File: test_groupby.py

package info (click to toggle)
python-xarray 2023.01.0-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,980 kB
  • sloc: python: 86,209; makefile: 232; sh: 47
file content (2116 lines) | stat: -rw-r--r-- 75,756 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
from __future__ import annotations

import warnings

import numpy as np
import pandas as pd
import pytest
from pandas.tseries.frequencies import to_offset

import xarray as xr
from xarray import DataArray, Dataset, Variable
from xarray.core.groupby import _consolidate_slices
from xarray.tests import (
    assert_allclose,
    assert_array_equal,
    assert_equal,
    assert_identical,
    create_test_data,
    requires_dask,
    requires_flox,
    requires_scipy,
)


@pytest.fixture
def dataset():
    ds = xr.Dataset(
        {
            "foo": (("x", "y", "z"), np.random.randn(3, 4, 2)),
            "baz": ("x", ["e", "f", "g"]),
        },
        {"x": ("x", ["a", "b", "c"], {"name": "x"}), "y": [1, 2, 3, 4], "z": [1, 2]},
    )
    ds["boo"] = (("z", "y"), [["f", "g", "h", "j"]] * 2)

    return ds


@pytest.fixture
def array(dataset):
    return dataset["foo"]


def test_consolidate_slices() -> None:

    assert _consolidate_slices([slice(3), slice(3, 5)]) == [slice(5)]
    assert _consolidate_slices([slice(2, 3), slice(3, 6)]) == [slice(2, 6)]
    assert _consolidate_slices([slice(2, 3, 1), slice(3, 6, 1)]) == [slice(2, 6, 1)]

    slices = [slice(2, 3), slice(5, 6)]
    assert _consolidate_slices(slices) == slices

    with pytest.raises(ValueError):
        _consolidate_slices([slice(3), 4])


def test_groupby_dims_property(dataset) -> None:
    assert dataset.groupby("x").dims == dataset.isel(x=1).dims
    assert dataset.groupby("y").dims == dataset.isel(y=1).dims

    stacked = dataset.stack({"xy": ("x", "y")})
    assert stacked.groupby("xy").dims == stacked.isel(xy=0).dims


def test_multi_index_groupby_map(dataset) -> None:
    # regression test for GH873
    ds = dataset.isel(z=1, drop=True)[["foo"]]
    expected = 2 * ds
    actual = (
        ds.stack(space=["x", "y"])
        .groupby("space")
        .map(lambda x: 2 * x)
        .unstack("space")
    )
    assert_equal(expected, actual)


def test_reduce_numeric_only(dataset) -> None:
    gb = dataset.groupby("x", squeeze=False)
    with xr.set_options(use_flox=False):
        expected = gb.sum()
    with xr.set_options(use_flox=True):
        actual = gb.sum()
    assert_identical(expected, actual)


def test_multi_index_groupby_sum() -> None:
    # regression test for GH873
    ds = xr.Dataset(
        {"foo": (("x", "y", "z"), np.ones((3, 4, 2)))},
        {"x": ["a", "b", "c"], "y": [1, 2, 3, 4]},
    )
    expected = ds.sum("z")
    actual = ds.stack(space=["x", "y"]).groupby("space").sum("z").unstack("space")
    assert_equal(expected, actual)


def test_groupby_da_datetime() -> None:
    # test groupby with a DataArray of dtype datetime for GH1132
    # create test data
    times = pd.date_range("2000-01-01", periods=4)
    foo = xr.DataArray([1, 2, 3, 4], coords=dict(time=times), dims="time")
    # create test index
    dd = times.to_pydatetime()
    reference_dates = [dd[0], dd[2]]
    labels = reference_dates[0:1] * 2 + reference_dates[1:2] * 2
    ind = xr.DataArray(
        labels, coords=dict(time=times), dims="time", name="reference_date"
    )
    g = foo.groupby(ind)
    actual = g.sum(dim="time")
    expected = xr.DataArray(
        [3, 7], coords=dict(reference_date=reference_dates), dims="reference_date"
    )
    assert_equal(expected, actual)


def test_groupby_duplicate_coordinate_labels() -> None:
    # fix for http://stackoverflow.com/questions/38065129
    array = xr.DataArray([1, 2, 3], [("x", [1, 1, 2])])
    expected = xr.DataArray([3, 3], [("x", [1, 2])])
    actual = array.groupby("x").sum()
    assert_equal(expected, actual)


def test_groupby_input_mutation() -> None:
    # regression test for GH2153
    array = xr.DataArray([1, 2, 3], [("x", [2, 2, 1])])
    array_copy = array.copy()
    expected = xr.DataArray([3, 3], [("x", [1, 2])])
    actual = array.groupby("x").sum()
    assert_identical(expected, actual)
    assert_identical(array, array_copy)  # should not modify inputs


@pytest.mark.parametrize(
    "obj",
    [
        xr.DataArray([1, 2, 3, 4, 5, 6], [("x", [1, 1, 1, 2, 2, 2])]),
        xr.Dataset({"foo": ("x", [1, 2, 3, 4, 5, 6])}, {"x": [1, 1, 1, 2, 2, 2]}),
    ],
)
def test_groupby_map_shrink_groups(obj) -> None:
    expected = obj.isel(x=[0, 1, 3, 4])
    actual = obj.groupby("x").map(lambda f: f.isel(x=[0, 1]))
    assert_identical(expected, actual)


@pytest.mark.parametrize(
    "obj",
    [
        xr.DataArray([1, 2, 3], [("x", [1, 2, 2])]),
        xr.Dataset({"foo": ("x", [1, 2, 3])}, {"x": [1, 2, 2]}),
    ],
)
def test_groupby_map_change_group_size(obj) -> None:
    def func(group):
        if group.sizes["x"] == 1:
            result = group.isel(x=[0, 0])
        else:
            result = group.isel(x=[0])
        return result

    expected = obj.isel(x=[0, 0, 1])
    actual = obj.groupby("x").map(func)
    assert_identical(expected, actual)


def test_da_groupby_map_func_args() -> None:
    def func(arg1, arg2, arg3=0):
        return arg1 + arg2 + arg3

    array = xr.DataArray([1, 1, 1], [("x", [1, 2, 3])])
    expected = xr.DataArray([3, 3, 3], [("x", [1, 2, 3])])
    actual = array.groupby("x").map(func, args=(1,), arg3=1)
    assert_identical(expected, actual)


def test_ds_groupby_map_func_args() -> None:
    def func(arg1, arg2, arg3=0):
        return arg1 + arg2 + arg3

    dataset = xr.Dataset({"foo": ("x", [1, 1, 1])}, {"x": [1, 2, 3]})
    expected = xr.Dataset({"foo": ("x", [3, 3, 3])}, {"x": [1, 2, 3]})
    actual = dataset.groupby("x").map(func, args=(1,), arg3=1)
    assert_identical(expected, actual)


def test_da_groupby_empty() -> None:

    empty_array = xr.DataArray([], dims="dim")

    with pytest.raises(ValueError):
        empty_array.groupby("dim")


def test_da_groupby_quantile() -> None:

    array = xr.DataArray(
        data=[1, 2, 3, 4, 5, 6], coords={"x": [1, 1, 1, 2, 2, 2]}, dims="x"
    )

    # Scalar quantile
    expected = xr.DataArray(
        data=[2, 5], coords={"x": [1, 2], "quantile": 0.5}, dims="x"
    )
    actual = array.groupby("x").quantile(0.5)
    assert_identical(expected, actual)

    # Vector quantile
    expected = xr.DataArray(
        data=[[1, 3], [4, 6]],
        coords={"x": [1, 2], "quantile": [0, 1]},
        dims=("x", "quantile"),
    )
    actual = array.groupby("x").quantile([0, 1])
    assert_identical(expected, actual)

    array = xr.DataArray(
        data=[np.NaN, 2, 3, 4, 5, 6], coords={"x": [1, 1, 1, 2, 2, 2]}, dims="x"
    )

    for skipna in (True, False, None):
        e = [np.NaN, 5] if skipna is False else [2.5, 5]

        expected = xr.DataArray(data=e, coords={"x": [1, 2], "quantile": 0.5}, dims="x")
        actual = array.groupby("x").quantile(0.5, skipna=skipna)
        assert_identical(expected, actual)

    # Multiple dimensions
    array = xr.DataArray(
        data=[[1, 11, 26], [2, 12, 22], [3, 13, 23], [4, 16, 24], [5, 15, 25]],
        coords={"x": [1, 1, 1, 2, 2], "y": [0, 0, 1]},
        dims=("x", "y"),
    )

    actual_x = array.groupby("x").quantile(0, dim=...)
    expected_x = xr.DataArray(
        data=[1, 4], coords={"x": [1, 2], "quantile": 0}, dims="x"
    )
    assert_identical(expected_x, actual_x)

    actual_y = array.groupby("y").quantile(0, dim=...)
    expected_y = xr.DataArray(
        data=[1, 22], coords={"y": [0, 1], "quantile": 0}, dims="y"
    )
    assert_identical(expected_y, actual_y)

    actual_xx = array.groupby("x").quantile(0)
    expected_xx = xr.DataArray(
        data=[[1, 11, 22], [4, 15, 24]],
        coords={"x": [1, 2], "y": [0, 0, 1], "quantile": 0},
        dims=("x", "y"),
    )
    assert_identical(expected_xx, actual_xx)

    actual_yy = array.groupby("y").quantile(0)
    expected_yy = xr.DataArray(
        data=[[1, 26], [2, 22], [3, 23], [4, 24], [5, 25]],
        coords={"x": [1, 1, 1, 2, 2], "y": [0, 1], "quantile": 0},
        dims=("x", "y"),
    )
    assert_identical(expected_yy, actual_yy)

    times = pd.date_range("2000-01-01", periods=365)
    x = [0, 1]
    foo = xr.DataArray(
        np.reshape(np.arange(365 * 2), (365, 2)),
        coords={"time": times, "x": x},
        dims=("time", "x"),
    )
    g = foo.groupby(foo.time.dt.month)

    actual = g.quantile(0, dim=...)
    expected = xr.DataArray(
        data=[
            0.0,
            62.0,
            120.0,
            182.0,
            242.0,
            304.0,
            364.0,
            426.0,
            488.0,
            548.0,
            610.0,
            670.0,
        ],
        coords={"month": np.arange(1, 13), "quantile": 0},
        dims="month",
    )
    assert_identical(expected, actual)

    actual = g.quantile(0, dim="time")[:2]
    expected = xr.DataArray(
        data=[[0.0, 1], [62.0, 63]],
        coords={"month": [1, 2], "x": [0, 1], "quantile": 0},
        dims=("month", "x"),
    )
    assert_identical(expected, actual)

