File: generate_aggregations.py

package info (click to toggle)
python-xarray 2023.01.0-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,980 kB
  • sloc: python: 86,209; makefile: 232; sh: 47
file content (536 lines) | stat: -rw-r--r-- 16,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
"""Generate module and stub file for arithmetic operators of various xarray classes.

For internal xarray development use only.

Usage:
    python xarray/util/generate_aggregations.py
    pytest --doctest-modules xarray/core/_aggregations.py --accept || true
    pytest --doctest-modules xarray/core/_aggregations.py

This requires [pytest-accept](https://github.com/max-sixty/pytest-accept).
The second run of pytest is deliberate, since the first will return an error
while replacing the doctests.

"""
import collections
import textwrap
from dataclasses import dataclass

MODULE_PREAMBLE = '''\
"""Mixin classes with reduction operations."""
# This file was generated using xarray.util.generate_aggregations. Do not edit manually.

from __future__ import annotations

from typing import TYPE_CHECKING, Any, Callable, Sequence

from . import duck_array_ops
from .options import OPTIONS
from .types import Dims
from .utils import contains_only_dask_or_numpy, module_available

if TYPE_CHECKING:
    from .dataarray import DataArray
    from .dataset import Dataset

flox_available = module_available("flox")'''

DEFAULT_PREAMBLE = """

class {obj}{cls}Aggregations:
    __slots__ = ()

    def reduce(
        self,
        func: Callable[..., Any],
        dim: Dims = None,
        *,
        axis: int | Sequence[int] | None = None,
        keep_attrs: bool | None = None,
        keepdims: bool = False,
        **kwargs: Any,
    ) -> {obj}:
        raise NotImplementedError()"""

GROUPBY_PREAMBLE = """

class {obj}{cls}Aggregations:
    _obj: {obj}

    def reduce(
        self,
        func: Callable[..., Any],
        dim: Dims = None,
        *,
        axis: int | Sequence[int] | None = None,
        keep_attrs: bool | None = None,
        keepdims: bool = False,
        **kwargs: Any,
    ) -> {obj}:
        raise NotImplementedError()

    def _flox_reduce(
        self,
        dim: Dims,
        **kwargs: Any,
    ) -> {obj}:
        raise NotImplementedError()"""

RESAMPLE_PREAMBLE = """

class {obj}{cls}Aggregations:
    _obj: {obj}

    def reduce(
        self,
        func: Callable[..., Any],
        dim: Dims = None,
        *,
        axis: int | Sequence[int] | None = None,
        keep_attrs: bool | None = None,
        keepdims: bool = False,
        **kwargs: Any,
    ) -> {obj}:
        raise NotImplementedError()

    def _flox_reduce(
        self,
        dim: Dims,
        **kwargs: Any,
    ) -> {obj}:
        raise NotImplementedError()"""

TEMPLATE_REDUCTION_SIGNATURE = '''
    def {method}(
        self,
        dim: Dims = None,
        *,{extra_kwargs}
        keep_attrs: bool | None = None,
        **kwargs: Any,
    ) -> {obj}:
        """
        Reduce this {obj}'s data by applying ``{method}`` along some dimension(s).

        Parameters
        ----------'''

TEMPLATE_REDUCTION_SIGNATURE_GROUPBY = '''
    def {method}(
        self,
        dim: Dims = None,
        *,{extra_kwargs}
        keep_attrs: bool | None = None,
        **kwargs: Any,
    ) -> {obj}:
        """
        Reduce this {obj}'s data by applying ``{method}`` along some dimension(s).

        Parameters
        ----------'''

TEMPLATE_RETURNS = """
        Returns
        -------
        reduced : {obj}
            New {obj} with ``{method}`` applied to its data and the
            indicated dimension(s) removed"""

TEMPLATE_SEE_ALSO = """
        See Also
        --------
        numpy.{method}
        dask.array.{method}
        {see_also_obj}.{method}
        :ref:`{docref}`
            User guide on {docref_description}."""

TEMPLATE_NOTES = """
        Notes
        -----
        {notes}"""

_DIM_DOCSTRING = """dim : str, Iterable of Hashable, "..." or None, default: None
    Name of dimension[s] along which to apply ``{method}``. For e.g. ``dim="x"``
    or ``dim=["x", "y"]``. If "..." or None, will reduce over all dimensions."""

