1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
import numpy as np
import pandas as pd
import xarray as xr
from . import _skip_slow, parameterized, randn, requires_dask
nx = 3000
long_nx = 30000
ny = 200
nt = 1000
window = 20
randn_xy = randn((nx, ny), frac_nan=0.1)
randn_xt = randn((nx, nt))
randn_t = randn((nt,))
randn_long = randn((long_nx,), frac_nan=0.1)
class Rolling:
def setup(self, *args, **kwargs):
self.ds = xr.Dataset(
{
"var1": (("x", "y"), randn_xy),
"var2": (("x", "t"), randn_xt),
"var3": (("t",), randn_t),
},
coords={
"x": np.arange(nx),
"y": np.linspace(0, 1, ny),
"t": pd.date_range("1970-01-01", periods=nt, freq="D"),
"x_coords": ("x", np.linspace(1.1, 2.1, nx)),
},
)
self.da_long = xr.DataArray(
randn_long, dims="x", coords={"x": np.arange(long_nx) * 0.1}
)
@parameterized(
["func", "center", "use_bottleneck"],
(["mean", "count"], [True, False], [True, False]),
)
def time_rolling(self, func, center, use_bottleneck):
with xr.set_options(use_bottleneck=use_bottleneck):
getattr(self.ds.rolling(x=window, center=center), func)().load()
@parameterized(
["func", "pandas", "use_bottleneck"],
(["mean", "count"], [True, False], [True, False]),
)
def time_rolling_long(self, func, pandas, use_bottleneck):
if pandas:
se = self.da_long.to_series()
getattr(se.rolling(window=window, min_periods=window), func)()
else:
with xr.set_options(use_bottleneck=use_bottleneck):
getattr(
self.da_long.rolling(x=window, min_periods=window), func
)().load()
@parameterized(
["window_", "min_periods", "use_bottleneck"], ([20, 40], [5, 5], [True, False])
)
def time_rolling_np(self, window_, min_periods, use_bottleneck):
with xr.set_options(use_bottleneck=use_bottleneck):
self.ds.rolling(x=window_, center=False, min_periods=min_periods).reduce(
np.nansum
).load()
@parameterized(
["center", "stride", "use_bottleneck"], ([True, False], [1, 1], [True, False])
)
def time_rolling_construct(self, center, stride, use_bottleneck):
with xr.set_options(use_bottleneck=use_bottleneck):
self.ds.rolling(x=window, center=center).construct(
"window_dim", stride=stride
).sum(dim="window_dim").load()
class RollingDask(Rolling):
def setup(self, *args, **kwargs):
requires_dask()
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
super().setup(**kwargs)
self.ds = self.ds.chunk({"x": 100, "y": 50, "t": 50})
self.da_long = self.da_long.chunk({"x": 10000})
class RollingMemory:
def setup(self, *args, **kwargs):
self.ds = xr.Dataset(
{
"var1": (("x", "y"), randn_xy),
"var2": (("x", "t"), randn_xt),
"var3": (("t",), randn_t),
},
coords={
"x": np.arange(nx),
"y": np.linspace(0, 1, ny),
"t": pd.date_range("1970-01-01", periods=nt, freq="D"),
"x_coords": ("x", np.linspace(1.1, 2.1, nx)),
},
)
class DataArrayRollingMemory(RollingMemory):
@parameterized(["func", "use_bottleneck"], (["sum", "max", "mean"], [True, False]))
def peakmem_ndrolling_reduce(self, func, use_bottleneck):
with xr.set_options(use_bottleneck=use_bottleneck):
roll = self.ds.var1.rolling(x=10, y=4)
getattr(roll, func)()
@parameterized(["func", "use_bottleneck"], (["sum", "max", "mean"], [True, False]))
def peakmem_1drolling_reduce(self, func, use_bottleneck):
with xr.set_options(use_bottleneck=use_bottleneck):
roll = self.ds.var3.rolling(t=100)
getattr(roll, func)()
@parameterized(["stride"], ([None, 5, 50]))
def peakmem_1drolling_construct(self, stride):
self.ds.var2.rolling(t=100).construct("w", stride=stride)
self.ds.var3.rolling(t=100).construct("w", stride=stride)
class DatasetRollingMemory(RollingMemory):
@parameterized(["func", "use_bottleneck"], (["sum", "max", "mean"], [True, False]))
def peakmem_ndrolling_reduce(self, func, use_bottleneck):
with xr.set_options(use_bottleneck=use_bottleneck):
roll = self.ds.rolling(x=10, y=4)
getattr(roll, func)()
@parameterized(["func", "use_bottleneck"], (["sum", "max", "mean"], [True, False]))
def peakmem_1drolling_reduce(self, func, use_bottleneck):
with xr.set_options(use_bottleneck=use_bottleneck):
roll = self.ds.rolling(t=100)
getattr(roll, func)()
@parameterized(["stride"], ([None, 5, 50]))
def peakmem_1drolling_construct(self, stride):
self.ds.rolling(t=100).construct("w", stride=stride)
|