    # method keyword
    array = xr.DataArray(data=[1, 2, 3, 4], coords={"x": [1, 1, 2, 2]}, dims="x")

    expected = xr.DataArray(
        data=[1, 3], coords={"x": [1, 2], "quantile": 0.5}, dims="x"
    )
    actual = array.groupby("x").quantile(0.5, method="lower")
    assert_identical(expected, actual)


def test_ds_groupby_quantile() -> None:
    ds = xr.Dataset(
        data_vars={"a": ("x", [1, 2, 3, 4, 5, 6])}, coords={"x": [1, 1, 1, 2, 2, 2]}
    )

    # Scalar quantile
    expected = xr.Dataset(
        data_vars={"a": ("x", [2, 5])}, coords={"quantile": 0.5, "x": [1, 2]}
    )
    actual = ds.groupby("x").quantile(0.5)
    assert_identical(expected, actual)

    # Vector quantile
    expected = xr.Dataset(
        data_vars={"a": (("x", "quantile"), [[1, 3], [4, 6]])},
        coords={"x": [1, 2], "quantile": [0, 1]},
    )
    actual = ds.groupby("x").quantile([0, 1])
    assert_identical(expected, actual)

    ds = xr.Dataset(
        data_vars={"a": ("x", [np.NaN, 2, 3, 4, 5, 6])},
        coords={"x": [1, 1, 1, 2, 2, 2]},
    )

    for skipna in (True, False, None):
        e = [np.NaN, 5] if skipna is False else [2.5, 5]

        expected = xr.Dataset(
            data_vars={"a": ("x", e)}, coords={"quantile": 0.5, "x": [1, 2]}
        )
        actual = ds.groupby("x").quantile(0.5, skipna=skipna)
        assert_identical(expected, actual)

    # Multiple dimensions
    ds = xr.Dataset(
        data_vars={
            "a": (
                ("x", "y"),
                [[1, 11, 26], [2, 12, 22], [3, 13, 23], [4, 16, 24], [5, 15, 25]],
            )
        },
        coords={"x": [1, 1, 1, 2, 2], "y": [0, 0, 1]},
    )

    actual_x = ds.groupby("x").quantile(0, dim=...)
    expected_x = xr.Dataset({"a": ("x", [1, 4])}, coords={"x": [1, 2], "quantile": 0})
    assert_identical(expected_x, actual_x)

    actual_y = ds.groupby("y").quantile(0, dim=...)
    expected_y = xr.Dataset({"a": ("y", [1, 22])}, coords={"y": [0, 1], "quantile": 0})
    assert_identical(expected_y, actual_y)

    actual_xx = ds.groupby("x").quantile(0)
    expected_xx = xr.Dataset(
        {"a": (("x", "y"), [[1, 11, 22], [4, 15, 24]])},
        coords={"x": [1, 2], "y": [0, 0, 1], "quantile": 0},
    )
    assert_identical(expected_xx, actual_xx)

    actual_yy = ds.groupby("y").quantile(0)
    expected_yy = xr.Dataset(
        {"a": (("x", "y"), [[1, 26], [2, 22], [3, 23], [4, 24], [5, 25]])},
        coords={"x": [1, 1, 1, 2, 2], "y": [0, 1], "quantile": 0},
    ).transpose()
    assert_identical(expected_yy, actual_yy)

    times = pd.date_range("2000-01-01", periods=365)
    x = [0, 1]
    foo = xr.Dataset(
        {"a": (("time", "x"), np.reshape(np.arange(365 * 2), (365, 2)))},
        coords=dict(time=times, x=x),
    )
    g = foo.groupby(foo.time.dt.month)

    actual = g.quantile(0, dim=...)
    expected = xr.Dataset(
        {
            "a": (
                "month",
                [
                    0.0,
                    62.0,
                    120.0,
                    182.0,
                    242.0,
                    304.0,
                    364.0,
                    426.0,
                    488.0,
                    548.0,
                    610.0,
                    670.0,
                ],
            )
        },
        coords={"month": np.arange(1, 13), "quantile": 0},
    )
    assert_identical(expected, actual)

    actual = g.quantile(0, dim="time").isel(month=slice(None, 2))
    expected = xr.Dataset(
        data_vars={"a": (("month", "x"), [[0.0, 1], [62.0, 63]])},
        coords={"month": [1, 2], "x": [0, 1], "quantile": 0},
    )
    assert_identical(expected, actual)

    ds = xr.Dataset(data_vars={"a": ("x", [1, 2, 3, 4])}, coords={"x": [1, 1, 2, 2]})

    # method keyword
    expected = xr.Dataset(
        data_vars={"a": ("x", [1, 3])}, coords={"quantile": 0.5, "x": [1, 2]}
    )
    actual = ds.groupby("x").quantile(0.5, method="lower")
    assert_identical(expected, actual)


@pytest.mark.parametrize("as_dataset", [False, True])
def test_groupby_quantile_interpolation_deprecated(as_dataset) -> None:

    array = xr.DataArray(data=[1, 2, 3, 4], coords={"x": [1, 1, 2, 2]}, dims="x")

    arr: xr.DataArray | xr.Dataset
    arr = array.to_dataset(name="name") if as_dataset else array

    with pytest.warns(
        FutureWarning,
        match="`interpolation` argument to quantile was renamed to `method`",
    ):
        actual = arr.quantile(0.5, interpolation="lower")

    expected = arr.quantile(0.5, method="lower")

    assert_identical(actual, expected)

    with warnings.catch_warnings(record=True):
        with pytest.raises(TypeError, match="interpolation and method keywords"):
            arr.quantile(0.5, method="lower", interpolation="lower")


def test_da_groupby_assign_coords() -> None:
    actual = xr.DataArray(
        [[3, 4, 5], [6, 7, 8]], dims=["y", "x"], coords={"y": range(2), "x": range(3)}
    )
    actual1 = actual.groupby("x").assign_coords({"y": [-1, -2]})
    actual2 = actual.groupby("x").assign_coords(y=[-1, -2])
    expected = xr.DataArray(
        [[3, 4, 5], [6, 7, 8]], dims=["y", "x"], coords={"y": [-1, -2], "x": range(3)}
    )
    assert_identical(expected, actual1)
    assert_identical(expected, actual2)


repr_da = xr.DataArray(
    np.random.randn(10, 20, 6, 24),
    dims=["x", "y", "z", "t"],
    coords={
        "z": ["a", "b", "c", "a", "b", "c"],
        "x": [1, 1, 1, 2, 2, 3, 4, 5, 3, 4],
        "t": pd.date_range("2001-01-01", freq="M", periods=24),
        "month": ("t", list(range(1, 13)) * 2),
    },
)


@pytest.mark.parametrize("dim", ["x", "y", "z", "month"])
@pytest.mark.parametrize("obj", [repr_da, repr_da.to_dataset(name="a")])
def test_groupby_repr(obj, dim) -> None:
    actual = repr(obj.groupby(dim))
    expected = f"{obj.__class__.__name__}GroupBy"
    expected += ", grouped over %r" % dim
    expected += "\n%r groups with labels " % (len(np.unique(obj[dim])))
    if dim == "x":
        expected += "1, 2, 3, 4, 5."
    elif dim == "y":
        expected += "0, 1, 2, 3, 4, 5, ..., 15, 16, 17, 18, 19."
    elif dim == "z":
        expected += "'a', 'b', 'c'."
    elif dim == "month":
        expected += "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12."
    assert actual == expected


@pytest.mark.parametrize("obj", [repr_da, repr_da.to_dataset(name="a")])
def test_groupby_repr_datetime(obj) -> None:
    actual = repr(obj.groupby("t.month"))
    expected = f"{obj.__class__.__name__}GroupBy"
    expected += ", grouped over 'month'"
    expected += "\n%r groups with labels " % (len(np.unique(obj.t.dt.month)))
    expected += "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12."
    assert actual == expected


@pytest.mark.filterwarnings("ignore:invalid value encountered in divide:RuntimeWarning")
def test_groupby_drops_nans() -> None:
    # GH2383
    # nan in 2D data variable (requires stacking)
    ds = xr.Dataset(
        {
            "variable": (("lat", "lon", "time"), np.arange(60.0).reshape((4, 3, 5))),
            "id": (("lat", "lon"), np.arange(12.0).reshape((4, 3))),
        },
        coords={"lat": np.arange(4), "lon": np.arange(3), "time": np.arange(5)},
    )

    ds["id"].values[0, 0] = np.nan
    ds["id"].values[3, 0] = np.nan
    ds["id"].values[-1, -1] = np.nan

    grouped = ds.groupby(ds.id)

    # non reduction operation
    expected1 = ds.copy()
    expected1.variable.values[0, 0, :] = np.nan
    expected1.variable.values[-1, -1, :] = np.nan
    expected1.variable.values[3, 0, :] = np.nan
    actual1 = grouped.map(lambda x: x).transpose(*ds.variable.dims)
    assert_identical(actual1, expected1)

    # reduction along grouped dimension
    actual2 = grouped.mean()
    stacked = ds.stack({"xy": ["lat", "lon"]})
    expected2 = (
        stacked.variable.where(stacked.id.notnull())
        .rename({"xy": "id"})
        .to_dataset()
        .reset_index("id", drop=True)
        .assign(id=stacked.id.values)
        .dropna("id")
        .transpose(*actual2.dims)
    )
    assert_identical(actual2, expected2)

