).split("\n")
summary = [v for v in summary if "coord" in v]
# The length should be equal to the number of data variables
len_summary = len(summary)
assert len_summary == n_vars
with xr.set_options(
display_max_rows=display_max_rows,
display_expand_coords=False,
display_expand_data_vars=False,
display_expand_attrs=False,
):
actual = formatting.dataset_repr(ds)
col_width = formatting._calculate_col_width(ds.variables)
dims_start = formatting.pretty_print("Dimensions:", col_width)
dims_values = formatting.dim_summary_limited(
ds, col_width=col_width + 1, max_rows=display_max_rows
)
expected = f"""\
<xarray.Dataset>
{dims_start}({dims_values})
Coordinates: ({n_vars})
Data variables: ({n_vars})
Attributes: ({n_attr})"""
expected = dedent(expected)
assert actual == expected
def test__mapping_repr_recursive() -> None:
# GH:issue:7111
# direct recursion
ds = xr.Dataset({"a": ("x", [1, 2, 3])})
ds.attrs["ds"] = ds
formatting.dataset_repr(ds)
# indirect recursion
ds2 = xr.Dataset({"b": ("y", [1, 2, 3])})
ds.attrs["ds"] = ds2
ds2.attrs["ds"] = ds
formatting.dataset_repr(ds2)
def test__element_formatter(n_elements: int = 100) -> None:
expected = """\
Dimensions without coordinates: dim_0: 3, dim_1: 3, dim_2: 3, dim_3: 3,
dim_4: 3, dim_5: 3, dim_6: 3, dim_7: 3,
dim_8: 3, dim_9: 3, dim_10: 3, dim_11: 3,
dim_12: 3, dim_13: 3, dim_14: 3, dim_15: 3,
dim_16: 3, dim_17: 3, dim_18: 3, dim_19: 3,
dim_20: 3, dim_21: 3, dim_22: 3, dim_23: 3,
...
dim_76: 3, dim_77: 3, dim_78: 3, dim_79: 3,
dim_80: 3, dim_81: 3, dim_82: 3, dim_83: 3,
dim_84: 3, dim_85: 3, dim_86: 3, dim_87: 3,
dim_88: 3, dim_89: 3, dim_90: 3, dim_91: 3,
dim_92: 3, dim_93: 3, dim_94: 3, dim_95: 3,
dim_96: 3, dim_97: 3, dim_98: 3, dim_99: 3"""
expected = dedent(expected)
intro = "Dimensions without coordinates: "
elements = [
f"{k}: {v}" for k, v in {f"dim_{k}": 3 for k in np.arange(n_elements)}.items()
]
values = xr.core.formatting._element_formatter(
elements, col_width=len(intro), max_rows=12
)
actual = intro + values
assert expected == actual
def test_lazy_array_wont_compute() -> None:
from xarray.core.indexing import LazilyIndexedArray
class LazilyIndexedArrayNotComputable(LazilyIndexedArray):
def __array__(self, dtype=None):
raise NotImplementedError("Computing this array is not possible.")
arr = LazilyIndexedArrayNotComputable(np.array([1, 2]))
var = xr.DataArray(arr)
# These will crash if var.data are converted to numpy arrays:
var.__repr__()
var._repr_html_()
|