| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 
 | """
Useful for:
* users learning xarray
* building tutorials in the documentation.
"""
from __future__ import annotations
import os
import pathlib
import warnings
from typing import TYPE_CHECKING
import numpy as np
from xarray.backends.api import open_dataset as _open_dataset
from xarray.backends.rasterio_ import open_rasterio as _open_rasterio
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
if TYPE_CHECKING:
    from xarray.backends.api import T_Engine
_default_cache_dir_name = "xarray_tutorial_data"
base_url = "https://github.com/pydata/xarray-data"
version = "master"
def _construct_cache_dir(path):
    import pooch
    if isinstance(path, os.PathLike):
        path = os.fspath(path)
    elif path is None:
        path = pooch.os_cache(_default_cache_dir_name)
    return path
external_urls = {}  # type: dict
external_rasterio_urls = {
    "RGB.byte": "https://github.com/rasterio/rasterio/raw/1.2.1/tests/data/RGB.byte.tif",
    "shade": "https://github.com/rasterio/rasterio/raw/1.2.1/tests/data/shade.tif",
}
file_formats = {
    "air_temperature": 3,
    "air_temperature_gradient": 4,
    "ASE_ice_velocity": 4,
    "basin_mask": 4,
    "ersstv5": 4,
    "rasm": 3,
    "ROMS_example": 4,
    "tiny": 3,
    "eraint_uvz": 3,
}
def _check_netcdf_engine_installed(name):
    version = file_formats.get(name)
    if version == 3:
        try:
            import scipy  # noqa
        except ImportError:
            try:
                import netCDF4  # noqa
            except ImportError:
                raise ImportError(
                    f"opening tutorial dataset {name} requires either scipy or "
                    "netCDF4 to be installed."
                )
    if version == 4:
        try:
            import h5netcdf  # noqa
        except ImportError:
            try:
                import netCDF4  # noqa
            except ImportError:
                raise ImportError(
                    f"opening tutorial dataset {name} requires either h5netcdf "
                    "or netCDF4 to be installed."
                )
# idea borrowed from Seaborn
def open_dataset(
    name: str,
    cache: bool = True,
    cache_dir: None | str | os.PathLike = None,
    *,
    engine: T_Engine = None,
    **kws,
) -> Dataset:
    """
    Open a dataset from the online repository (requires internet).
    If a local copy is found then always use that to avoid network traffic.
    Available datasets:
    * ``"air_temperature"``: NCEP reanalysis subset
    * ``"air_temperature_gradient"``: NCEP reanalysis subset with approximate x,y gradients
    * ``"basin_mask"``: Dataset with ocean basins marked using integers
    * ``"ASE_ice_velocity"``: MEaSUREs InSAR-Based Ice Velocity of the Amundsen Sea Embayment, Antarctica, Version 1
    * ``"rasm"``: Output of the Regional Arctic System Model (RASM)
    * ``"ROMS_example"``: Regional Ocean Model System (ROMS) output
    * ``"tiny"``: small synthetic dataset with a 1D data variable
    * ``"era5-2mt-2019-03-uk.grib"``: ERA5 temperature data over the UK
    * ``"eraint_uvz"``: data from ERA-Interim reanalysis, monthly averages of upper level data
    * ``"ersstv5"``: NOAA's Extended Reconstructed Sea Surface Temperature monthly averages
    Parameters
    ----------
    name : str
        Name of the file containing the dataset.
        e.g. 'air_temperature'
    cache_dir : path-like, optional
        The directory in which to search for and write cached data.
    cache : bool, optional
        If True, then cache data locally for use on subsequent calls
    **kws : dict, optional
        Passed to xarray.open_dataset
    See Also
    --------
    tutorial.load_dataset
    open_dataset
    load_dataset
    """
    try:
        import pooch
    except ImportError as e:
        raise ImportError(
            "tutorial.open_dataset depends on pooch to download and manage datasets."
            " To proceed please install pooch."
        ) from e
    logger = pooch.get_logger()
    logger.setLevel("WARNING")
    cache_dir = _construct_cache_dir(cache_dir)
    if name in external_urls:
        url = external_urls[name]
    else:
        path = pathlib.Path(name)
        if not path.suffix:
            # process the name
            default_extension = ".nc"
            if engine is None:
                _check_netcdf_engine_installed(name)
            path = path.with_suffix(default_extension)
        elif path.suffix == ".grib":
            if engine is None:
                engine = "cfgrib"
        url = f"{base_url}/raw/{version}/{path.name}"
    # retrieve the file
    filepath = pooch.retrieve(url=url, known_hash=None, path=cache_dir)
    ds = _open_dataset(filepath, engine=engine, **kws)
    if not cache:
        ds = ds.load()
        pathlib.Path(filepath).unlink()
    return ds
def open_rasterio(
    name,
    engine=None,
    cache=True,
    cache_dir=None,
    **kws,
):
    """
    Open a rasterio dataset from the online repository (requires internet).