    # reduction operation along a different dimension
    actual3 = grouped.mean("time")
    expected3 = ds.mean("time").where(ds.id.notnull())
    assert_identical(actual3, expected3)

    # NaN in non-dimensional coordinate
    array = xr.DataArray([1, 2, 3], [("x", [1, 2, 3])])
    array["x1"] = ("x", [1, 1, np.nan])
    expected4 = xr.DataArray(3, [("x1", [1])])
    actual4 = array.groupby("x1").sum()
    assert_equal(expected4, actual4)

    # NaT in non-dimensional coordinate
    array["t"] = (
        "x",
        [
            np.datetime64("2001-01-01"),
            np.datetime64("2001-01-01"),
            np.datetime64("NaT"),
        ],
    )
    expected5 = xr.DataArray(3, [("t", [np.datetime64("2001-01-01")])])
    actual5 = array.groupby("t").sum()
    assert_equal(expected5, actual5)

    # test for repeated coordinate labels
    array = xr.DataArray([0, 1, 2, 4, 3, 4], [("x", [np.nan, 1, 1, np.nan, 2, np.nan])])
    expected6 = xr.DataArray([3, 3], [("x", [1, 2])])
    actual6 = array.groupby("x").sum()
    assert_equal(expected6, actual6)


def test_groupby_grouping_errors() -> None:
    dataset = xr.Dataset({"foo": ("x", [1, 1, 1])}, {"x": [1, 2, 3]})
    with pytest.raises(
        ValueError, match=r"None of the data falls within bins with edges"
    ):
        dataset.groupby_bins("x", bins=[0.1, 0.2, 0.3])

    with pytest.raises(
        ValueError, match=r"None of the data falls within bins with edges"
    ):
        dataset.to_array().groupby_bins("x", bins=[0.1, 0.2, 0.3])

    with pytest.raises(ValueError, match=r"All bin edges are NaN."):
        dataset.groupby_bins("x", bins=[np.nan, np.nan, np.nan])

    with pytest.raises(ValueError, match=r"All bin edges are NaN."):
        dataset.to_array().groupby_bins("x", bins=[np.nan, np.nan, np.nan])

    with pytest.raises(ValueError, match=r"Failed to group data."):
        dataset.groupby(dataset.foo * np.nan)

    with pytest.raises(ValueError, match=r"Failed to group data."):
        dataset.to_array().groupby(dataset.foo * np.nan)


def test_groupby_reduce_dimension_error(array) -> None:
    grouped = array.groupby("y")
    with pytest.raises(ValueError, match=r"cannot reduce over dimensions"):
        grouped.mean()

    with pytest.raises(ValueError, match=r"cannot reduce over dimensions"):
        grouped.mean("huh")

    with pytest.raises(ValueError, match=r"cannot reduce over dimensions"):
        grouped.mean(("x", "y", "asd"))

    grouped = array.groupby("y", squeeze=False)
    assert_identical(array, grouped.mean())

    assert_identical(array.mean("x"), grouped.reduce(np.mean, "x"))
    assert_allclose(array.mean(["x", "z"]), grouped.reduce(np.mean, ["x", "z"]))


def test_groupby_multiple_string_args(array) -> None:
    with pytest.raises(TypeError):
        array.groupby("x", "y")


def test_groupby_bins_timeseries() -> None:
    ds = xr.Dataset()
    ds["time"] = xr.DataArray(
        pd.date_range("2010-08-01", "2010-08-15", freq="15min"), dims="time"
    )
    ds["val"] = xr.DataArray(np.ones(ds["time"].shape), dims="time")
    time_bins = pd.date_range(start="2010-08-01", end="2010-08-15", freq="24H")
    actual = ds.groupby_bins("time", time_bins).sum()
    expected = xr.DataArray(
        96 * np.ones((14,)),
        dims=["time_bins"],
        coords={"time_bins": pd.cut(time_bins, time_bins).categories},
    ).to_dataset(name="val")
    assert_identical(actual, expected)


def test_groupby_none_group_name() -> None:
    # GH158
    # xarray should not fail if a DataArray's name attribute is None

    data = np.arange(10) + 10
    da = xr.DataArray(data)  # da.name = None
    key = xr.DataArray(np.floor_divide(data, 2))

    mean = da.groupby(key).mean()
    assert "group" in mean.dims


def test_groupby_getitem(dataset) -> None:

    assert_identical(dataset.sel(x="a"), dataset.groupby("x")["a"])
    assert_identical(dataset.sel(z=1), dataset.groupby("z")[1])

    assert_identical(dataset.foo.sel(x="a"), dataset.foo.groupby("x")["a"])
    assert_identical(dataset.foo.sel(z=1), dataset.foo.groupby("z")[1])

    actual = dataset.groupby("boo")["f"].unstack().transpose("x", "y", "z")
    expected = dataset.sel(y=[1], z=[1, 2]).transpose("x", "y", "z")
    assert_identical(expected, actual)


def test_groupby_dataset() -> None:
    data = Dataset(
        {"z": (["x", "y"], np.random.randn(3, 5))},
        {"x": ("x", list("abc")), "c": ("x", [0, 1, 0]), "y": range(5)},
    )
    groupby = data.groupby("x")
    assert len(groupby) == 3
    expected_groups = {"a": 0, "b": 1, "c": 2}
    assert groupby.groups == expected_groups
    expected_items = [
        ("a", data.isel(x=0)),
        ("b", data.isel(x=1)),
        ("c", data.isel(x=2)),
    ]
    for actual1, expected1 in zip(groupby, expected_items):
        assert actual1[0] == expected1[0]
        assert_equal(actual1[1], expected1[1])

    def identity(x):
        return x

    for k in ["x", "c", "y"]:
        actual2 = data.groupby(k, squeeze=False).map(identity)
        assert_equal(data, actual2)


def test_groupby_dataset_returns_new_type() -> None:
    data = Dataset({"z": (["x", "y"], np.random.randn(3, 5))})

    actual1 = data.groupby("x").map(lambda ds: ds["z"])
    expected1 = data["z"]
    assert_identical(expected1, actual1)

    actual2 = data["z"].groupby("x").map(lambda x: x.to_dataset())
    expected2 = data
    assert_identical(expected2, actual2)


def test_groupby_dataset_iter() -> None:
    data = create_test_data()
    for n, (t, sub) in enumerate(list(data.groupby("dim1"))[:3]):
        assert data["dim1"][n] == t
        assert_equal(data["var1"][n], sub["var1"])
        assert_equal(data["var2"][n], sub["var2"])
        assert_equal(data["var3"][:, n], sub["var3"])


def test_groupby_dataset_errors() -> None:
    data = create_test_data()
    with pytest.raises(TypeError, match=r"`group` must be"):
        data.groupby(np.arange(10))
    with pytest.raises(ValueError, match=r"length does not match"):
        data.groupby(data["dim1"][:3])
    with pytest.raises(TypeError, match=r"`group` must be"):
        data.groupby(data.coords["dim1"].to_index())


def test_groupby_dataset_reduce() -> None:
    data = Dataset(
        {
            "xy": (["x", "y"], np.random.randn(3, 4)),
            "xonly": ("x", np.random.randn(3)),
            "yonly": ("y", np.random.randn(4)),
            "letters": ("y", ["a", "a", "b", "b"]),
        }
    )

    expected = data.mean("y")
    expected["yonly"] = expected["yonly"].variable.set_dims({"x": 3})
    actual = data.groupby("x").mean(...)
    assert_allclose(expected, actual)

    actual = data.groupby("x").mean("y")
    assert_allclose(expected, actual)

    letters = data["letters"]
    expected = Dataset(
        {
            "xy": data["xy"].groupby(letters).mean(...),
            "xonly": (data["xonly"].mean().variable.set_dims({"letters": 2})),
            "yonly": data["yonly"].groupby(letters).mean(),
        }
    )
    actual = data.groupby("letters").mean(...)
    assert_allclose(expected, actual)


@pytest.mark.parametrize("squeeze", [True, False])
def test_groupby_dataset_math(squeeze) -> None:
    def reorder_dims(x):
        return x.transpose("dim1", "dim2", "dim3", "time")

    ds = create_test_data()
    ds["dim1"] = ds["dim1"]
    grouped = ds.groupby("dim1", squeeze=squeeze)

    expected = reorder_dims(ds + ds.coords["dim1"])
    actual = grouped + ds.coords["dim1"]
    assert_identical(expected, reorder_dims(actual))

    actual = ds.coords["dim1"] + grouped
    assert_identical(expected, reorder_dims(actual))

    ds2 = 2 * ds
    expected = reorder_dims(ds + ds2)
    actual = grouped + ds2
    assert_identical(expected, reorder_dims(actual))

    actual = ds2 + grouped
    assert_identical(expected, reorder_dims(actual))


def test_groupby_math_more() -> None:
    ds = create_test_data()
    grouped = ds.groupby("numbers")
    zeros = DataArray([0, 0, 0, 0], [("numbers", range(4))])
    expected = (ds + Variable("dim3", np.zeros(10))).transpose(
        "dim3", "dim1", "dim2", "time"
    )
    actual = grouped + zeros
    assert_equal(expected, actual)

    actual = zeros + grouped
    assert_equal(expected, actual)

    with pytest.raises(ValueError, match=r"incompat.* grouped binary"):
        grouped + ds
    with pytest.raises(ValueError, match=r"incompat.* grouped binary"):
        ds + grouped
    with pytest.raises(TypeError, match=r"only support binary ops"):
        grouped + 1  # type: ignore[operator]
    with pytest.raises(TypeError, match=r"only support binary ops"):
        grouped + grouped
    with pytest.raises(TypeError, match=r"in-place operations"):
        ds += grouped

    ds = Dataset(
        {
            "x": ("time", np.arange(100)),
            "time": pd.date_range("2000-01-01", periods=100),
        }
    )
    with pytest.raises(ValueError, match=r"incompat.* grouped binary"):
        ds + ds.groupby("time.month")


