1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
import os
import numpy as np
import pandas as pd
import xarray as xr
from . import parameterized, randint, randn, requires_dask
nx = 2000
ny = 1000
nt = 500
basic_indexes = {
"1scalar": {"x": 0},
"1slice": {"x": slice(0, 3)},
"1slice-1scalar": {"x": 0, "y": slice(None, None, 3)},
"2slicess-1scalar": {"x": slice(3, -3, 3), "y": 1, "t": slice(None, -3, 3)},
}
basic_assignment_values = {
"1scalar": 0,
"1slice": xr.DataArray(randn((3, ny), frac_nan=0.1), dims=["x", "y"]),
"1slice-1scalar": xr.DataArray(randn(int(ny / 3) + 1, frac_nan=0.1), dims=["y"]),
"2slicess-1scalar": xr.DataArray(
randn(np.empty(nx)[slice(3, -3, 3)].size, frac_nan=0.1), dims=["x"]
),
}
outer_indexes = {
"1d": {"x": randint(0, nx, 400)},
"2d": {"x": randint(0, nx, 500), "y": randint(0, ny, 400)},
"2d-1scalar": {"x": randint(0, nx, 100), "y": 1, "t": randint(0, nt, 400)},
}
outer_assignment_values = {
"1d": xr.DataArray(randn((400, ny), frac_nan=0.1), dims=["x", "y"]),
"2d": xr.DataArray(randn((500, 400), frac_nan=0.1), dims=["x", "y"]),
"2d-1scalar": xr.DataArray(randn(100, frac_nan=0.1), dims=["x"]),
}
def make_vectorized_indexes(n_index):
return {
"1-1d": {"x": xr.DataArray(randint(0, nx, n_index), dims="a")},
"2-1d": {
"x": xr.DataArray(randint(0, nx, n_index), dims="a"),
"y": xr.DataArray(randint(0, ny, n_index), dims="a"),
},
"3-2d": {
"x": xr.DataArray(
randint(0, nx, n_index).reshape(n_index // 100, 100), dims=["a", "b"]
),
"y": xr.DataArray(
randint(0, ny, n_index).reshape(n_index // 100, 100), dims=["a", "b"]
),
"t": xr.DataArray(
randint(0, nt, n_index).reshape(n_index // 100, 100), dims=["a", "b"]
),
},
}
vectorized_indexes = make_vectorized_indexes(400)
big_vectorized_indexes = make_vectorized_indexes(400_000)
vectorized_assignment_values = {
"1-1d": xr.DataArray(randn((400, ny)), dims=["a", "y"], coords={"a": randn(400)}),
"2-1d": xr.DataArray(randn(400), dims=["a"], coords={"a": randn(400)}),
"3-2d": xr.DataArray(
randn((4, 100)), dims=["a", "b"], coords={"a": randn(4), "b": randn(100)}
),
}
class Base:
def setup(self, key):
self.ds = xr.Dataset(
{
"var1": (("x", "y"), randn((nx, ny), frac_nan=0.1)),
"var2": (("x", "t"), randn((nx, nt))),
"var3": (("t",), randn(nt)),
},
coords={
"x": np.arange(nx),
"y": np.linspace(0, 1, ny),
"t": pd.date_range("1970-01-01", periods=nt, freq="D"),
"x_coords": ("x", np.linspace(1.1, 2.1, nx)),
},
)
# Benchmark how indexing is slowed down by adding many scalar variable
# to the dataset
# https://github.com/pydata/xarray/pull/9003
self.ds_large = self.ds.merge({f"extra_var{i}": i for i in range(400)})
class Indexing(Base):
@parameterized(["key"], [list(basic_indexes.keys())])
def time_indexing_basic(self, key):
self.ds.isel(**basic_indexes[key]).load()
@parameterized(["key"], [list(outer_indexes.keys())])
def time_indexing_outer(self, key):
self.ds.isel(**outer_indexes[key]).load()
@parameterized(["key"], [list(vectorized_indexes.keys())])
def time_indexing_vectorized(self, key):
self.ds.isel(**vectorized_indexes[key]).load()
@parameterized(["key"], [list(basic_indexes.keys())])
def time_indexing_basic_ds_large(self, key):
# https://github.com/pydata/xarray/pull/9003
self.ds_large.isel(**basic_indexes[key]).load()
class IndexingOnly(Base):
@parameterized(["key"], [list(basic_indexes.keys())])
def time_indexing_basic(self, key):
self.ds.isel(**basic_indexes[key])
@parameterized(["key"], [list(outer_indexes.keys())])
def time_indexing_outer(self, key):
self.ds.isel(**outer_indexes[key])
@parameterized(["key"], [list(big_vectorized_indexes.keys())])
def time_indexing_big_vectorized(self, key):
self.ds.isel(**big_vectorized_indexes[key])
class Assignment(Base):
@parameterized(["key"], [list(basic_indexes.keys())])
def time_assignment_basic(self, key):
ind = basic_indexes[key]
val = basic_assignment_values[key]
self.ds["var1"][ind.get("x", slice(None)), ind.get("y", slice(None))] = val
@parameterized(["key"], [list(outer_indexes.keys())])
def time_assignment_outer(self, key):
ind = outer_indexes[key]
val = outer_assignment_values[key]
self.ds["var1"][ind.get("x", slice(None)), ind.get("y", slice(None))] = val
@parameterized(["key"], [list(vectorized_indexes.keys())])
def time_assignment_vectorized(self, key):
ind = vectorized_indexes[key]
val = vectorized_assignment_values[key]
self.ds["var1"][ind.get("x", slice(None)), ind.get("y", slice(None))] = val
class IndexingDask(Indexing):
def setup(self, key):
requires_dask()
super().setup(key)
self.ds = self.ds.chunk({"x": 100, "y": 50, "t": 50})
class BooleanIndexing:
# https://github.com/pydata/xarray/issues/2227
def setup(self):
self.ds = xr.Dataset(
{"a": ("time", np.arange(10_000_000))},
coords={"time": np.arange(10_000_000)},
)
self.time_filter = self.ds.time > 50_000
def time_indexing(self):
self.ds.isel(time=self.time_filter)
class HugeAxisSmallSliceIndexing:
# https://github.com/pydata/xarray/pull/4560
def setup(self):
self.filepath = "test_indexing_huge_axis_small_slice.nc"
if not os.path.isfile(self.filepath):
xr.Dataset(
{"a": ("x", np.arange(10_000_000))},
coords={"x": np.arange(10_000_000)},
).to_netcdf(self.filepath, format="NETCDF4")
self.ds = xr.open_dataset(self.filepath)
def time_indexing(self):
self.ds.isel(x=slice(100))
def cleanup(self):
self.ds.close()
class AssignmentOptimized:
# https://github.com/pydata/xarray/pull/7382
def setup(self):
self.ds = xr.Dataset(coords={"x": np.arange(500_000)})
self.da = xr.DataArray(np.arange(500_000), dims="x")
def time_assign_no_reindex(self):
# assign with non-indexed DataArray of same dimension size
self.ds.assign(foo=self.da)
def time_assign_identical_indexes(self):
# fastpath index comparison (same index object)
self.ds.assign(foo=self.ds.x)
|