1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
# import flox to avoid the cost of first import
import cftime
import flox.xarray # noqa: F401
import numpy as np
import pandas as pd
import xarray as xr
from . import _skip_slow, parameterized, requires_dask
class GroupBy:
def setup(self, *args, **kwargs):
self.n = 100
self.ds1d = xr.Dataset(
{
"a": xr.DataArray(np.r_[np.repeat(1, self.n), np.repeat(2, self.n)]),
"b": xr.DataArray(np.arange(2 * self.n)),
"c": xr.DataArray(np.arange(2 * self.n)),
}
)
self.ds2d = self.ds1d.expand_dims(z=10).copy()
self.ds1d_mean = self.ds1d.groupby("b").mean()
self.ds2d_mean = self.ds2d.groupby("b").mean()
@parameterized(["ndim"], [(1, 2)])
def time_init(self, ndim):
getattr(self, f"ds{ndim}d").groupby("b")
@parameterized(
["method", "ndim", "use_flox"], [("sum", "mean"), (1, 2), (True, False)]
)
def time_agg_small_num_groups(self, method, ndim, use_flox):
ds = getattr(self, f"ds{ndim}d")
with xr.set_options(use_flox=use_flox):
getattr(ds.groupby("a"), method)().compute()
@parameterized(
["method", "ndim", "use_flox"], [("sum", "mean"), (1, 2), (True, False)]
)
def time_agg_large_num_groups(self, method, ndim, use_flox):
ds = getattr(self, f"ds{ndim}d")
with xr.set_options(use_flox=use_flox):
getattr(ds.groupby("b"), method)().compute()
def time_binary_op_1d(self):
(self.ds1d.groupby("b") - self.ds1d_mean).compute()
def time_binary_op_2d(self):
(self.ds2d.groupby("b") - self.ds2d_mean).compute()
def peakmem_binary_op_1d(self):
(self.ds1d.groupby("b") - self.ds1d_mean).compute()
def peakmem_binary_op_2d(self):
(self.ds2d.groupby("b") - self.ds2d_mean).compute()
class GroupByDask(GroupBy):
def setup(self, *args, **kwargs):
requires_dask()
super().setup(**kwargs)
self.ds1d = self.ds1d.sel(dim_0=slice(None, None, 2))
self.ds1d["c"] = self.ds1d["c"].chunk({"dim_0": 50})
self.ds2d = self.ds2d.sel(dim_0=slice(None, None, 2))
self.ds2d["c"] = self.ds2d["c"].chunk({"dim_0": 50, "z": 5})
self.ds1d_mean = self.ds1d.groupby("b").mean().compute()
self.ds2d_mean = self.ds2d.groupby("b").mean().compute()
# TODO: These don't work now because we are calling `.compute` explicitly.
class GroupByPandasDataFrame(GroupBy):
"""Run groupby tests using pandas DataFrame."""
def setup(self, *args, **kwargs):
# Skip testing in CI as it won't ever change in a commit:
_skip_slow()
super().setup(**kwargs)
self.ds1d = self.ds1d.to_dataframe()
self.ds1d_mean = self.ds1d.groupby("b").mean()
def time_binary_op_2d(self):
raise NotImplementedError
def peakmem_binary_op_2d(self):
raise NotImplementedError
class GroupByDaskDataFrame(GroupBy):
"""Run groupby tests using dask DataFrame."""
def setup(self, *args, **kwargs):
# Skip testing in CI as it won't ever change in a commit:
_skip_slow()
requires_dask()
super().setup(**kwargs)
self.ds1d = self.ds1d.chunk({"dim_0": 50}).to_dask_dataframe()
self.ds1d_mean = self.ds1d.groupby("b").mean().compute()
def time_binary_op_2d(self):
raise NotImplementedError
def peakmem_binary_op_2d(self):
raise NotImplementedError
class Resample:
def setup(self, *args, **kwargs):
self.ds1d = xr.Dataset(
{
"b": ("time", np.arange(365.0 * 24)),
},
coords={"time": pd.date_range("2001-01-01", freq="h", periods=365 * 24)},
)
self.ds2d = self.ds1d.expand_dims(z=10)
self.ds1d_mean = self.ds1d.resample(time="48h").mean()
self.ds2d_mean = self.ds2d.resample(time="48h").mean()
@parameterized(["ndim"], [(1, 2)])
def time_init(self, ndim):
getattr(self, f"ds{ndim}d").resample(time="D")
@parameterized(
["method", "ndim", "use_flox"], [("sum", "mean"), (1, 2), (True, False)]
)
def time_agg_small_num_groups(self, method, ndim, use_flox):
ds = getattr(self, f"ds{ndim}d")
with xr.set_options(use_flox=use_flox):
getattr(ds.resample(time="3ME"), method)().compute()
@parameterized(
["method", "ndim", "use_flox"], [("sum", "mean"), (1, 2), (True, False)]
)
def time_agg_large_num_groups(self, method, ndim, use_flox):
ds = getattr(self, f"ds{ndim}d")
with xr.set_options(use_flox=use_flox):
getattr(ds.resample(time="48h"), method)().compute()
class ResampleDask(Resample):
def setup(self, *args, **kwargs):
requires_dask()
super().setup(**kwargs)
self.ds1d = self.ds1d.chunk({"time": 50})
self.ds2d = self.ds2d.chunk({"time": 50, "z": 4})
class ResampleCFTime(Resample):
def setup(self, *args, **kwargs):
self.ds1d = xr.Dataset(
{
"b": ("time", np.arange(365.0 * 24)),
},
coords={
"time": xr.date_range(
"2001-01-01", freq="h", periods=365 * 24, calendar="noleap"
)
},
)
self.ds2d = self.ds1d.expand_dims(z=10)
self.ds1d_mean = self.ds1d.resample(time="48h").mean()
self.ds2d_mean = self.ds2d.resample(time="48h").mean()
@parameterized(["use_cftime", "use_flox"], [[True, False], [True, False]])
class GroupByLongTime:
def setup(self, use_cftime, use_flox):
arr = np.random.randn(10, 10, 365 * 30)
time = xr.date_range("2000", periods=30 * 365, use_cftime=use_cftime)
# GH9426 - deep-copying CFTime object arrays is weirdly slow
asda = xr.DataArray(time)
labeled_time = []
for year, month in zip(asda.dt.year, asda.dt.month, strict=True):
labeled_time.append(cftime.datetime(year, month, 1))
self.da = xr.DataArray(
arr,
dims=("y", "x", "time"),
coords={"time": time, "time2": ("time", labeled_time)},
)
def time_setup(self, use_cftime, use_flox):
self.da.groupby("time.month")
def time_mean(self, use_cftime, use_flox):
with xr.set_options(use_flox=use_flox):
self.da.groupby("time.year").mean()
|