@pytest.mark.parametrize("indexed_coord", [True, False])
def test_groupby_bins_math(indexed_coord) -> None:
    N = 7
    da = DataArray(np.random.random((N, N)), dims=("x", "y"))
    if indexed_coord:
        da["x"] = np.arange(N)
        da["y"] = np.arange(N)
    g = da.groupby_bins("x", np.arange(0, N + 1, 3))
    mean = g.mean()
    expected = da.isel(x=slice(1, None)) - mean.isel(x_bins=("x", [0, 0, 0, 1, 1, 1]))
    actual = g - mean
    assert_identical(expected, actual)


def test_groupby_math_nD_group() -> None:
    N = 40
    da = DataArray(
        np.random.random((N, N)),
        dims=("x", "y"),
        coords={
            "labels": (
                "x",
                np.repeat(["a", "b", "c", "d", "e", "f", "g", "h"], repeats=N // 8),
            ),
        },
    )
    da["labels2d"] = xr.broadcast(da.labels, da)[0]

    g = da.groupby("labels2d")
    mean = g.mean()
    expected = da - mean.sel(labels2d=da.labels2d)
    expected["labels"] = expected.labels.broadcast_like(expected.labels2d)
    actual = g - mean
    assert_identical(expected, actual)

    da["num"] = (
        "x",
        np.repeat([1, 2, 3, 4, 5, 6, 7, 8], repeats=N // 8),
    )
    da["num2d"] = xr.broadcast(da.num, da)[0]
    g = da.groupby_bins("num2d", bins=[0, 4, 6])
    mean = g.mean()
    idxr = np.digitize(da.num2d, bins=(0, 4, 6), right=True)[:30, :] - 1
    expanded_mean = mean.drop_vars("num2d_bins").isel(num2d_bins=(("x", "y"), idxr))
    expected = da.isel(x=slice(30)) - expanded_mean
    expected["labels"] = expected.labels.broadcast_like(expected.labels2d)
    expected["num"] = expected.num.broadcast_like(expected.num2d)
    expected["num2d_bins"] = (("x", "y"), mean.num2d_bins.data[idxr])
    actual = g - mean
    assert_identical(expected, actual)


def test_groupby_dataset_math_virtual() -> None:
    ds = Dataset({"x": ("t", [1, 2, 3])}, {"t": pd.date_range("20100101", periods=3)})
    grouped = ds.groupby("t.day")
    actual = grouped - grouped.mean(...)
    expected = Dataset({"x": ("t", [0, 0, 0])}, ds[["t", "t.day"]])
    assert_identical(actual, expected)


def test_groupby_math_dim_order() -> None:
    da = DataArray(
        np.ones((10, 10, 12)),
        dims=("x", "y", "time"),
        coords={"time": pd.date_range("2001-01-01", periods=12, freq="6H")},
    )
    grouped = da.groupby("time.day")
    result = grouped - grouped.mean()
    assert result.dims == da.dims


def test_groupby_dataset_nan() -> None:
    # nan should be excluded from groupby
    ds = Dataset({"foo": ("x", [1, 2, 3, 4])}, {"bar": ("x", [1, 1, 2, np.nan])})
    actual = ds.groupby("bar").mean(...)
    expected = Dataset({"foo": ("bar", [1.5, 3]), "bar": [1, 2]})
    assert_identical(actual, expected)


def test_groupby_dataset_order() -> None:
    # groupby should preserve variables order
    ds = Dataset()
    for vn in ["a", "b", "c"]:
        ds[vn] = DataArray(np.arange(10), dims=["t"])
    data_vars_ref = list(ds.data_vars.keys())
    ds = ds.groupby("t").mean(...)
    data_vars = list(ds.data_vars.keys())
    assert data_vars == data_vars_ref
    # coords are now at the end of the list, so the test below fails
    # all_vars = list(ds.variables.keys())
    # all_vars_ref = list(ds.variables.keys())
    # .assertEqual(all_vars, all_vars_ref)


def test_groupby_dataset_fillna():

    ds = Dataset({"a": ("x", [np.nan, 1, np.nan, 3])}, {"x": [0, 1, 2, 3]})
    expected = Dataset({"a": ("x", range(4))}, {"x": [0, 1, 2, 3]})
    for target in [ds, expected]:
        target.coords["b"] = ("x", [0, 0, 1, 1])
    actual = ds.groupby("b").fillna(DataArray([0, 2], dims="b"))
    assert_identical(expected, actual)

    actual = ds.groupby("b").fillna(Dataset({"a": ("b", [0, 2])}))
    assert_identical(expected, actual)

    # attrs with groupby
    ds.attrs["attr"] = "ds"
    ds.a.attrs["attr"] = "da"
    actual = ds.groupby("b").fillna(Dataset({"a": ("b", [0, 2])}))
    assert actual.attrs == ds.attrs
    assert actual.a.name == "a"
    assert actual.a.attrs == ds.a.attrs


def test_groupby_dataset_where():
    # groupby
    ds = Dataset({"a": ("x", range(5))}, {"c": ("x", [0, 0, 1, 1, 1])})
    cond = Dataset({"a": ("c", [True, False])})
    expected = ds.copy(deep=True)
    expected["a"].values = [0, 1] + [np.nan] * 3
    actual = ds.groupby("c").where(cond)
    assert_identical(expected, actual)

    # attrs with groupby
    ds.attrs["attr"] = "ds"
    ds.a.attrs["attr"] = "da"
    actual = ds.groupby("c").where(cond)
    assert actual.attrs == ds.attrs
    assert actual.a.name == "a"
    assert actual.a.attrs == ds.a.attrs


def test_groupby_dataset_assign():
    ds = Dataset({"a": ("x", range(3))}, {"b": ("x", ["A"] * 2 + ["B"])})
    actual = ds.groupby("b").assign(c=lambda ds: 2 * ds.a)
    expected = ds.merge({"c": ("x", [0, 2, 4])})
    assert_identical(actual, expected)

    actual = ds.groupby("b").assign(c=lambda ds: ds.a.sum())
    expected = ds.merge({"c": ("x", [1, 1, 2])})
    assert_identical(actual, expected)

    actual = ds.groupby("b").assign_coords(c=lambda ds: ds.a.sum())
    expected = expected.set_coords("c")
    assert_identical(actual, expected)


def test_groupby_dataset_map_dataarray_func():
    # regression GH6379
    ds = Dataset({"foo": ("x", [1, 2, 3, 4])}, coords={"x": [0, 0, 1, 1]})
    actual = ds.groupby("x").map(lambda grp: grp.foo.mean())
    expected = DataArray([1.5, 3.5], coords={"x": [0, 1]}, dims="x", name="foo")
    assert_identical(actual, expected)


def test_groupby_dataarray_map_dataset_func():
    # regression GH6379
    da = DataArray([1, 2, 3, 4], coords={"x": [0, 0, 1, 1]}, dims="x", name="foo")
    actual = da.groupby("x").map(lambda grp: grp.mean().to_dataset())
    expected = xr.Dataset({"foo": ("x", [1.5, 3.5])}, coords={"x": [0, 1]})
    assert_identical(actual, expected)


@requires_flox
@pytest.mark.parametrize("kwargs", [{"method": "map-reduce"}, {"engine": "numpy"}])
def test_groupby_flox_kwargs(kwargs):
    ds = Dataset({"a": ("x", range(5))}, {"c": ("x", [0, 0, 1, 1, 1])})
    with xr.set_options(use_flox=False):
        expected = ds.groupby("c").mean()
    with xr.set_options(use_flox=True):
        actual = ds.groupby("c").mean(**kwargs)
    assert_identical(expected, actual)


class TestDataArrayGroupBy:
    @pytest.fixture(autouse=True)
    def setup(self):
        self.attrs = {"attr1": "value1", "attr2": 2929}
        self.x = np.random.random((10, 20))
        self.v = Variable(["x", "y"], self.x)
        self.va = Variable(["x", "y"], self.x, self.attrs)
        self.ds = Dataset({"foo": self.v})
        self.dv = self.ds["foo"]

        self.mindex = pd.MultiIndex.from_product(
            [["a", "b"], [1, 2]], names=("level_1", "level_2")
        )
        self.mda = DataArray([0, 1, 2, 3], coords={"x": self.mindex}, dims="x")

        self.da = self.dv.copy()
        self.da.coords["abc"] = ("y", np.array(["a"] * 9 + ["c"] + ["b"] * 10))
        self.da.coords["y"] = 20 + 100 * self.da["y"]

    def test_stack_groupby_unsorted_coord(self):
        data = [[0, 1], [2, 3]]
        data_flat = [0, 1, 2, 3]
        dims = ["x", "y"]
        y_vals = [2, 3]

        arr = xr.DataArray(data, dims=dims, coords={"y": y_vals})
        actual1 = arr.stack(z=dims).groupby("z").first()
        midx1 = pd.MultiIndex.from_product([[0, 1], [2, 3]], names=dims)
        expected1 = xr.DataArray(data_flat, dims=["z"], coords={"z": midx1})
        assert_equal(actual1, expected1)

        # GH: 3287.  Note that y coord values are not in sorted order.
        arr = xr.DataArray(data, dims=dims, coords={"y": y_vals[::-1]})
        actual2 = arr.stack(z=dims).groupby("z").first()
        midx2 = pd.MultiIndex.from_product([[0, 1], [3, 2]], names=dims)
        expected2 = xr.DataArray(data_flat, dims=["z"], coords={"z": midx2})
        assert_equal(actual2, expected2)

    def test_groupby_iter(self):
        for ((act_x, act_dv), (exp_x, exp_ds)) in zip(
            self.dv.groupby("y"), self.ds.groupby("y")
        ):
            assert exp_x == act_x
            assert_identical(exp_ds["foo"], act_dv)
        for ((_, exp_dv), act_dv) in zip(self.dv.groupby("x"), self.dv):
            assert_identical(exp_dv, act_dv)

    def test_groupby_properties(self):
        grouped = self.da.groupby("abc")
        expected_groups = {"a": range(0, 9), "c": [9], "b": range(10, 20)}
        assert expected_groups.keys() == grouped.groups.keys()
        for key in expected_groups:
            assert_array_equal(expected_groups[key], grouped.groups[key])
        assert 3 == len(grouped)