_DIM_DOCSTRING_GROUPBY = """dim : str, Iterable of Hashable, "..." or None, default: None
    Name of dimension[s] along which to apply ``{method}``. For e.g. ``dim="x"``
    or ``dim=["x", "y"]``. If None, will reduce over the {cls} dimensions.
    If "...", will reduce over all dimensions."""

_SKIPNA_DOCSTRING = """skipna : bool or None, optional
    If True, skip missing values (as marked by NaN). By default, only
    skips missing values for float dtypes; other dtypes either do not
    have a sentinel missing value (int) or ``skipna=True`` has not been
    implemented (object, datetime64 or timedelta64)."""

_MINCOUNT_DOCSTRING = """min_count : int or None, optional
    The required number of valid values to perform the operation. If
    fewer than min_count non-NA values are present the result will be
    NA. Only used if skipna is set to True or defaults to True for the
    array's dtype. Changed in version 0.17.0: if specified on an integer
    array and skipna=True, the result will be a float array."""

_DDOF_DOCSTRING = """ddof : int, default: 0
    “Delta Degrees of Freedom”: the divisor used in the calculation is ``N - ddof``,
    where ``N`` represents the number of elements."""

_KEEP_ATTRS_DOCSTRING = """keep_attrs : bool or None, optional
    If True, ``attrs`` will be copied from the original
    object to the new one.  If False, the new object will be
    returned without attributes."""

_KWARGS_DOCSTRING = """**kwargs : Any
    Additional keyword arguments passed on to the appropriate array
    function for calculating ``{method}`` on this object's data.
    These could include dask-specific kwargs like ``split_every``."""

_NUMERIC_ONLY_NOTES = "Non-numeric variables will be removed prior to reducing."

ExtraKwarg = collections.namedtuple("ExtraKwarg", "docs kwarg call example")
skipna = ExtraKwarg(
    docs=_SKIPNA_DOCSTRING,
    kwarg="skipna: bool | None = None,",
    call="skipna=skipna,",
    example="""\n
        Use ``skipna`` to control whether NaNs are ignored.

        >>> {calculation}(skipna=False)""",
)
min_count = ExtraKwarg(
    docs=_MINCOUNT_DOCSTRING,
    kwarg="min_count: int | None = None,",
    call="min_count=min_count,",
    example="""\n
        Specify ``min_count`` for finer control over when NaNs are ignored.

        >>> {calculation}(skipna=True, min_count=2)""",
)
ddof = ExtraKwarg(
    docs=_DDOF_DOCSTRING,
    kwarg="ddof: int = 0,",
    call="ddof=ddof,",
    example="""\n
        Specify ``ddof=1`` for an unbiased estimate.

        >>> {calculation}(skipna=True, ddof=1)""",
)


class Method:
    def __init__(
        self,
        name,
        bool_reduce=False,
        extra_kwargs=tuple(),
        numeric_only=False,
    ):
        self.name = name
        self.extra_kwargs = extra_kwargs
        self.numeric_only = numeric_only

        if bool_reduce:
            self.array_method = f"array_{name}"
            self.np_example_array = """
        ...     np.array([True, True, True, True, True, False], dtype=bool)"""

        else:
            self.array_method = name
            self.np_example_array = """
        ...     np.array([1, 2, 3, 1, 2, np.nan])"""


class AggregationGenerator:

    _dim_docstring = _DIM_DOCSTRING
    _template_signature = TEMPLATE_REDUCTION_SIGNATURE

    def __init__(
        self,
        cls,
        datastructure,
        methods,
        docref,
        docref_description,
        example_call_preamble,
        definition_preamble,
        see_also_obj=None,
    ):
        self.datastructure = datastructure
        self.cls = cls
        self.methods = methods
        self.docref = docref
        self.docref_description = docref_description
        self.example_call_preamble = example_call_preamble
        self.preamble = definition_preamble.format(obj=datastructure.name, cls=cls)
        if not see_also_obj:
            self.see_also_obj = self.datastructure.name
        else:
            self.see_also_obj = see_also_obj

    def generate_methods(self):
        yield [self.preamble]
        for method in self.methods:
            yield self.generate_method(method)

    def generate_method(self, method):
        template_kwargs = dict(obj=self.datastructure.name, method=method.name)

        if method.extra_kwargs:
            extra_kwargs = "\n        " + "\n        ".join(
                [kwarg.kwarg for kwarg in method.extra_kwargs if kwarg.kwarg]
            )
        else:
            extra_kwargs = ""