    .. deprecated:: 0.20.0
        Deprecated in favor of rioxarray.
        For information about transitioning, see:
        https://corteva.github.io/rioxarray/stable/getting_started/getting_started.html
    If a local copy is found then always use that to avoid network traffic.
    Available datasets:
    * ``"RGB.byte"``: TIFF file derived from USGS Landsat 7 ETM imagery.
    * ``"shade"``: TIFF file derived from from USGS SRTM 90 data
    ``RGB.byte`` and ``shade`` are downloaded from the ``rasterio`` repository [1]_.
    Parameters
    ----------
    name : str
        Name of the file containing the dataset.
        e.g. 'RGB.byte'
    cache_dir : path-like, optional
        The directory in which to search for and write cached data.
    cache : bool, optional
        If True, then cache data locally for use on subsequent calls
    **kws : dict, optional
        Passed to xarray.open_rasterio
    See Also
    --------
    xarray.open_rasterio
    References
    ----------
    .. [1] https://github.com/rasterio/rasterio
    """
    warnings.warn(
        "open_rasterio is Deprecated in favor of rioxarray. "
        "For information about transitioning, see: "
        "https://corteva.github.io/rioxarray/stable/getting_started/getting_started.html",
        DeprecationWarning,
        stacklevel=2,
    )
    try:
        import pooch
    except ImportError as e:
        raise ImportError(
            "tutorial.open_rasterio depends on pooch to download and manage datasets."
            " To proceed please install pooch."
        ) from e
    logger = pooch.get_logger()
    logger.setLevel("WARNING")
    cache_dir = _construct_cache_dir(cache_dir)
    url = external_rasterio_urls.get(name)
    if url is None:
        raise ValueError(f"unknown rasterio dataset: {name}")
    # retrieve the file
    filepath = pooch.retrieve(url=url, known_hash=None, path=cache_dir)
    arr = _open_rasterio(filepath, **kws)
    if not cache:
        arr = arr.load()
        pathlib.Path(filepath).unlink()
    return arr
def load_dataset(*args, **kwargs) -> Dataset:
    """
    Open, load into memory, and close a dataset from the online repository
    (requires internet).
    If a local copy is found then always use that to avoid network traffic.
    Available datasets:
    * ``"air_temperature"``: NCEP reanalysis subset
    * ``"air_temperature_gradient"``: NCEP reanalysis subset with approximate x,y gradients
    * ``"basin_mask"``: Dataset with ocean basins marked using integers
    * ``"rasm"``: Output of the Regional Arctic System Model (RASM)
    * ``"ROMS_example"``: Regional Ocean Model System (ROMS) output
    * ``"tiny"``: small synthetic dataset with a 1D data variable
    * ``"era5-2mt-2019-03-uk.grib"``: ERA5 temperature data over the UK
    * ``"eraint_uvz"``: data from ERA-Interim reanalysis, monthly averages of upper level data
    * ``"ersstv5"``: NOAA's Extended Reconstructed Sea Surface Temperature monthly averages
    Parameters
    ----------
    name : str
        Name of the file containing the dataset.
        e.g. 'air_temperature'
    cache_dir : path-like, optional
        The directory in which to search for and write cached data.
    cache : bool, optional
        If True, then cache data locally for use on subsequent calls
    **kws : dict, optional
        Passed to xarray.open_dataset
    See Also
    --------
    tutorial.open_dataset
    open_dataset
    load_dataset
    """
    with open_dataset(*args, **kwargs) as ds:
        return ds.load()
def scatter_example_dataset(*, seed: None | int = None) -> Dataset:
    """
    Create an example dataset.
    Parameters
    ----------
    seed : int, optional
        Seed for the random number generation.
    """
    rng = np.random.default_rng(seed)
    A = DataArray(
        np.zeros([3, 11, 4, 4]),
        dims=["x", "y", "z", "w"],
        coords={
            "x": np.arange(3),
            "y": np.linspace(0, 1, 11),
            "z": np.arange(4),
            "w": 0.1 * rng.standard_normal(4),
        },
    )
    B = 0.1 * A.x**2 + A.y**2.5 + 0.1 * A.z * A.w
    A = -0.1 * A.x + A.y / (5 + A.z) + A.w
    ds = Dataset({"A": A, "B": B})
    ds["w"] = ["one", "two", "three", "five"]
    ds.x.attrs["units"] = "xunits"
    ds.y.attrs["units"] = "yunits"
    ds.z.attrs["units"] = "zunits"
    ds.w.attrs["units"] = "wunits"
    ds.A.attrs["units"] = "Aunits"
    ds.B.attrs["units"] = "Bunits"
    return ds
 |