    @pytest.mark.parametrize(
        "by, use_da", [("x", False), ("y", False), ("y", True), ("abc", False)]
    )
    @pytest.mark.parametrize("shortcut", [True, False])
    @pytest.mark.parametrize("squeeze", [True, False])
    def test_groupby_map_identity(self, by, use_da, shortcut, squeeze) -> None:
        expected = self.da
        if use_da:
            by = expected.coords[by]

        def identity(x):
            return x

        grouped = expected.groupby(by, squeeze=squeeze)
        actual = grouped.map(identity, shortcut=shortcut)
        assert_identical(expected, actual)

    def test_groupby_sum(self):
        array = self.da
        grouped = array.groupby("abc")

        expected_sum_all = Dataset(
            {
                "foo": Variable(
                    ["abc"],
                    np.array(
                        [
                            self.x[:, :9].sum(),
                            self.x[:, 10:].sum(),
                            self.x[:, 9:10].sum(),
                        ]
                    ).T,
                ),
                "abc": Variable(["abc"], np.array(["a", "b", "c"])),
            }
        )["foo"]
        assert_allclose(expected_sum_all, grouped.reduce(np.sum, dim=...))
        assert_allclose(expected_sum_all, grouped.sum(...))

        expected = DataArray(
            [
                array["y"].values[idx].sum()
                for idx in [slice(9), slice(10, None), slice(9, 10)]
            ],
            [["a", "b", "c"]],
            ["abc"],
        )
        actual = array["y"].groupby("abc").map(np.sum)
        assert_allclose(expected, actual)
        actual = array["y"].groupby("abc").sum(...)
        assert_allclose(expected, actual)

        expected_sum_axis1 = Dataset(
            {
                "foo": (
                    ["x", "abc"],
                    np.array(
                        [
                            self.x[:, :9].sum(1),
                            self.x[:, 10:].sum(1),
                            self.x[:, 9:10].sum(1),
                        ]
                    ).T,
                ),
                "abc": Variable(["abc"], np.array(["a", "b", "c"])),
            }
        )["foo"]
        assert_allclose(expected_sum_axis1, grouped.reduce(np.sum, "y"))
        assert_allclose(expected_sum_axis1, grouped.sum("y"))

    @pytest.mark.parametrize("method", ["sum", "mean", "median"])
    def test_groupby_reductions(self, method):
        array = self.da
        grouped = array.groupby("abc")

        reduction = getattr(np, method)
        expected = Dataset(
            {
                "foo": Variable(
                    ["x", "abc"],
                    np.array(
                        [
                            reduction(self.x[:, :9], axis=-1),
                            reduction(self.x[:, 10:], axis=-1),
                            reduction(self.x[:, 9:10], axis=-1),
                        ]
                    ).T,
                ),
                "abc": Variable(["abc"], np.array(["a", "b", "c"])),
            }
        )["foo"]

        with xr.set_options(use_flox=False):
            actual_legacy = getattr(grouped, method)(dim="y")

        with xr.set_options(use_flox=True):
            actual_npg = getattr(grouped, method)(dim="y")

        assert_allclose(expected, actual_legacy)
        assert_allclose(expected, actual_npg)

    def test_groupby_count(self):
        array = DataArray(
            [0, 0, np.nan, np.nan, 0, 0],
            coords={"cat": ("x", ["a", "b", "b", "c", "c", "c"])},
            dims="x",
        )
        actual = array.groupby("cat").count()
        expected = DataArray([1, 1, 2], coords=[("cat", ["a", "b", "c"])])
        assert_identical(actual, expected)

    @pytest.mark.parametrize("shortcut", [True, False])
    @pytest.mark.parametrize("keep_attrs", [None, True, False])
    def test_groupby_reduce_keep_attrs(self, shortcut, keep_attrs):
        array = self.da
        array.attrs["foo"] = "bar"

        actual = array.groupby("abc").reduce(
            np.mean, keep_attrs=keep_attrs, shortcut=shortcut
        )
        with xr.set_options(use_flox=False):
            expected = array.groupby("abc").mean(keep_attrs=keep_attrs)
        assert_identical(expected, actual)

    @pytest.mark.parametrize("keep_attrs", [None, True, False])
    def test_groupby_keep_attrs(self, keep_attrs):
        array = self.da
        array.attrs["foo"] = "bar"

        with xr.set_options(use_flox=False):
            expected = array.groupby("abc").mean(keep_attrs=keep_attrs)
        with xr.set_options(use_flox=True):
            actual = array.groupby("abc").mean(keep_attrs=keep_attrs)

        # values are tested elsewhere, here we just check data
        # TODO: add check_attrs kwarg to assert_allclose
        actual.data = expected.data
        assert_identical(expected, actual)

    def test_groupby_map_center(self):
        def center(x):
            return x - np.mean(x)

        array = self.da
        grouped = array.groupby("abc")

        expected_ds = array.to_dataset()
        exp_data = np.hstack(
            [center(self.x[:, :9]), center(self.x[:, 9:10]), center(self.x[:, 10:])]
        )
        expected_ds["foo"] = (["x", "y"], exp_data)
        expected_centered = expected_ds["foo"]
        assert_allclose(expected_centered, grouped.map(center))

    def test_groupby_map_ndarray(self):
        # regression test for #326
        array = self.da
        grouped = array.groupby("abc")
        actual = grouped.map(np.asarray)
        assert_equal(array, actual)

    def test_groupby_map_changes_metadata(self):
        def change_metadata(x):
            x.coords["x"] = x.coords["x"] * 2
            x.attrs["fruit"] = "lemon"
            return x

        array = self.da
        grouped = array.groupby("abc")
        actual = grouped.map(change_metadata)
        expected = array.copy()
        expected = change_metadata(expected)
        assert_equal(expected, actual)

    @pytest.mark.parametrize("squeeze", [True, False])
    def test_groupby_math_squeeze(self, squeeze):
        array = self.da
        grouped = array.groupby("x", squeeze=squeeze)

        expected = array + array.coords["x"]
        actual = grouped + array.coords["x"]
        assert_identical(expected, actual)

        actual = array.coords["x"] + grouped
        assert_identical(expected, actual)

        ds = array.coords["x"].to_dataset(name="X")
        expected = array + ds
        actual = grouped + ds
        assert_identical(expected, actual)

        actual = ds + grouped
        assert_identical(expected, actual)

    def test_groupby_math(self):
        array = self.da
        grouped = array.groupby("abc")
        expected_agg = (grouped.mean(...) - np.arange(3)).rename(None)
        actual = grouped - DataArray(range(3), [("abc", ["a", "b", "c"])])
        actual_agg = actual.groupby("abc").mean(...)
        assert_allclose(expected_agg, actual_agg)

        with pytest.raises(TypeError, match=r"only support binary ops"):
            grouped + 1
        with pytest.raises(TypeError, match=r"only support binary ops"):
            grouped + grouped
        with pytest.raises(TypeError, match=r"in-place operations"):
            array += grouped

    def test_groupby_math_not_aligned(self):
        array = DataArray(
            range(4), {"b": ("x", [0, 0, 1, 1]), "x": [0, 1, 2, 3]}, dims="x"
        )
        other = DataArray([10], coords={"b": [0]}, dims="b")
        actual = array.groupby("b") + other
        expected = DataArray([10, 11, np.nan, np.nan], array.coords)
        assert_identical(expected, actual)

        other = DataArray([10], coords={"c": 123, "b": [0]}, dims="b")
        actual = array.groupby("b") + other
        expected.coords["c"] = (["x"], [123] * 2 + [np.nan] * 2)
        assert_identical(expected, actual)

        other = Dataset({"a": ("b", [10])}, {"b": [0]})
        actual = array.groupby("b") + other
        expected = Dataset({"a": ("x", [10, 11, np.nan, np.nan])}, array.coords)
        assert_identical(expected, actual)

    def test_groupby_restore_dim_order(self):
        array = DataArray(
            np.random.randn(5, 3),
            coords={"a": ("x", range(5)), "b": ("y", range(3))},
            dims=["x", "y"],
        )
        for by, expected_dims in [
            ("x", ("x", "y")),
            ("y", ("x", "y")),
            ("a", ("a", "y")),
            ("b", ("x", "b")),
        ]:
            result = array.groupby(by).map(lambda x: x.squeeze())
            assert result.dims == expected_dims

    def test_groupby_restore_coord_dims(self):
        array = DataArray(
            np.random.randn(5, 3),
            coords={
                "a": ("x", range(5)),
                "b": ("y", range(3)),
                "c": (("x", "y"), np.random.randn(5, 3)),
            },
            dims=["x", "y"],
        )

        for by, expected_dims in [
            ("x", ("x", "y")),
            ("y", ("x", "y")),
            ("a", ("a", "y")),
            ("b", ("x", "b")),
        ]:
            result = array.groupby(by, restore_coord_dims=True).map(
                lambda x: x.squeeze()
            )["c"]
            assert result.dims == expected_dims

    def test_groupby_first_and_last(self):
        array = DataArray([1, 2, 3, 4, 5], dims="x")
        by = DataArray(["a"] * 2 + ["b"] * 3, dims="x", name="ab")

        expected = DataArray([1, 3], [("ab", ["a", "b"])])
        actual = array.groupby(by).first()
        assert_identical(expected, actual)

        expected = DataArray([2, 5], [("ab", ["a", "b"])])
        actual = array.groupby(by).last()
        assert_identical(expected, actual)

        array = DataArray(np.random.randn(5, 3), dims=["x", "y"])
        expected = DataArray(array[[0, 2]], {"ab": ["a", "b"]}, ["ab", "y"])
        actual = array.groupby(by).first()
        assert_identical(expected, actual)

        actual = array.groupby("x").first()
        expected = array  # should be a no-op
        assert_identical(expected, actual)

    def make_groupby_multidim_example_array(self):
        return DataArray(
            [[[0, 1], [2, 3]], [[5, 10], [15, 20]]],
            coords={
                "lon": (["ny", "nx"], [[30, 40], [40, 50]]),
                "lat": (["ny", "nx"], [[10, 10], [20, 20]]),
            },
            dims=["time", "ny", "nx"],
        )