        yield self._template_signature.format(
            **template_kwargs,
            extra_kwargs=extra_kwargs,
        )

        for text in [
            self._dim_docstring.format(method=method.name, cls=self.cls),
            *(kwarg.docs for kwarg in method.extra_kwargs if kwarg.docs),
            _KEEP_ATTRS_DOCSTRING,
            _KWARGS_DOCSTRING.format(method=method.name),
        ]:
            if text:
                yield textwrap.indent(text, 8 * " ")

        yield TEMPLATE_RETURNS.format(**template_kwargs)

        yield TEMPLATE_SEE_ALSO.format(
            **template_kwargs,
            docref=self.docref,
            docref_description=self.docref_description,
            see_also_obj=self.see_also_obj,
        )

        if method.numeric_only:
            yield TEMPLATE_NOTES.format(notes=_NUMERIC_ONLY_NOTES)

        yield textwrap.indent(self.generate_example(method=method), "")
        yield '        """'

        yield self.generate_code(method)

    def generate_example(self, method):
        create_da = f"""
        >>> da = xr.DataArray({method.np_example_array},
        ...     dims="time",
        ...     coords=dict(
        ...         time=("time", pd.date_range("01-01-2001", freq="M", periods=6)),
        ...         labels=("time", np.array(["a", "b", "c", "c", "b", "a"])),
        ...     ),
        ... )"""

        calculation = f"{self.datastructure.example_var_name}{self.example_call_preamble}.{method.name}"
        if method.extra_kwargs:
            extra_examples = "".join(
                kwarg.example for kwarg in method.extra_kwargs if kwarg.example
            ).format(calculation=calculation, method=method.name)
        else:
            extra_examples = ""

        return f"""
        Examples
        --------{create_da}{self.datastructure.docstring_create}

        >>> {calculation}(){extra_examples}"""


class GroupByAggregationGenerator(AggregationGenerator):
    _dim_docstring = _DIM_DOCSTRING_GROUPBY
    _template_signature = TEMPLATE_REDUCTION_SIGNATURE_GROUPBY

    def generate_code(self, method):
        extra_kwargs = [kwarg.call for kwarg in method.extra_kwargs if kwarg.call]

        if self.datastructure.numeric_only:
            extra_kwargs.append(f"numeric_only={method.numeric_only},")

        # numpy_groupies & flox do not support median
        # https://github.com/ml31415/numpy-groupies/issues/43
        method_is_not_flox_supported = method.name in ("median", "cumsum", "cumprod")
        if method_is_not_flox_supported:
            indent = 12
        else:
            indent = 16

        if extra_kwargs:
            extra_kwargs = textwrap.indent("\n" + "\n".join(extra_kwargs), indent * " ")
        else:
            extra_kwargs = ""

        if method_is_not_flox_supported:
            return f"""\
        return self.reduce(
            duck_array_ops.{method.array_method},
            dim=dim,{extra_kwargs}
            keep_attrs=keep_attrs,
            **kwargs,
        )"""

        else:
            return f"""\
        if (
            flox_available
            and OPTIONS["use_flox"]
            and contains_only_dask_or_numpy(self._obj)
        ):
            return self._flox_reduce(
                func="{method.name}",
                dim=dim,{extra_kwargs}
                # fill_value=fill_value,
                keep_attrs=keep_attrs,
                **kwargs,
            )
        else:
            return self.reduce(
                duck_array_ops.{method.array_method},
                dim=dim,{extra_kwargs}
                keep_attrs=keep_attrs,
                **kwargs,
            )"""


class GenericAggregationGenerator(AggregationGenerator):
    def generate_code(self, method):
        extra_kwargs = [kwarg.call for kwarg in method.extra_kwargs if kwarg.call]

        if self.datastructure.numeric_only:
            extra_kwargs.append(f"numeric_only={method.numeric_only},")

        if extra_kwargs:
            extra_kwargs = textwrap.indent("\n" + "\n".join(extra_kwargs), 12 * " ")
        else:
            extra_kwargs = ""
        return f"""\
        return self.reduce(
            duck_array_ops.{method.array_method},
            dim=dim,{extra_kwargs}
            keep_attrs=keep_attrs,
            **kwargs,
        )"""


