1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
import numpy as np
import pandas as pd
import xarray as xr
from . import requires_dask, requires_sparse
class Unstacking:
def setup(self):
data = np.random.default_rng(0).random((250, 500))
self.da_full = xr.DataArray(data, dims=list("ab")).stack(flat_dim=[...])
self.da_missing = self.da_full[:-1]
self.df_missing = self.da_missing.to_pandas()
def time_unstack_fast(self):
self.da_full.unstack("flat_dim")
def time_unstack_slow(self):
self.da_missing.unstack("flat_dim")
def time_unstack_pandas_slow(self):
self.df_missing.unstack()
class UnstackingDask(Unstacking):
def setup(self, *args, **kwargs):
requires_dask()
super().setup(**kwargs)
self.da_full = self.da_full.chunk({"flat_dim": 25})
class UnstackingSparse(Unstacking):
def setup(self, *args, **kwargs):
requires_sparse()
import sparse
data = sparse.random((500, 1000), random_state=0, fill_value=0)
self.da_full = xr.DataArray(data, dims=list("ab")).stack(flat_dim=[...])
self.da_missing = self.da_full[:-1]
mindex = pd.MultiIndex.from_arrays([np.arange(100), np.arange(100)])
self.da_eye_2d = xr.DataArray(np.ones((100,)), dims="z", coords={"z": mindex})
self.da_eye_3d = xr.DataArray(
np.ones((100, 50)),
dims=("z", "foo"),
coords={"z": mindex, "foo": np.arange(50)},
)
def time_unstack_to_sparse_2d(self):
self.da_eye_2d.unstack(sparse=True)
def time_unstack_to_sparse_3d(self):
self.da_eye_3d.unstack(sparse=True)
def peakmem_unstack_to_sparse_2d(self):
self.da_eye_2d.unstack(sparse=True)
def peakmem_unstack_to_sparse_3d(self):
self.da_eye_3d.unstack(sparse=True)
def time_unstack_pandas_slow(self):
pass
|