    def test_groupby_multidim(self):
        array = self.make_groupby_multidim_example_array()
        for dim, expected_sum in [
            ("lon", DataArray([5, 28, 23], coords=[("lon", [30.0, 40.0, 50.0])])),
            ("lat", DataArray([16, 40], coords=[("lat", [10.0, 20.0])])),
        ]:
            actual_sum = array.groupby(dim).sum(...)
            assert_identical(expected_sum, actual_sum)

    def test_groupby_multidim_map(self):
        array = self.make_groupby_multidim_example_array()
        actual = array.groupby("lon").map(lambda x: x - x.mean())
        expected = DataArray(
            [[[-2.5, -6.0], [-5.0, -8.5]], [[2.5, 3.0], [8.0, 8.5]]],
            coords=array.coords,
            dims=array.dims,
        )
        assert_identical(expected, actual)

    def test_groupby_bins(self):
        array = DataArray(np.arange(4), dims="dim_0")
        # the first value should not be part of any group ("right" binning)
        array[0] = 99
        # bins follow conventions for pandas.cut
        # http://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
        bins = [0, 1.5, 5]
        bin_coords = pd.cut(array["dim_0"], bins).categories
        expected = DataArray(
            [1, 5], dims="dim_0_bins", coords={"dim_0_bins": bin_coords}
        )
        actual = array.groupby_bins("dim_0", bins=bins).sum()
        assert_identical(expected, actual)

        actual = array.groupby_bins("dim_0", bins=bins, labels=[1.2, 3.5]).sum()
        assert_identical(expected.assign_coords(dim_0_bins=[1.2, 3.5]), actual)

        actual = array.groupby_bins("dim_0", bins=bins).map(lambda x: x.sum())
        assert_identical(expected, actual)

        # make sure original array dims are unchanged
        assert len(array.dim_0) == 4

        da = xr.DataArray(np.ones((2, 3, 4)))
        bins = [-1, 0, 1, 2]
        with xr.set_options(use_flox=False):
            actual = da.groupby_bins("dim_0", bins).mean(...)
        with xr.set_options(use_flox=True):
            expected = da.groupby_bins("dim_0", bins).mean(...)
        assert_allclose(actual, expected)

    def test_groupby_bins_empty(self):
        array = DataArray(np.arange(4), [("x", range(4))])
        # one of these bins will be empty
        bins = [0, 4, 5]
        bin_coords = pd.cut(array["x"], bins).categories
        actual = array.groupby_bins("x", bins).sum()
        expected = DataArray([6, np.nan], dims="x_bins", coords={"x_bins": bin_coords})
        assert_identical(expected, actual)
        # make sure original array is unchanged
        # (was a problem in earlier versions)
        assert len(array.x) == 4

    def test_groupby_bins_multidim(self):
        array = self.make_groupby_multidim_example_array()
        bins = [0, 15, 20]
        bin_coords = pd.cut(array["lat"].values.flat, bins).categories
        expected = DataArray([16, 40], dims="lat_bins", coords={"lat_bins": bin_coords})
        actual = array.groupby_bins("lat", bins).map(lambda x: x.sum())
        assert_identical(expected, actual)
        # modify the array coordinates to be non-monotonic after unstacking
        array["lat"].data = np.array([[10.0, 20.0], [20.0, 10.0]])
        expected = DataArray([28, 28], dims="lat_bins", coords={"lat_bins": bin_coords})
        actual = array.groupby_bins("lat", bins).map(lambda x: x.sum())
        assert_identical(expected, actual)

        bins = [-2, -1, 0, 1, 2]
        field = DataArray(np.ones((5, 3)), dims=("x", "y"))
        by = DataArray(
            np.array([[-1.5, -1.5, 0.5, 1.5, 1.5] * 3]).reshape(5, 3), dims=("x", "y")
        )
        actual = field.groupby_bins(by, bins=bins).count()

        bincoord = np.array(
            [
                pd.Interval(left, right, closed="right")
                for left, right in zip(bins[:-1], bins[1:])
            ],
            dtype=object,
        )
        expected = DataArray(
            np.array([6, np.nan, 3, 6]),
            dims="group_bins",
            coords={"group_bins": bincoord},
        )
        assert_identical(actual, expected)

    def test_groupby_bins_sort(self):
        data = xr.DataArray(
            np.arange(100), dims="x", coords={"x": np.linspace(-100, 100, num=100)}
        )
        binned_mean = data.groupby_bins("x", bins=11).mean()
        assert binned_mean.to_index().is_monotonic_increasing

        with xr.set_options(use_flox=True):
            actual = data.groupby_bins("x", bins=11).count()
        with xr.set_options(use_flox=False):
            expected = data.groupby_bins("x", bins=11).count()
        assert_identical(actual, expected)

    def test_groupby_assign_coords(self):

        array = DataArray([1, 2, 3, 4], {"c": ("x", [0, 0, 1, 1])}, dims="x")
        actual = array.groupby("c").assign_coords(d=lambda a: a.mean())
        expected = array.copy()
        expected.coords["d"] = ("x", [1.5, 1.5, 3.5, 3.5])
        assert_identical(actual, expected)

    def test_groupby_fillna(self):
        a = DataArray([np.nan, 1, np.nan, 3], coords={"x": range(4)}, dims="x")
        fill_value = DataArray([0, 1], dims="y")
        actual = a.fillna(fill_value)
        expected = DataArray(
            [[0, 1], [1, 1], [0, 1], [3, 3]], coords={"x": range(4)}, dims=("x", "y")
        )
        assert_identical(expected, actual)

        b = DataArray(range(4), coords={"x": range(4)}, dims="x")
        expected = b.copy()
        for target in [a, expected]:
            target.coords["b"] = ("x", [0, 0, 1, 1])
        actual = a.groupby("b").fillna(DataArray([0, 2], dims="b"))
        assert_identical(expected, actual)


class TestDataArrayResample:
    def test_resample(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        array = DataArray(np.arange(10), [("time", times)])

        actual = array.resample(time="24H").mean()
        expected = DataArray(array.to_series().resample("24H").mean())
        assert_identical(expected, actual)

        actual = array.resample(time="24H").reduce(np.mean)
        assert_identical(expected, actual)

        # Our use of `loffset` may change if we align our API with pandas' changes.
        # ref https://github.com/pydata/xarray/pull/4537
        actual = array.resample(time="24H", loffset="-12H").mean()
        expected_ = array.to_series().resample("24H").mean()
        expected_.index += to_offset("-12H")
        expected = DataArray.from_series(expected_)
        assert_identical(actual, expected)

        with pytest.raises(ValueError, match=r"index must be monotonic"):
            array[[2, 0, 1]].resample(time="1D")

    def test_da_resample_func_args(self):
        def func(arg1, arg2, arg3=0.0):
            return arg1.mean("time") + arg2 + arg3

        times = pd.date_range("2000", periods=3, freq="D")
        da = xr.DataArray([1.0, 1.0, 1.0], coords=[times], dims=["time"])
        expected = xr.DataArray([3.0, 3.0, 3.0], coords=[times], dims=["time"])
        actual = da.resample(time="D").map(func, args=(1.0,), arg3=1.0)
        assert_identical(actual, expected)

    def test_resample_first(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        array = DataArray(np.arange(10), [("time", times)])

        actual = array.resample(time="1D").first()
        expected = DataArray([0, 4, 8], [("time", times[::4])])
        assert_identical(expected, actual)

        # verify that labels don't use the first value
        actual = array.resample(time="24H").first()
        expected = DataArray(array.to_series().resample("24H").first())
        assert_identical(expected, actual)

        # missing values
        array = array.astype(float)
        array[:2] = np.nan
        actual = array.resample(time="1D").first()
        expected = DataArray([2, 4, 8], [("time", times[::4])])
        assert_identical(expected, actual)

        actual = array.resample(time="1D").first(skipna=False)
        expected = DataArray([np.nan, 4, 8], [("time", times[::4])])
        assert_identical(expected, actual)

        # regression test for http://stackoverflow.com/questions/33158558/
        array = Dataset({"time": times})["time"]
        actual = array.resample(time="1D").last()
        expected_times = pd.to_datetime(
            ["2000-01-01T18", "2000-01-02T18", "2000-01-03T06"]
        )
        expected = DataArray(expected_times, [("time", times[::4])], name="time")
        assert_identical(expected, actual)

    def test_resample_bad_resample_dim(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        array = DataArray(np.arange(10), [("__resample_dim__", times)])
        with pytest.raises(ValueError, match=r"Proxy resampling dimension"):
            array.resample(**{"__resample_dim__": "1D"}).first()

    @requires_scipy
    def test_resample_drop_nondim_coords(self):
        xs = np.arange(6)
        ys = np.arange(3)
        times = pd.date_range("2000-01-01", freq="6H", periods=5)
        data = np.tile(np.arange(5), (6, 3, 1))
        xx, yy = np.meshgrid(xs * 5, ys * 2.5)
        tt = np.arange(len(times), dtype=int)
        array = DataArray(data, {"time": times, "x": xs, "y": ys}, ("x", "y", "time"))
        xcoord = DataArray(xx.T, {"x": xs, "y": ys}, ("x", "y"))
        ycoord = DataArray(yy.T, {"x": xs, "y": ys}, ("x", "y"))
        tcoord = DataArray(tt, {"time": times}, ("time",))
        ds = Dataset({"data": array, "xc": xcoord, "yc": ycoord, "tc": tcoord})
        ds = ds.set_coords(["xc", "yc", "tc"])

        # Select the data now, with the auxiliary coordinates in place
        array = ds["data"]

        # Re-sample
        actual = array.resample(time="12H", restore_coord_dims=True).mean("time")
        assert "tc" not in actual.coords

        # Up-sample - filling
        actual = array.resample(time="1H", restore_coord_dims=True).ffill()
        assert "tc" not in actual.coords