AGGREGATION_METHODS = (
    # Reductions:
    Method("count"),
    Method("all", bool_reduce=True),
    Method("any", bool_reduce=True),
    Method("max", extra_kwargs=(skipna,)),
    Method("min", extra_kwargs=(skipna,)),
    Method("mean", extra_kwargs=(skipna,), numeric_only=True),
    Method("prod", extra_kwargs=(skipna, min_count), numeric_only=True),
    Method("sum", extra_kwargs=(skipna, min_count), numeric_only=True),
    Method("std", extra_kwargs=(skipna, ddof), numeric_only=True),
    Method("var", extra_kwargs=(skipna, ddof), numeric_only=True),
    Method("median", extra_kwargs=(skipna,), numeric_only=True),
    # Cumulatives:
    Method("cumsum", extra_kwargs=(skipna,), numeric_only=True),
    Method("cumprod", extra_kwargs=(skipna,), numeric_only=True),
)


@dataclass
class DataStructure:
    name: str
    docstring_create: str
    example_var_name: str
    numeric_only: bool = False


DATASET_OBJECT = DataStructure(
    name="Dataset",
    docstring_create="""
        >>> ds = xr.Dataset(dict(da=da))
        >>> ds""",
    example_var_name="ds",
    numeric_only=True,
)
DATAARRAY_OBJECT = DataStructure(
    name="DataArray",
    docstring_create="""
        >>> da""",
    example_var_name="da",
    numeric_only=False,
)
DATASET_GENERATOR = GenericAggregationGenerator(
    cls="",
    datastructure=DATASET_OBJECT,
    methods=AGGREGATION_METHODS,
    docref="agg",
    docref_description="reduction or aggregation operations",
    example_call_preamble="",
    see_also_obj="DataArray",
    definition_preamble=DEFAULT_PREAMBLE,
)
DATAARRAY_GENERATOR = GenericAggregationGenerator(
    cls="",
    datastructure=DATAARRAY_OBJECT,
    methods=AGGREGATION_METHODS,
    docref="agg",
    docref_description="reduction or aggregation operations",
    example_call_preamble="",
    see_also_obj="Dataset",
    definition_preamble=DEFAULT_PREAMBLE,
)
DATAARRAY_GROUPBY_GENERATOR = GroupByAggregationGenerator(
    cls="GroupBy",
    datastructure=DATAARRAY_OBJECT,
    methods=AGGREGATION_METHODS,
    docref="groupby",
    docref_description="groupby operations",
    example_call_preamble='.groupby("labels")',
    definition_preamble=GROUPBY_PREAMBLE,
)
DATAARRAY_RESAMPLE_GENERATOR = GroupByAggregationGenerator(
    cls="Resample",
    datastructure=DATAARRAY_OBJECT,
    methods=AGGREGATION_METHODS,
    docref="resampling",
    docref_description="resampling operations",
    example_call_preamble='.resample(time="3M")',
    definition_preamble=RESAMPLE_PREAMBLE,
)
DATASET_GROUPBY_GENERATOR = GroupByAggregationGenerator(
    cls="GroupBy",
    datastructure=DATASET_OBJECT,
    methods=AGGREGATION_METHODS,
    docref="groupby",
    docref_description="groupby operations",
    example_call_preamble='.groupby("labels")',
    definition_preamble=GROUPBY_PREAMBLE,
)
DATASET_RESAMPLE_GENERATOR = GroupByAggregationGenerator(
    cls="Resample",
    datastructure=DATASET_OBJECT,
    methods=AGGREGATION_METHODS,
    docref="resampling",
    docref_description="resampling operations",
    example_call_preamble='.resample(time="3M")',
    definition_preamble=RESAMPLE_PREAMBLE,
)


if __name__ == "__main__":
    import os
    from pathlib import Path

    p = Path(os.getcwd())
    filepath = p.parent / "xarray" / "xarray" / "core" / "_aggregations.py"
    # filepath = p.parent / "core" / "_aggregations.py"  # Run from script location
    with open(filepath, mode="w", encoding="utf-8") as f:
        f.write(MODULE_PREAMBLE + "\n")
        for gen in [
            DATASET_GENERATOR,
            DATAARRAY_GENERATOR,
            DATASET_GROUPBY_GENERATOR,
            DATASET_RESAMPLE_GENERATOR,
            DATAARRAY_GROUPBY_GENERATOR,
            DATAARRAY_RESAMPLE_GENERATOR,
        ]:
            for lines in gen.generate_methods():
                for line in lines:
                    f.write(line + "\n")