        # Up-sample - interpolation
        actual = array.resample(time="1H", restore_coord_dims=True).interpolate(
            "linear"
        )
        assert "tc" not in actual.coords

    def test_resample_keep_attrs(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        array = DataArray(np.ones(10), [("time", times)])
        array.attrs["meta"] = "data"

        result = array.resample(time="1D").mean(keep_attrs=True)
        expected = DataArray([1, 1, 1], [("time", times[::4])], attrs=array.attrs)
        assert_identical(result, expected)

        with pytest.warns(
            UserWarning, match="Passing ``keep_attrs`` to ``resample`` has no effect."
        ):
            array.resample(time="1D", keep_attrs=True)

    def test_resample_skipna(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        array = DataArray(np.ones(10), [("time", times)])
        array[1] = np.nan

        result = array.resample(time="1D").mean(skipna=False)
        expected = DataArray([np.nan, 1, 1], [("time", times[::4])])
        assert_identical(result, expected)

    def test_upsample(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=5)
        array = DataArray(np.arange(5), [("time", times)])

        # Forward-fill
        actual = array.resample(time="3H").ffill()
        expected = DataArray(array.to_series().resample("3H").ffill())
        assert_identical(expected, actual)

        # Backward-fill
        actual = array.resample(time="3H").bfill()
        expected = DataArray(array.to_series().resample("3H").bfill())
        assert_identical(expected, actual)

        # As frequency
        actual = array.resample(time="3H").asfreq()
        expected = DataArray(array.to_series().resample("3H").asfreq())
        assert_identical(expected, actual)

        # Pad
        actual = array.resample(time="3H").pad()
        expected = DataArray(array.to_series().resample("3H").ffill())
        assert_identical(expected, actual)

        # Nearest
        rs = array.resample(time="3H")
        actual = rs.nearest()
        new_times = rs._full_index
        expected = DataArray(array.reindex(time=new_times, method="nearest"))
        assert_identical(expected, actual)

    def test_upsample_nd(self):
        # Same as before, but now we try on multi-dimensional DataArrays.
        xs = np.arange(6)
        ys = np.arange(3)
        times = pd.date_range("2000-01-01", freq="6H", periods=5)
        data = np.tile(np.arange(5), (6, 3, 1))
        array = DataArray(data, {"time": times, "x": xs, "y": ys}, ("x", "y", "time"))

        # Forward-fill
        actual = array.resample(time="3H").ffill()
        expected_data = np.repeat(data, 2, axis=-1)
        expected_times = times.to_series().resample("3H").asfreq().index
        expected_data = expected_data[..., : len(expected_times)]
        expected = DataArray(
            expected_data,
            {"time": expected_times, "x": xs, "y": ys},
            ("x", "y", "time"),
        )
        assert_identical(expected, actual)

        # Backward-fill
        actual = array.resample(time="3H").ffill()
        expected_data = np.repeat(np.flipud(data.T).T, 2, axis=-1)
        expected_data = np.flipud(expected_data.T).T
        expected_times = times.to_series().resample("3H").asfreq().index
        expected_data = expected_data[..., : len(expected_times)]
        expected = DataArray(
            expected_data,
            {"time": expected_times, "x": xs, "y": ys},
            ("x", "y", "time"),
        )
        assert_identical(expected, actual)

        # As frequency
        actual = array.resample(time="3H").asfreq()
        expected_data = np.repeat(data, 2, axis=-1).astype(float)[..., :-1]
        expected_data[..., 1::2] = np.nan
        expected_times = times.to_series().resample("3H").asfreq().index
        expected = DataArray(
            expected_data,
            {"time": expected_times, "x": xs, "y": ys},
            ("x", "y", "time"),
        )
        assert_identical(expected, actual)

        # Pad
        actual = array.resample(time="3H").pad()
        expected_data = np.repeat(data, 2, axis=-1)
        expected_data[..., 1::2] = expected_data[..., ::2]
        expected_data = expected_data[..., :-1]
        expected_times = times.to_series().resample("3H").asfreq().index
        expected = DataArray(
            expected_data,
            {"time": expected_times, "x": xs, "y": ys},
            ("x", "y", "time"),
        )
        assert_identical(expected, actual)

    def test_upsample_tolerance(self):
        # Test tolerance keyword for upsample methods bfill, pad, nearest
        times = pd.date_range("2000-01-01", freq="1D", periods=2)
        times_upsampled = pd.date_range("2000-01-01", freq="6H", periods=5)
        array = DataArray(np.arange(2), [("time", times)])

        # Forward fill
        actual = array.resample(time="6H").ffill(tolerance="12H")
        expected = DataArray([0.0, 0.0, 0.0, np.nan, 1.0], [("time", times_upsampled)])
        assert_identical(expected, actual)

        # Backward fill
        actual = array.resample(time="6H").bfill(tolerance="12H")
        expected = DataArray([0.0, np.nan, 1.0, 1.0, 1.0], [("time", times_upsampled)])
        assert_identical(expected, actual)

        # Nearest
        actual = array.resample(time="6H").nearest(tolerance="6H")
        expected = DataArray([0, 0, np.nan, 1, 1], [("time", times_upsampled)])
        assert_identical(expected, actual)

    @requires_scipy
    def test_upsample_interpolate(self):
        from scipy.interpolate import interp1d

        xs = np.arange(6)
        ys = np.arange(3)
        times = pd.date_range("2000-01-01", freq="6H", periods=5)

        z = np.arange(5) ** 2
        data = np.tile(z, (6, 3, 1))
        array = DataArray(data, {"time": times, "x": xs, "y": ys}, ("x", "y", "time"))

        expected_times = times.to_series().resample("1H").asfreq().index
        # Split the times into equal sub-intervals to simulate the 6 hour
        # to 1 hour up-sampling
        new_times_idx = np.linspace(0, len(times) - 1, len(times) * 5)
        for kind in ["linear", "nearest", "zero", "slinear", "quadratic", "cubic"]:
            actual = array.resample(time="1H").interpolate(kind)
            f = interp1d(
                np.arange(len(times)),
                data,
                kind=kind,
                axis=-1,
                bounds_error=True,
                assume_sorted=True,
            )
            expected_data = f(new_times_idx)
            expected = DataArray(
                expected_data,
                {"time": expected_times, "x": xs, "y": ys},
                ("x", "y", "time"),
            )
            # Use AllClose because there are some small differences in how
            # we upsample timeseries versus the integer indexing as I've
            # done here due to floating point arithmetic
            assert_allclose(expected, actual, rtol=1e-16)

    @requires_scipy
    def test_upsample_interpolate_bug_2197(self):
        dates = pd.date_range("2007-02-01", "2007-03-01", freq="D")
        da = xr.DataArray(np.arange(len(dates)), [("time", dates)])
        result = da.resample(time="M").interpolate("linear")
        expected_times = np.array(
            [np.datetime64("2007-02-28"), np.datetime64("2007-03-31")]
        )
        expected = xr.DataArray([27.0, np.nan], [("time", expected_times)])
        assert_equal(result, expected)

    @requires_scipy
    def test_upsample_interpolate_regression_1605(self):
        dates = pd.date_range("2016-01-01", "2016-03-31", freq="1D")
        expected = xr.DataArray(
            np.random.random((len(dates), 2, 3)),
            dims=("time", "x", "y"),
            coords={"time": dates},
        )
        actual = expected.resample(time="1D").interpolate("linear")
        assert_allclose(actual, expected, rtol=1e-16)

    @requires_dask
    @requires_scipy
    @pytest.mark.parametrize("chunked_time", [True, False])
    def test_upsample_interpolate_dask(self, chunked_time):
        from scipy.interpolate import interp1d

        xs = np.arange(6)
        ys = np.arange(3)
        times = pd.date_range("2000-01-01", freq="6H", periods=5)

        z = np.arange(5) ** 2
        data = np.tile(z, (6, 3, 1))
        array = DataArray(data, {"time": times, "x": xs, "y": ys}, ("x", "y", "time"))
        chunks = {"x": 2, "y": 1}
        if chunked_time:
            chunks["time"] = 3

        expected_times = times.to_series().resample("1H").asfreq().index
        # Split the times into equal sub-intervals to simulate the 6 hour
        # to 1 hour up-sampling
        new_times_idx = np.linspace(0, len(times) - 1, len(times) * 5)
        for kind in ["linear", "nearest", "zero", "slinear", "quadratic", "cubic"]:
            actual = array.chunk(chunks).resample(time="1H").interpolate(kind)
            actual = actual.compute()
            f = interp1d(
                np.arange(len(times)),
                data,
                kind=kind,
                axis=-1,
                bounds_error=True,
                assume_sorted=True,
            )
            expected_data = f(new_times_idx)
            expected = DataArray(
                expected_data,
                {"time": expected_times, "x": xs, "y": ys},
                ("x", "y", "time"),
            )
            # Use AllClose because there are some small differences in how
            # we upsample timeseries versus the integer indexing as I've
            # done here due to floating point arithmetic
            assert_allclose(expected, actual, rtol=1e-16)

    def test_resample_base(self) -> None:
        times = pd.date_range("2000-01-01T02:03:01", freq="6H", periods=10)
        array = DataArray(np.arange(10), [("time", times)])

        base = 11
        actual = array.resample(time="24H", base=base).mean()
        expected = DataArray(array.to_series().resample("24H", base=base).mean())
        assert_identical(expected, actual)

    def test_resample_offset(self) -> None:
        times = pd.date_range("2000-01-01T02:03:01", freq="6H", periods=10)
        array = DataArray(np.arange(10), [("time", times)])

        offset = pd.Timedelta("11H")
        actual = array.resample(time="24H", offset=offset).mean()
        expected = DataArray(array.to_series().resample("24H", offset=offset).mean())
        assert_identical(expected, actual)

    def test_resample_origin(self) -> None:
        times = pd.date_range("2000-01-01T02:03:01", freq="6H", periods=10)
        array = DataArray(np.arange(10), [("time", times)])

        origin = "start"
        actual = array.resample(time="24H", origin=origin).mean()
        expected = DataArray(array.to_series().resample("24H", origin=origin).mean())
        assert_identical(expected, actual)


class TestDatasetResample:
    def test_resample_and_first(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        ds = Dataset(
            {
                "foo": (["time", "x", "y"], np.random.randn(10, 5, 3)),
                "bar": ("time", np.random.randn(10), {"meta": "data"}),
                "time": times,
            }
        )

        actual = ds.resample(time="1D").first(keep_attrs=True)
        expected = ds.isel(time=[0, 4, 8])
        assert_identical(expected, actual)

        # upsampling
        expected_time = pd.date_range("2000-01-01", freq="3H", periods=19)
        expected = ds.reindex(time=expected_time)
        actual = ds.resample(time="3H")
        for how in ["mean", "sum", "first", "last"]:
            method = getattr(actual, how)
            result = method()
            assert_equal(expected, result)
        for method in [np.mean]:
            result = actual.reduce(method)
            assert_equal(expected, result)

    def test_resample_min_count(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        ds = Dataset(
            {
                "foo": (["time", "x", "y"], np.random.randn(10, 5, 3)),
                "bar": ("time", np.random.randn(10), {"meta": "data"}),
                "time": times,
            }
        )
        # inject nan
        ds["foo"] = xr.where(ds["foo"] > 2.0, np.nan, ds["foo"])

        actual = ds.resample(time="1D").sum(min_count=1)
        expected = xr.concat(
            [
                ds.isel(time=slice(i * 4, (i + 1) * 4)).sum("time", min_count=1)
                for i in range(3)
            ],
            dim=actual["time"],
        )
        assert_allclose(expected, actual)

    def test_resample_by_mean_with_keep_attrs(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        ds = Dataset(
            {
                "foo": (["time", "x", "y"], np.random.randn(10, 5, 3)),
                "bar": ("time", np.random.randn(10), {"meta": "data"}),
                "time": times,
            }
        )
        ds.attrs["dsmeta"] = "dsdata"

        resampled_ds = ds.resample(time="1D").mean(keep_attrs=True)
        actual = resampled_ds["bar"].attrs
        expected = ds["bar"].attrs
        assert expected == actual

        actual = resampled_ds.attrs
        expected = ds.attrs
        assert expected == actual

        with pytest.warns(
            UserWarning, match="Passing ``keep_attrs`` to ``resample`` has no effect."
        ):
            ds.resample(time="1D", keep_attrs=True)

    def test_resample_loffset(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        ds = Dataset(
            {
                "foo": (["time", "x", "y"], np.random.randn(10, 5, 3)),
                "bar": ("time", np.random.randn(10), {"meta": "data"}),
                "time": times,
            }
        )
        ds.attrs["dsmeta"] = "dsdata"

        # Our use of `loffset` may change if we align our API with pandas' changes.
        # ref https://github.com/pydata/xarray/pull/4537
        actual = ds.resample(time="24H", loffset="-12H").mean().bar
        expected_ = ds.bar.to_series().resample("24H").mean()
        expected_.index += to_offset("-12H")
        expected = DataArray.from_series(expected_)
        assert_allclose(actual, expected)

    def test_resample_by_mean_discarding_attrs(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        ds = Dataset(
            {
                "foo": (["time", "x", "y"], np.random.randn(10, 5, 3)),
                "bar": ("time", np.random.randn(10), {"meta": "data"}),
                "time": times,
            }
        )
        ds.attrs["dsmeta"] = "dsdata"

        resampled_ds = ds.resample(time="1D").mean(keep_attrs=False)

        assert resampled_ds["bar"].attrs == {}
        assert resampled_ds.attrs == {}

    def test_resample_by_last_discarding_attrs(self):
        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        ds = Dataset(
            {
                "foo": (["time", "x", "y"], np.random.randn(10, 5, 3)),
                "bar": ("time", np.random.randn(10), {"meta": "data"}),
                "time": times,
            }
        )
        ds.attrs["dsmeta"] = "dsdata"

        resampled_ds = ds.resample(time="1D").last(keep_attrs=False)

        assert resampled_ds["bar"].attrs == {}
        assert resampled_ds.attrs == {}

    @requires_scipy
    def test_resample_drop_nondim_coords(self):
        xs = np.arange(6)
        ys = np.arange(3)
        times = pd.date_range("2000-01-01", freq="6H", periods=5)
        data = np.tile(np.arange(5), (6, 3, 1))
        xx, yy = np.meshgrid(xs * 5, ys * 2.5)
        tt = np.arange(len(times), dtype=int)
        array = DataArray(data, {"time": times, "x": xs, "y": ys}, ("x", "y", "time"))
        xcoord = DataArray(xx.T, {"x": xs, "y": ys}, ("x", "y"))
        ycoord = DataArray(yy.T, {"x": xs, "y": ys}, ("x", "y"))
        tcoord = DataArray(tt, {"time": times}, ("time",))
        ds = Dataset({"data": array, "xc": xcoord, "yc": ycoord, "tc": tcoord})
        ds = ds.set_coords(["xc", "yc", "tc"])

        # Re-sample
        actual = ds.resample(time="12H").mean("time")
        assert "tc" not in actual.coords

        # Up-sample - filling
        actual = ds.resample(time="1H").ffill()
        assert "tc" not in actual.coords

        # Up-sample - interpolation
        actual = ds.resample(time="1H").interpolate("linear")
        assert "tc" not in actual.coords

    def test_resample_old_api(self):

        times = pd.date_range("2000-01-01", freq="6H", periods=10)
        ds = Dataset(
            {
                "foo": (["time", "x", "y"], np.random.randn(10, 5, 3)),
                "bar": ("time", np.random.randn(10), {"meta": "data"}),
                "time": times,
            }
        )

        with pytest.raises(TypeError, match=r"resample\(\) no longer supports"):
            ds.resample("1D", "time")

        with pytest.raises(TypeError, match=r"resample\(\) no longer supports"):
            ds.resample("1D", dim="time", how="mean")

        with pytest.raises(TypeError, match=r"resample\(\) no longer supports"):
            ds.resample("1D", dim="time")

    def test_resample_ds_da_are_the_same(self):
        time = pd.date_range("2000-01-01", freq="6H", periods=365 * 4)
        ds = xr.Dataset(
            {
                "foo": (("time", "x"), np.random.randn(365 * 4, 5)),
                "time": time,
                "x": np.arange(5),
            }
        )
        assert_allclose(
            ds.resample(time="M").mean()["foo"], ds.foo.resample(time="M").mean()
        )

    def test_ds_resample_apply_func_args(self):
        def func(arg1, arg2, arg3=0.0):
            return arg1.mean("time") + arg2 + arg3

        times = pd.date_range("2000", freq="D", periods=3)
        ds = xr.Dataset({"foo": ("time", [1.0, 1.0, 1.0]), "time": times})
        expected = xr.Dataset({"foo": ("time", [3.0, 3.0, 3.0]), "time": times})
        actual = ds.resample(time="D").map(func, args=(1.0,), arg3=1.0)
        assert_identical(expected, actual)


def test_groupby_cumsum() -> None:
    ds = xr.Dataset(
        {"foo": (("x",), [7, 3, 1, 1, 1, 1, 1])},
        coords={"x": [0, 1, 2, 3, 4, 5, 6], "group_id": ("x", [0, 0, 1, 1, 2, 2, 2])},
    )
    actual = ds.groupby("group_id").cumsum(dim="x")
    expected = xr.Dataset(
        {
            "foo": (("x",), [7, 10, 1, 2, 1, 2, 3]),
        },
        coords={
            "x": [0, 1, 2, 3, 4, 5, 6],
            "group_id": ds.group_id,
        },
    )
    # TODO: Remove drop_vars when GH6528 is fixed
    # when Dataset.cumsum propagates indexes, and the group variable?
    assert_identical(expected.drop_vars(["x", "group_id"]), actual)

    actual = ds.foo.groupby("group_id").cumsum(dim="x")
    expected.coords["group_id"] = ds.group_id
    expected.coords["x"] = np.arange(7)
    assert_identical(expected.foo, actual)


def test_groupby_cumprod() -> None:
    ds = xr.Dataset(
        {"foo": (("x",), [7, 3, 0, 1, 1, 2, 1])},
        coords={"x": [0, 1, 2, 3, 4, 5, 6], "group_id": ("x", [0, 0, 1, 1, 2, 2, 2])},
    )
    actual = ds.groupby("group_id").cumprod(dim="x")
    expected = xr.Dataset(
        {
            "foo": (("x",), [7, 21, 0, 0, 1, 2, 2]),
        },
        coords={
            "x": [0, 1, 2, 3, 4, 5, 6],
            "group_id": ds.group_id,
        },
    )
    # TODO: Remove drop_vars when GH6528 is fixed
    # when Dataset.cumsum propagates indexes, and the group variable?
    assert_identical(expected.drop_vars(["x", "group_id"]), actual)

    actual = ds.foo.groupby("group_id").cumprod(dim="x")
    expected.coords["group_id"] = ds.group_id
    expected.coords["x"] = np.arange(7)
    assert_identical(expected.foo, actual)


@pytest.mark.parametrize(
    "method, expected_array",
    [
        ("cumsum", [1.0, 2.0, 5.0, 6.0, 2.0, 2.0]),
        ("cumprod", [1.0, 2.0, 6.0, 6.0, 2.0, 2.0]),
    ],
)
def test_resample_cumsum(method: str, expected_array: list[float]) -> None:
    ds = xr.Dataset(
        {"foo": ("time", [1, 2, 3, 1, 2, np.nan])},
        coords={
            "time": pd.date_range("01-01-2001", freq="M", periods=6),
        },
    )
    actual = getattr(ds.resample(time="3M"), method)(dim="time")
    expected = xr.Dataset(
        {"foo": (("time",), expected_array)},
        coords={
            "time": pd.date_range("01-01-2001", freq="M", periods=6),
        },
    )
    # TODO: Remove drop_vars when GH6528 is fixed
    # when Dataset.cumsum propagates indexes, and the group variable?
    assert_identical(expected.drop_vars(["time"]), actual)

    actual = getattr(ds.foo.resample(time="3M"), method)(dim="time")
    expected.coords["time"] = ds.time
    assert_identical(expected.drop_vars(["time"]).foo, actual)


# TODO: move other groupby tests from test_dataset and test_dataarray over here